

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167f48f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
12	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output		
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)		
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output		
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output		
	CCU62_ CCPOS2A	1	St/B	CCU62 Position Input 2		
	TCK_C	Ι	St/B	JTAG Clock Input		
	U0C0_DX0D	Ι	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input		
13	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output CCU60 Channel 1 Input/Output		
	CCU60_ CC61	O1 / I	St/B			
14	P8.0	O0 / I	St/B	Bit 0 of Port 8, General Purpose Input/Output		
	CCU60_ CC60	01 / I	St/B	CCU60 Channel 0 Input/Output		
16	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output		
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)		
	BRKOUT	O3	St/A	OCDS Break Signal Output		
	ADCx_ REQGTyC	1	St/A	External Request Gate Input for ADC0/1		
	U1C1_DX0E	I	St/A	USIC1 Channel 1 Shift Data Input		
17	P6.1	O0 / I	St/A	Bit 1 of Port 6, General Purpose Input/Output		
	EMUX1	01	St/A	External Analog MUX Control Output 1 (ADC0)		
	T3OUT	O2	St/A	GPT1 Timer T3 Toggle Latch Output		
	U1C1_DOUT	O3	St/A	USIC1 Channel 1 Shift Data Output		
	ADCx_ REQTRyC	1	St/A	External Request Trigger Input for ADC0/1		

General Device Information

Table	Table 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
28	P15.7	Ι	In/A	Bit 7 of Port 15, General Purpose Input		
	ADC1_CH7	Ι	In/A	Analog Input Channel 7 for ADC1		
29	V _{AREF1}	-	PS/A	Reference Voltage for A/D Converter ADC1		
30	V _{AREF0}	-	PS/A	Reference Voltage for A/D Converter ADC0		
31	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1		
32	P5.0	Ι	In/A	Bit 0 of Port 5, General Purpose Input		
	ADC0_CH0	Ι	In/A	Analog Input Channel 0 for ADC0		
33	P5.1	Ι	In/A	Bit 1 of Port 5, General Purpose Input		
	ADC0_CH1	Ι	In/A	Analog Input Channel 1 for ADC0		
34	P5.2	Ι	In/A	Bit 2 of Port 5, General Purpose Input		
	ADC0_CH2	Ι	In/A	Analog Input Channel 2 for ADC0		
	TDI_A	Ι	In/A	JTAG Test Data Input		
35	P5.3	Ι	In/A	Bit 3 of Port 5, General Purpose Input		
	ADC0_CH3	Ι	In/A	Analog Input Channel 3 for ADC0		
	T3IN	Ι	In/A	GPT1 Timer T3 Count/Gate Input		
39	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input		
	ADC0_CH4	Ι	In/A	Analog Input Channel 4 for ADC0		
	CCU63_ T12HRB	I	In/A	External Run Control Input for T12 of CCU63		
	T3EUD	I	In/A	GPT1 Timer T3 External Up/Down Control Input		
	TMS_A	I	In/A	JTAG Test Mode Selection Input		
40	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input		
	ADC0_CH5	Ι	In/A	Analog Input Channel 5 for ADC0		
	CCU60_ T12HRB	I	In/A	External Run Control Input for T12 of CCU60		
41	P5.6	I	In/A	Bit 6 of Port 5, General Purpose Input		
	ADC0_CH6	I	In/A	Analog Input Channel 6 for ADC0		
42	P5.7	Ι	In/A	Bit 7 of Port 5, General Purpose Input		
	ADC0_CH7	Ι	In/A	Analog Input Channel 7 for ADC0		

