

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167g72f66lacfxqma1

XE167

16-Bit Single-Chip Real Time Signal Controller

Microcontrollers

 Table 4
 Pin Definitions and Functions (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
18	P6.2	O0 / I	St/A	Bit 2 of Port 6, General Purpose Input/Output
	EMUX2	01	St/A	External Analog MUX Control Output 2 (ADC0)
	T6OUT	O2	St/A	GPT2 Timer T6 Toggle Latch Output
	U1C1_ SCLKOUT	О3	St/A	USIC1 Channel 1 Shift Clock Output
	U1C1_DX1C	I	St/A	USIC1 Channel 1 Shift Clock Input
19	P6.3	O0 / I	St/A	Bit 3 of Port 6, General Purpose Input/Output
	T3OUT	O2	St/A	GPT1 Timer T3 Toggle Latch Output
	U1C1_ SELO0	О3	St/A	USIC1 Channel 1 Select/Control 0 Output
	U1C1_DX2D	I	St/A	USIC1 Channel 1 Shift Control Input
	ADCx_ REQTRyD	I	St/A	External Request Trigger Input for ADC0/1
21	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1
22	P15.1		In/A	Bit 1 of Port 15, General Purpose Input
	ADC1_CH1	l	In/A	Analog Input Channel 1 for ADC1
23	P15.2	I	In/A	Bit 2 of Port 15, General Purpose Input
	ADC1_CH2	I	In/A	Analog Input Channel 2 for ADC1
	T5IN	I	In/A	GPT2 Timer T5 Count/Gate Input
24	P15.3	I	In/A	Bit 3 of Port 15, General Purpose Input
	ADC1_CH3	I	In/A	Analog Input Channel 3 for ADC1
	T5EUD	I	In/A	GPT2 Timer T5 External Up/Down Control Input
25	P15.4	1	In/A	Bit 4 of Port 15, General Purpose Input
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1
	T6IN	I	In/A	GPT2 Timer T6 Count/Gate Input
26	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input
	ADC1_CH5	1	In/A	Analog Input Channel 5 for ADC1
	T6EUD	I	In/A	GPT2 Timer T6 External Up/Down Control Input
27	P15.6	1	In/A	Bit 6 of Port 15, General Purpose Input
	ADC1_CH6	1	In/A	Analog Input Channel 6 for ADC1

 Table 4
 Pin Definitions and Functions (cont'd)

Pin	Symbol	Ctrl.	Туре	Function		
28	P15.7	I	In/A	Bit 7 of Port 15, General Purpose Input		
	ADC1_CH7	I	In/A	Analog Input Channel 7 for ADC1		
29	V_{AREF1}	-	PS/A	Reference Voltage for A/D Converter ADC1		
30	V_{AREF0}	-	PS/A	Reference Voltage for A/D Converter ADC0		
31	V_{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1		
32	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input		
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0 Bit 1 of Port 5. General Purpose Input		
33	P5.1	I	In/A	Bit 1 of Port 5, General Purpose Input		
	ADC0_CH1	I	In/A	Analog Input Channel 1 for ADC0		
34	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input		
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0		
	TDI_A	I	In/A	JTAG Test Data Input		
35	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input		
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0		
	T3IN	I	In/A	GPT1 Timer T3 Count/Gate Input		
39	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input		
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0		
	CCU63_ T12HRB	I	In/A	External Run Control Input for T12 of CCU63		
	T3EUD	I	In/A	GPT1 Timer T3 External Up/Down Control Input		
	TMS_A	I	In/A	JTAG Test Mode Selection Input		
40	P5.5	l	In/A	Bit 5 of Port 5, General Purpose Input		
	ADC0_CH5		In/A	Analog Input Channel 5 for ADC0		
	CCU60_ T12HRB	I	In/A	External Run Control Input for T12 of CCU60		
41	P5.6	I	In/A	Bit 6 of Port 5, General Purpose Input		
	ADC0_CH6	I	In/A	Analog Input Channel 6 for ADC0		
42	P5.7	I	In/A	Bit 7 of Port 5, General Purpose Input		
	ADC0_CH7	I	In/A	Analog Input Channel 7 for ADC0		

 Table 4
 Pin Definitions and Functions (cont'd)

Pin	Symbol	Ctrl.	Туре	Function
87	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output
	U1C0_ SELO0	01	St/B	USIC1 Channel 0 Select/Control 0 Output
	U1C1_ SELO1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output
	CCU61_ COUT60	О3	St/B	CCU61 Channel 0 Output
	A3	ОН	St/B	External Bus Interface Address Line 3
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input
88	P3.1	O0 / I	St/B	Bit 1 of Port 3, General Purpose Input/Output
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output
	TxDC3	02	St/B	CAN Node 3 Transmit Data Output
	HLDA	OH/I	St/B	External Bus Hold Acknowledge Output/Input Output in master mode, input in slave mode.
	U2C0_DX0B	I	St/B	USIC2 Channel 0 Shift Data Input
89	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output
	U0C0_ SCLKOUT	01	St/B	USIC0 Channel 0 Shift Clock Output
	CCU60_ CC62	O2 / I	St/B	CCU60 Channel 2 Input/Output
	AD2	OH/I	St/B	External Bus Interface Address/Data Line 2
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input
90	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output
	U1C1_ SELO0	01	St/B	USIC1 Channel 1 Select/Control 0 Output
	U1C0_ SELO1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output
	CCU61_ COUT61	О3	St/B	CCU61 Channel 1 Output
	A4	ОН	St/B	External Bus Interface Address Line 4
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input

 Table 4
 Pin Definitions and Functions (cont'd)

Pin	Symbol	Ctrl.	Type	Function
101	P3.5	O0 / I	St/B	Bit 5 of Port 3, General Purpose Input/Output
	U2C1_ SCLKOUT	O1	St/B	USIC2 Channel 1 Shift Clock Output
	U2C0_ SELO2	O2	St/B	USIC2 Channel 0 Select/Control 2 Output
	U0C0_ SELO5	О3	St/B	USIC0 Channel 0 Select/Control 5 Output
	U2C1_DX1A	I	St/B	USIC2 Channel 1 Shift Clock Input
102	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output
	CCU61_ COUT63	О3	St/B	CCU61 Channel 3 Output
	A6	ОН	St/B	External Bus Interface Address Line 6
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input
	CCU61_ CTRAPA	I	St/B	CCU61 Emergency Trap Input
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input
103	P10.6	O0 / I	St/B	Bit 6 of Port 10, General Purpose Input/Output
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output
	TxDC4	02	St/B	CAN Node 4 Transmit Data Output
	U1C0_ SELO0	О3	St/B	USIC1 Channel 0 Select/Control 0 Output
	AD6	OH/I	St/B	External Bus Interface Address/Data Line 6
	U0C0_DX0C	I	St/B	USIC0 Channel 0 Shift Data Input
	U1C0_DX2D	I	St/B	USIC1 Channel 0 Shift Control Input
	CCU60_ CTRAPA	1	St/B	CCU60 Emergency Trap Input

 Table 4
 Pin Definitions and Functions (cont'd)

Pin	Symbol	Ctrl.	Type	Function		
140	ESR2	O0 / I	St/B	External Service Request 2		
	U1C1_DX0D	I	St/B	USIC1 Channel 1 Shift Data Input		
	U1C1_DX2C	I	St/B	USIC1 Channel 1 Shift Control Input		
	U2C1_DX0E	I	St/B	USIC1 Channel 1 Shift Data Input		
	U2C1_DX2B	I	St/B	USIC2 Channel 1 Shift Control Input		
	EX1AINB	I	St/B	External Interrupt Trigger Input		
141	ESR0	O0 / I	St/B	External Service Request 0		
				Note: After power-up, ESR0 operates as open drain bidirectional reset with a weak pull-up		
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input		
142	P8.6	O0 / I	St/B	Bit 6 of Port 8, General Purpose Input/Output		
	CCU60_ COUT63	01	St/B	CCU60 Channel 3 Output		
	CCU60_ CTRAPB	I	St/B	CCU60 Emergency Trap Input		
	BRKIN_D	I	St/B	OCDS Break Signal Input		
143	P8.5	O0 / I	St/B	Bit 5 of Port 8, General Purpose Input/Output		
	CCU60_ COUT62	01	St/B	CCU60 Channel 2 Output		
	TCK_D	I	St/B	JTAG Clock Input		
15	V_{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Table 12 for details.		
54, 91, 127	V_{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Table 12 for details. All $V_{\rm DDI1}$ pins must be connected to each other.		
20	V_{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\rm DDP}/V_{\rm SS}$ pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6, and P15 are fed from supply voltage $V_{\rm DDPA}$.		

XE167x XE166 Family Derivatives

Functional Description

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 64 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the chosen derivative (see Table 1).

16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

1 Kbyte of on-chip Stand-By SRAM (SBRAM) provides storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

Data Sheet 38 V2.1, 2008-08

XE167x XE166 Family Derivatives

Functional Description

Table 6 XE167 Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAN Request 1	CAN_1IC	xx'0104 _H	41 _H / 65 _D
CAN Request 2	CAN_2IC	xx'0108 _H	42 _H / 66 _D
CAN Request 3	CAN_3IC	xx'010C _H	43 _H / 67 _D
CAN Request 4	CAN_4IC	xx'0110 _H	44 _H / 68 _D
CAN Request 5	CAN_5IC	xx'0114 _H	45 _H / 69 _D
CAN Request 6	CAN_6IC	xx'0118 _H	46 _H / 70 _D
CAN Request 7	CAN_7IC	xx'011C _H	47 _H / 71 _D
CAN Request 8	CAN_8IC	xx'0120 _H	48 _H / 72 _D
CAN Request 9	CAN_9IC	xx'0124 _H	49 _H / 73 _D
CAN Request 10	CAN_10IC	xx'0128 _H	4A _H / 74 _D
CAN Request 11	CAN_11IC	xx'012C _H	4B _H / 75 _D
CAN Request 12	CAN_12IC	xx'0130 _H	4C _H / 76 _D
CAN Request 13	CAN_13IC	xx'0134 _H	4D _H / 77 _D
CAN Request 14	CAN_14IC	xx'0138 _H	4E _H / 78 _D
CAN Request 15	CAN_15IC	xx'013C _H	4F _H / 79 _D
USIC0 Cannel 0, Request 0	U0C0_0IC	xx'0140 _H	50 _H / 80 _D
USIC0 Cannel 0, Request 1	U0C0_1IC	xx'0144 _H	51 _H / 81 _D
USIC0 Cannel 0, Request 2	U0C0_2IC	xx'0148 _H	52 _H / 82 _D
USIC0 Cannel 1, Request 0	U0C1_0IC	xx'014C _H	53 _H / 83 _D
USIC0 Cannel 1, Request 1	U0C1_1IC	xx'0150 _H	54 _H / 84 _D
USIC0 Cannel 1, Request 2	U0C1_2IC	xx'0154 _H	55 _H / 85 _D
USIC1 Cannel 0, Request 0	U1C0_0IC	xx'0158 _H	56 _H / 86 _D
USIC1 Cannel 0, Request 1	U1C0_1IC	xx'015C _H	57 _H / 87 _D
USIC1 Cannel 0, Request 2	U1C0_2IC	xx'0160 _H	58 _H / 88 _D
USIC1 Cannel 1, Request 0	U1C1_0IC	xx'0164 _H	59 _H / 89 _D
USIC1 Cannel 1, Request 1	U1C1_1IC	xx'0168 _H	5A _H / 90 _D
USIC1 Cannel 1, Request 2	U1C1_2IC	xx'016C _H	5B _H / 91 _D
USIC2 Cannel 0, Request 0	U2C0_0IC	xx'0170 _H	5C _H / 92 _D
USIC2 Cannel 0, Request 1	U2C0_1IC	xx'0174 _H	5D _H / 93 _D
USIC2 Cannel 0, Request 2	U2C0_2IC	xx'0178 _H	5E _H / 94 _D

3.11 Universal Serial Interface Channel Modules (USIC)

The XE167 includes up to three USIC modules (USIC0, USIC1, USIC2), each providing two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

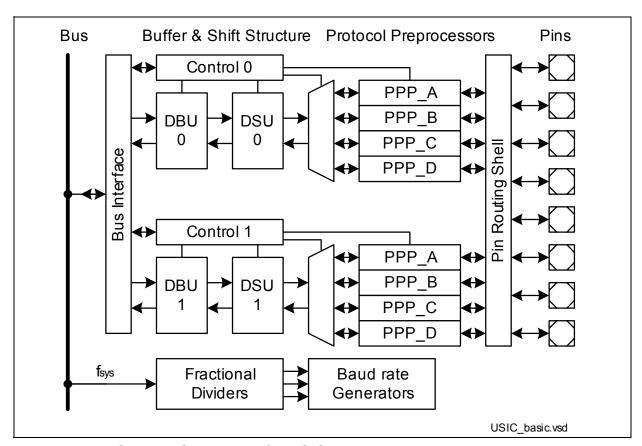


Figure 10 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

Data Sheet 62 V2.1, 2008-08

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - maximum baud rate: f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - maximum baud rate: f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI/QSPI (synchronous serial channel with or without data buffer)
 - maximum baud rate in slave mode: f_{SYS}
 - maximum baud rate in master mode: $f_{\rm SYS}$ / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - maximum baud rate: $f_{\rm SYS}$ / 2 for transmitter, $f_{\rm SYS}$ for receiver

Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

Data Sheet 63 V2.1, 2008-08

3.13 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.14 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE167 from a number of external or internal clock sources:

- External clock signals with pad or core voltage levels
- External crystal using the on-chip oscillator
- On-chip clock source for operation without crystal
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

Data Sheet 66 V2.1, 2008-08

Table 9 Summary of the XE167's Parallel Ports (cont'd)

Port	Width	Alternate Functions
Port 5	16	Analog input channels to ADC0, Input/Output lines for CCU6x, Timer control signals, JTAG, OCDS control, interrupts
Port 6	4	ADC control lines, Serial interface lines of USIC1, Timer control signals, OCDS control
Port 7	5	ADC control lines, Serial interface lines of USIC0 and CAN4, Input/Output lines for CCU62, Timer control signals, JTAG, OCDS control,system clock output
Port 8	7	Input/Output lines for CCU60, JTAG, OCDS control
Port 9	8	Serial interface lines of USIC2, Input/Output lines for CCU60 and CCU63, OCDS control
Port 10	16	Address and/or data lines, bus control, Serial interface lines of USIC0, USIC1, CAN2, CAN3, and CAN4, Input/Output lines for CCU60, JTAG, OCDS control
Port 11	6	Input/Output lines for CCU63
Port 15	8	Analog input channels to ADC1, Timer control signals

4 Electrical Parameters

The operating range for the XE167 is defined by its electrical parameters. For proper operation the specified limits must be respected during system design.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Table 11 Absolute Maximum Rating Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Storage temperature	T_{ST}	-65	_	150	°C	_
Junction temperature	T_{J}	-40	_	125	°C	under bias
$\begin{tabular}{lll} \hline & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	$V_{\mathrm{DDIM}}, \ V_{\mathrm{DDI1}}$	-0.5	-	1.65	V	-
$\begin{tabular}{lll} \hline & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	$V_{ m DDPA}, \ V_{ m DDPB}$	-0.5	-	6.0	V	-
Voltage on any pin with respect to ground $(V_{\rm SS})$	V_{IN}	-0.5	_	V _{DDP} + 0.5	V	$V_{IN} < V_{DDPmax}$
Input current on any pin during overload condition	_	-10	_	10	mA	-
Absolute sum of all input currents during overload condition	_	_	_	[100]	mA	_
Output current on any pin	$I_{\mathrm{OH}},I_{\mathrm{OL}}$	_	_	30	mA	_

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

Parameter Interpretation

The parameters listed in the following include both the characteristics of the XE167 and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XE167 provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XE167.

Data Sheet 75 V2.1, 2008-08

4.3 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance.

Table 18 A/D Converter Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit	Values	Unit	Test
			Min.	Max.		Condition
Analog reference supply	V_{AREF}	SR	V _{AGND} + 1.0	V _{DDPA} + 0.05	V	1)
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{AREF} - 1.0	V	_
Analog input voltage range	V_{AIN}	SR	V_{AGND}	V_{AREF}	V	2)
Analog clock frequency	f_{ADCI}		0.5	20	MHz	3)
Conversion time for 10-bit result ⁴⁾	t _{C10}	CC	(13 + STC + 2 × t _{SYS}	$(t) \times t_{ADCI}$	-	_
Conversion time for 8-bit result ⁴⁾	t_{C8}	CC	(11 + STC + 2 × t _{SYS}	$C) \times t_{ADCI}$	-	_
Wakeup time from analog powerdown, fast mode	t_{WAF}	CC	_	1	μS	_
Wakeup time from analog powerdown, slow mode	t_{WAS}	CC	_	10	μS	_
Total unadjusted error ⁵⁾	TUE	CC	_	±2	LSB	$V_{AREF} = 5.0 \text{ V}^{1)}$
DNL error	EA _{DNL}	CC	_	±1	LSB	
INL error	EA _{INL}	CC	_	±1.2	LSB	
Gain error	EA _{GAIN}	CC	_	±0.8	LSB	
Offset error	EA _{OFF}	CC	_	±0.8	LSB	
Total capacitance of an analog input	C_{AINT}	CC	_	10	pF	6)7)
Switched capacitance of an analog input	C_{AINS}	CC	_	4	pF	6)7)
Resistance of the analog input path	R_{AIN}	CC	_	1.5	kΩ	6)7)
Total capacitance of the reference input	C_{AREFT}	CC	_	15	pF	6)7)

4.6.2 Definition of Internal Timing

The internal operation of the XE167 is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XE167.

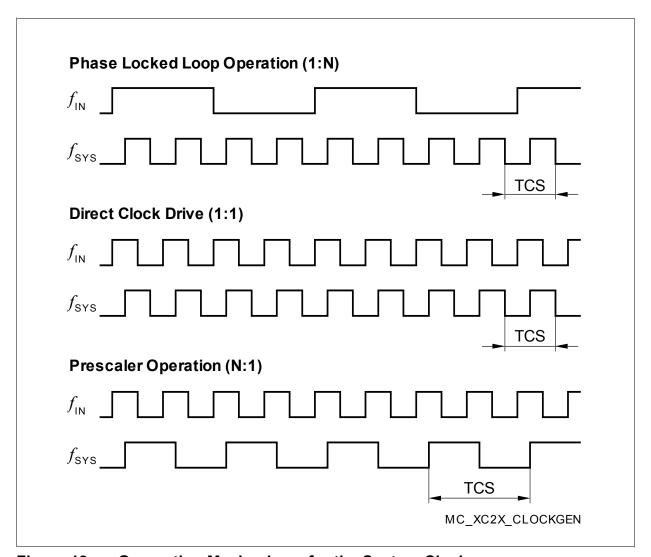


Figure 18 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 18** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

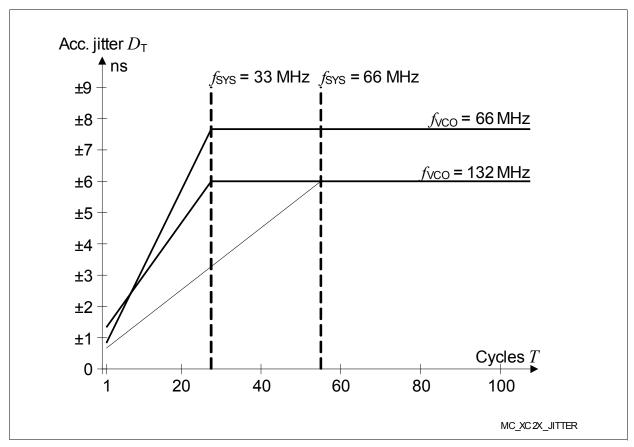


Figure 19 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed C_1 = 20 pF (see **Table 12**).

The maximum peak-to-peak noise on the pad supply voltage (measured between $V_{\rm DDPB}$ pin 100/144 and $V_{\rm SS}$ pin 1) is limited to a peak-to-peak voltage of $V_{\rm PP}$ = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Table 25 VCO Bands for PLL Operation¹⁾

PLLCON0.VCOSEL	VCO Frequency Range	Base Frequency Range
00	50 110 MHz	10 40 MHz
01	100 160 MHz	20 80 MHz
1X	Reserved	

¹⁾ Not subject to production test - verified by design/characterization.

4.6.4 External Bus Timing

The following parameters specify the behavior of the XE167 bus interface.

Table 27 CLKOUT Reference Signal

Parameter	Sym	Symbol		Limits	Unit	Note / Test
			Min.	Max.		Condition
CLKOUT cycle time	t_5	CC	40	/25/12.5 ¹⁾	ns	
CLKOUT high time	<i>t</i> ₆	CC	3	_	ns	
CLKOUT low time	t ₇	CC	3	_	ns	
CLKOUT rise time	<i>t</i> ₈	CC	_	3	ns	
CLKOUT fall time	t_9	CC	_	3	ns	

¹⁾ The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{SYS} = 25/40/80 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

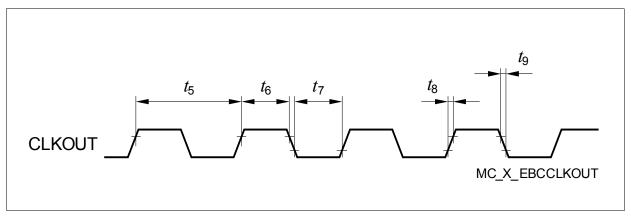


Figure 21 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Data Sheet 101 V2.1, 2008-08

Package and Reliability

5.2 Thermal Considerations

When operating the XE167 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{\text{INT}} + P_{\text{IOSTAT}} + P_{\text{IODYN}}) \times R_{\Theta,\text{JA}}$

The internal power consumption is defined as $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (see **Section 4.2.3**).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Data Sheet 119 V2.1, 2008-08

www.infineon.com

Published by Infineon Technologies AG