General Device Information

Table	Fable 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
66	P11.0	O0 / I	St/B	Bit 0 of Port 11, General Purpose Input/Output		
	CCU63_ CCPOS0A	I	St/B	CCU63 Position Input 0		
67	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output		
	U0C0_ SCLKOUT	O1	St/B	USIC0 Channel 0 Shift Clock Output		
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output		
	CC2_18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.		
	A18	OH	St/B	External Bus Interface Address Line 18		
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input		
68	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output		
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output		
	CC2_26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out		
	CS2	OH	St/B	External Bus Interface Chip Select 2 Output		
	T2IN	I	St/B	GPT1 Timer T2 Count/Gate Input		
69	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_ SELO0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_ SELO1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	OH	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
70	P4.4	O0 / I	St/B	Bit 4 of Port 4, General Purpose Input/Output		
	CC2_28	O3 / I	St/B	CAPCOM2 CC28IO Capture Inp./ Compare Out.		
	CS4	OH	St/B	External Bus Interface Chip Select 4 Output		
	CLKIN2	1	St/B	RTC Count Clock Signal Input		

Table 6XE167 Interrupt Nodes

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 16, or ERU Request 0	CC2_CC16IC	xx'0040 _H	10 _H / 16 _D
CAPCOM Register 17, or ERU Request 1	CC2_CC17IC	xx'0044 _H	11 _H / 17 _D
CAPCOM Register 18, or ERU Request 2	CC2_CC18IC	xx'0048 _H	12 _H / 18 _D
CAPCOM Register 19, or ERU Request 3	CC2_CC19IC	xx'004C _H	13 _H / 19 _D
CAPCOM Register 20, or USIC0 Request 6	CC2_CC20IC	xx'0050 _H	14 _H / 20 _D
CAPCOM Register 21, or USIC0 Request 7	CC2_CC21IC	xx'0054 _H	15 _H / 21 _D
CAPCOM Register 22, or USIC1 Request 6	CC2_CC22IC	xx'0058 _H	16 _H / 22 _D
CAPCOM Register 23, or USIC1 Request 7	CC2_CC23IC	xx'005C _H	17 _H / 23 _D
CAPCOM Register 24, or ERU Request 0	CC2_CC24IC	xx'0060 _H	18 _H / 24 _D
CAPCOM Register 25, or ERU Request 1	CC2_CC25IC	xx'0064 _H	19 _H / 25 _D
CAPCOM Register 26, or ERU Request 2	CC2_CC26IC	xx'0068 _H	1A _H / 26 _D
CAPCOM Register 27, or ERU Request 3	CC2_CC27IC	xx'006C _H	1B _H / 27 _D
CAPCOM Register 28, or USIC2 Request 6	CC2_CC28IC	xx'0070 _H	1C _H / 28 _D
CAPCOM Register 29, or USIC2 Request 7	CC2_CC29IC	xx'0074 _H	1D _H / 29 _D
CAPCOM Register 30	CC2_CC30IC	xx'0078 _H	1E _H / 30 _D
CAPCOM Register 31	CC2_CC31IC	xx'007C _H	1F _H / 31 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0080 _H	20 _H / 32 _D
GPT1 Timer 3	GPT12E_T3IC	xx'0084 _H	21 _H / 33 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0088 _H	22 _H / 34 _D

The XE167 includes an excellent mechanism to identify and process exceptions or error conditions that arise during run-time, the so-called 'Hardware Traps'. A hardware trap causes an immediate non-maskable system reaction similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

 Table 7 shows all possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location ¹⁾	Trap Number	Trap Priority
Reset Functions	-	RESET	xx'0000 _H	00 _H	III
 Class A Hardware Traps: System Request 0 Stack Overflow Stack Underflow Software Break 	SR0 STKOF STKUF SOFTBRK	SR0TRAP STOTRAP STUTRAP SBRKTRAP	xx'0008 _H xx'0010 _H xx'0018 _H xx'0020 _H	02 _H 04 _H 06 _H 08 _H	
 Class B Hardware Traps: System Request 1 Undefined Opcode Memory Access Error Protected Instruction Fault Illegal Word Operand Access 	SR1 UNDOPC ACER PRTFLT ILLOPA	BTRAP BTRAP BTRAP BTRAP BTRAP	xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H	0A _H 0A _H 0A _H 0A _H	
Reserved	-	-	[2C _H - 3C _H]	[0B _H - 0F _H]	_
Software Traps: • TRAP Instruction	-	_	Any [xx'0000 _H - xx'01FC _H] in steps of 4_{H}	Any [00 _H - 7F _H]	Current CPU Priority

Table 7Trap Summary

1) Register VECSEG defines the segment where the vector table is located to.

Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors.

Figure 5 CAPCOM2 Unit Block Diagram

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- **UART** (asynchronous serial channel)
 - maximum baud rate: f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - maximum baud rate: f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI/QSPI (synchronous serial channel with or without data buffer)
 - maximum baud rate in slave mode: $f_{\rm SYS}$
 - maximum baud rate in master mode: f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- **IIS** (Inter-IC Sound Bus)
 - maximum baud rate: f_{SYS} / 2 for transmitter, f_{SYS} for receiver
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

3.16 Instruction Set Summary

 Table 10 lists the instructions of the XE167.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4
BCLR/BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL/SHR	Shift left/right direct word GPR	2

Table 10Instruction Set Summary

4 Electrical Parameters

The operating range for the XE167 is defined by its electrical parameters. For proper operation the specified limits must be respected during system design.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Storage temperature	T _{ST}	-65	-	150	°C	-
Junction temperature	TJ	-40	-	125	°C	under bias
Voltage on V_{DDI} pins with respect to ground (V_{SS})	$V_{\rm DDIM},\ V_{\rm DDI1}$	-0.5	-	1.65	V	_
Voltage on V_{DDP} pins with respect to ground (V_{SS})	$V_{ m DDPA}, \ V_{ m DDPB}$	-0.5	-	6.0	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN}$ < $V_{\rm DDPmax}$
Input current on any pin during overload condition	-	-10	-	10	mA	_
Absolute sum of all input currents during overload condition	_	_	-	100	mA	_
Output current on any pin	$I_{\rm OH},I_{\rm OL}$	-	-	30	mA	-

 Table 11
 Absolute Maximum Rating Parameters

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XE167. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Table 12	Operating	Condition	Parameters

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Digital core supply voltage	V_{DDI}	1.4	_	1.6	V		
Core Supply Voltage Difference	∆VDDI	-10	_	+10	mV	V_{DDIM} - V_{DDI1}	
Digital supply voltage for IO pads and voltage regulators, upper voltage range	$V_{ m DDPA}, V_{ m DDPB}$	4.5	-	5.5	V	2)	
Digital supply voltage for IO pads and voltage regulators, lower voltage range	$V_{ m DDPA},\ V_{ m DDPB}$	3.0	_	4.5	V	2)	
Digital ground voltage	V _{SS}	0	_	0	V	Reference voltage	
Overload current	I _{OV}	-5	-	5	mA	Per IO pin ³⁾⁴⁾	
		-2	_	5	mA	Per analog input pin ³⁾⁴⁾	
Overload positive current coupling factor for analog inputs ⁵⁾	K _{ova}	-	1.0 × 10 ⁻⁶	1.0 × 10 ⁻⁴	_	<i>I</i> _{OV} > 0	
Overload negative current coupling factor for analog inputs ⁵⁾	K _{ova}	-	2.5 × 10 ⁻⁴	1.5 × 10 ⁻³	_	<i>I</i> _{OV} < 0	
Overload positive current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻⁴	5.0 × 10 ⁻³	_	<i>I</i> _{OV} > 0	
Overload negative current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻²	3.0 × 10 ⁻²	_	<i>I</i> _{OV} < 0	
Absolute sum of overload currents	ΣΙΟΥΙ	_	_	50	mA	4)	

4.2 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XE167 can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XE167 are designed to operate in various driver modes. The DC parameter specifications refer to the current limits in **Table 13**.

Port Output Driver Mode	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1)}$		Nominal Outp (I _{OLnom} , -I _{OHnor}	ut Current ")
	$V_{ t DDP} \ge$ 4.5 V	$V_{ m DDP}$ < 4.5 V	$V_{ t DDP} \ge$ 4.5 V	$V_{ m DDP}$ < 4.5 V
Strong driver	10 mA	10 mA	2.5 mA	2.5 mA
Medium driver	4.0 mA	2.5 mA	1.0 mA	1.0 mA
Weak driver	0.5 mA	0.5 mA	0.1 mA	0.1 mA

 Table 13
 Current Limits for Port Output Drivers

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and ΣI_{OH}) must remain below 50 mA.

4.2.1 DC Parameters for Upper Voltage Area

These parameters apply to the upper IO voltage range, 4.5 V $\leq V_{\text{DDP}} \leq$ 5.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) $V_{\rm DDP}$ $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.11 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ $V_{\rm OH}$ CC Output high voltage⁵⁾ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ V_{OH} CC Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ±5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±30 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±250 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 14DC Characteristics for Upper Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

Figure 13 Supply Current in Active Mode as a Function of Frequency

Sample time and conversion time of the XE167's A/D converters are programmable. The timing above can be calculated using **Table 19**.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time <i>t</i> _s
000000 _B	f _{SYS}	00 _H	$t_{ADCI} imes 2$
000001 _B	<i>f</i> _{SYS} / 2	01 _H	$t_{ADCI} imes 3$
000010 _B	<i>f</i> _{SYS} / 3	02 _H	$t_{ADCI} \times 4$
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} imes 256$
111111 _B	f _{SYS} / 64	FF _H	$t_{ADCI} imes 257$

 Table 19
 A/D Converter Computation Table

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\sf ADCI}$	= f_{SYS} / 4 = 20 MHz, i.e. t_{ADCI} = 50 ns
Sample time	t _S	= $t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 10	-bit:	
	<i>t</i> _{C10}	= $13 \times t_{ADCI}$ + 2 × t_{SYS} = 13 × 50 ns + 2 × 12.5 ns = 0.675 µs
Conversion 8-	oit:	
	t _{C8}	= $11 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 11×50 ns + 2×12.5 ns = 0.575 μ s
• · -· ·		

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H
Analog clock	$f_{\sf ADCI}$	= f _{SYS} / 3 = 13.3 MHz, i.e. t _{ADCI} = 75 ns
Sample time	t _S	= $t_{ADCI} \times 5 = 375 \text{ ns}$
Conversion 10-bit:		
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 16×75 ns + 2×25 ns = $1.25 \ \mu$ s
Conversion 8-	bit:	
	t _{C8}	= $14 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 14×75 ns + 2×25 ns = 1.10 µs

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and **Figure 19**).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 $D_{max} = \pm (220 / (4 \times 33) + 4.3) = 5.97 \text{ ns}$ (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

$$\begin{split} D_{max} &= \pm (220 \ / \ (2 \times 33) + 4.3) = 7.63 \ \text{ns} \ (\text{Not applicable directly in this case!}) \\ D_3 &= 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ &= 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{split}$$

Figure 19 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed C_L = 20 pF (see **Table 12**).

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100/144 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

PLLCON0.VCOSEL	VCO Frequency Range	Base Frequency Range
00	50 110 MHz	10 40 MHz
01	100 160 MHz	20 80 MHz
1X	Reserved	·

Table 25	VCO Bands for	PLL Operation ¹⁾

1) Not subject to production test - verified by design/characterization.

Variable Memory Cycles

External bus cycles of the XE167 are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 28 Programmable Bus Cycle Phases (see timing diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 2 TCS) can be extended by 0 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

XE167x XE166 Family Derivatives

Electrical Parameters

Package and Reliability

Package Outlines

Figure 30PG-LQFP-144-4 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

5.2 Thermal Considerations

When operating the XE167 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (see Section 4.2.3).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers