

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	82K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167g96f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

The XE167 types are offered with several Flash memory sizes. **Table 2** describes the location of the available memory areas for each Flash memory size.

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
768 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H CB'FFFF _H	n.a.
576 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C8'FFFF _H	n.a.
384 Kbytes	C0'0000 _H C0'EFFF _H	C1'0000 _H C5'FFFF _H	n.a.

Table 2Flash Memory Allocation

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XE167 types are offered with different interface options. **Table 3** lists the available channels for each option.

Total Number	Available Channels
16 ADC0 channels	CH0 CH15
8 ADC0 channels	CH0 CH7
8 ADC1 channels	CH0 CH7
5 CAN nodes	CAN0, CAN1, CAN2, CAN3, CAN4
2 CAN nodes	CAN0, CAN1
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1
4 serial channels	U0C0, U0C1, U1C0, U1C1

Table 3 Interface Channel Association

2 General Device Information

The XE167 series of real time signal controllers is a part of the Infineon XE166 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

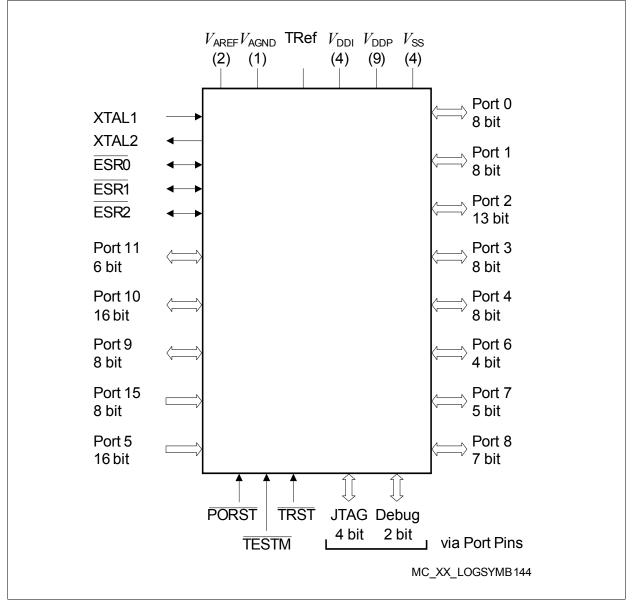


Figure 1 Logic Symbol

Table	Table 4Pin Definitions and Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function
12	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output
	CCU62_ CCPOS2A	I	St/B	CCU62 Position Input 2
	TCK_C	I	St/B	JTAG Clock Input
	U0C0_DX0D	Ι	St/B	USIC0 Channel 0 Shift Data Input
_	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input
13	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output
	CCU60_ CC61	01 / I	St/B	CCU60 Channel 1 Input/Output
14	P8.0	O0 / I	St/B	Bit 0 of Port 8, General Purpose Input/Output
	CCU60_ CC60	O1 / I	St/B	CCU60 Channel 0 Input/Output
16	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)
	BRKOUT	O3	St/A	OCDS Break Signal Output
	ADCx_ REQGTyC	I	St/A	External Request Gate Input for ADC0/1
	U1C1_DX0E	1	St/A	USIC1 Channel 1 Shift Data Input
17	P6.1	O0 / I	St/A	Bit 1 of Port 6, General Purpose Input/Output
	EMUX1	01	St/A	External Analog MUX Control Output 1 (ADC0)
	T3OUT	O2	St/A	GPT1 Timer T3 Toggle Latch Output
	U1C1_DOUT	O3	St/A	USIC1 Channel 1 Shift Data Output
	ADCx_ REQTRyC	1	St/A	External Request Trigger Input for ADC0/1

Table 4 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
28	P15.7	1	In/A	Bit 7 of Port 15, General Purpose Input
	ADC1_CH7	I	In/A	Analog Input Channel 7 for ADC1
29	V _{AREF1}	-	PS/A	Reference Voltage for A/D Converter ADC1
30	V _{AREF0}	-	PS/A	Reference Voltage for A/D Converter ADC0
31	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1
32	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0
33	P5.1	I	In/A	Bit 1 of Port 5, General Purpose Input
	ADC0_CH1	I	In/A	Analog Input Channel 1 for ADC0
34	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input
	ADC0_CH2	Ι	In/A	Analog Input Channel 2 for ADC0
	TDI_A	I	In/A	JTAG Test Data Input
35	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0
	T3IN	I	In/A	GPT1 Timer T3 Count/Gate Input
39	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0
	CCU63_ T12HRB	I	In/A	External Run Control Input for T12 of CCU63
	T3EUD	I	In/A	GPT1 Timer T3 External Up/Down Control Input
	TMS_A	I	In/A	JTAG Test Mode Selection Input
40	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0
	CCU60_ T12HRB	Ι	In/A	External Run Control Input for T12 of CCU60
41	P5.6	Ι	In/A	Bit 6 of Port 5, General Purpose Input
	ADC0_CH6	Ι	In/A	Analog Input Channel 6 for ADC0
42	P5.7	Ι	In/A	Bit 7 of Port 5, General Purpose Input
	ADC0_CH7	Ι	In/A	Analog Input Channel 7 for ADC0

Table	Table 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
71	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	CC2_27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	ОН	St/B	External Bus Interface Chip Select 3 Output		
	RxDC2A	I	St/B	CAN Node 2 Receive Data Input		
	T2EUD	I	St/B	GPT1 Timer T2 External Up/Down Control Input		
75	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output		
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output		
	CCU61_ CC60	O3 / I	St/B	CCU61 Channel 0 Input/Output		
	A0	ОН	St/B	External Bus Interface Address Line 0		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
76	P4.5	O0 / I	St/B	Bit 5 of Port 4, General Purpose Input/Output		
	CC2_29	O3 / I	St/B	CAPCOM2 CC29IO Capture Inp./Compare Out.		
77	P4.6	O0 / I	St/B	Bit 6 of Port 4, General Purpose Input/Output		
	CC2_30	O3 / I	St/B	CAPCOM2 CC30IO Capture Inp./ Compare Out.		
	T4IN	I	St/B	GPT1 Timer T4 Count/Gate Input		
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output		
	U0C1_ SELO0	01	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U0C0_ SELO1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output		
	CC2_20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.		
	A20	ОН	St/B	External Bus Interface Address Line 20		
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input		
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input		

Table	Table 4Pin Definitions and Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function
79	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output
	CCU61_ CC61	O3 / I	St/B	CCU61 Channel 1 Input/Output
	A1	OH	St/B	External Bus Interface Address Line 1
	U1C0_DX0B	Ι	St/B	USIC1 Channel 0 Shift Data Input
_	U1C0_DX1A	1	St/B	USIC1 Channel 0 Shift Clock Input
80	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output
	U0C1_ SCLKOUT	O1	DP/B	USIC0 Channel 1 Shift Clock Output
	EXTCLK	O2	DP/B	Programmable Clock Signal Output
	CC2_21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.
	A21	OH	DP/B	External Bus Interface Address Line 21
_	U0C1_DX1D	1	DP/B	USIC0 Channel 1 Shift Clock Input
81	P4.7	O0 / I	St/B	Bit 7 of Port 4, General Purpose Input/Output
	CC2_31	O3 / I	St/B	CAPCOM2 CC31IO Capture Inp./ Compare Out.
_	T4EUD	1	St/B	GPT1 Timer T4 External Up/Down Control Input
82	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output
	CC2_22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.
	A22	OH	St/B	External Bus Interface Address Line 22
	CLKIN1	1	St/B	Clock Signal Input
	TCK_A	1	St/B	JTAG Clock Input

Table	Table 4Pin Definitions and Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function
97	P3.3	O0 / I	St/B	Bit 3 of Port 3, General Purpose Input/Output
	U2C0_ SELO0	01	St/B	USIC2 Channel 0 Select/Control 0 Output
	U2C1_ SELO1	O2	St/B	USIC2 Channel 1 Select/Control 1 Output
	U2C0_DX2A	I	St/B	USIC2 Channel 0 Shift Control Input
_	RxDC3A	I	St/B	CAN Node 3 Receive Data Input
98	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output
	U0C0_ SELO3	01	St/B	USIC0 Channel 0 Select/Control 3 Output
	CCU60_ COUT61	O2	St/B	CCU60 Channel 1 Output
	AD4	OH/I	St/B	External Bus Interface Address/Data Line 4
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input
99	P3.4	O0 / I	St/B	Bit 4 of Port 3, General Purpose Input/Output
	U2C1_ SELO0	01	St/B	USIC2 Channel 1 Select/Control 0 Output
	U2C0_ SELO1	O2	St/B	USIC2 Channel 0 Select/Control 1 Output
	U0C0_ SELO4	O3	St/B	USIC0 Channel 0 Select/Control 4 Output
	U2C1_DX2A	I	St/B	USIC2 Channel 1 Shift Control Input
	RxDC4A	I	St/B	CAN Node 4 Receive Data Input
100	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output
	U0C1_ SCLKOUT	01	St/B	USIC0 Channel 1 Shift Clock Output
	CCU60_ COUT62	O2	St/B	CCU60 Channel 2 Output
	AD5	OH/I	St/B	External Bus Interface Address/Data Line 5
	U0C1_DX1B		St/B	USIC0 Channel 1 Shift Clock Input

Table	Table 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
111	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output	
	U1C0_ MCLKOUT	01	St/B	USIC1 Channel 0 Master Clock Output	
	U1C0_ SELO4	O2	St/B	USIC1 Channel 0 Select/Control 4 Output	
	A8	OH	St/B	External Bus Interface Address Line 8	
	ESR1_3	I	St/B	ESR1 Trigger Input 3	
	EX0BINA	I	St/B	External Interrupt Trigger Input	
	CCU62_ CTRAPB	I	St/B	CCU62 Emergency Trap Input	
112	P9.0	O0 / I	St/B	Bit 0 of Port 9, General Purpose Input/Output	
	CCU63_ CC60	01/1	St/B	CCU63 Channel 0 Input/Output	
113	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output	
	U0C0_ MCLKOUT	01	St/B	USIC0 Channel 0 Master Clock Output	
	U0C1_ SELO0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output	
	AD8	OH/I	St/B	External Bus Interface Address/Data Line 8	
	CCU60_ CCPOS1A	I	St/B	CCU60 Position Input 1	
	U0C0_DX1C	1	St/B	USIC0 Channel 0 Shift Clock Input	
	BRKIN_B	I	St/B	OCDS Break Signal Input	
114	P9.1	O0 / I	St/B	Bit 1 of Port 9, General Purpose Input/Output	
	CCU63_ CC61	01/1	St/B	CCU63 Channel 1 Input/Output	

Table 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
126	P9.5	O0 / I	St/B	Bit 5 of Port 9, General Purpose Input/Output
	CCU63_ COUT62	01	St/B	CCU63 Channel 2 Output
	U2C0_DOUT	02	St/B	USIC2 Channel 0 Shift Data Output
	U2C0_DX0E	I	St/B	USIC2 Channel 0 Shift Data Input
	CCU60_ CCPOS2B	1	St/B	CCU60 Position Input 2
128	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output
	U1C0_ SELO1	01	St/B	USIC1 Channel 0 Select/Control 1 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	RD	ОН	St/B	External Bus Interface Read Strobe Output
	ESR2_2	I	St/B	ESR2 Trigger Input 2
	U0C1_DX0C	Ι	St/B	USIC0 Channel 1 Shift Data Input
	RxDC3C	Ι	St/B	CAN Node 3 Receive Data Input
129	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output
	CCU62_ COUT61	O1	St/B	CCU62 Channel 1 Output
	U1C1_ SELO4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output
	U2C0_ SELO5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output
	A12	ОН	St/B	External Bus Interface Address Line 12
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input
130	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output
	U1C0_ SELO2	01	St/B	USIC1 Channel 0 Select/Control 2 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output
	ALE	OH	St/B	External Bus Interf. Addr. Latch Enable Output
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input

3.1 Memory Subsystem and Organization

The memory space of the XE167 is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ¹⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	64 Kbytes	Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'FFFF _H	64 Kbytes	Maximum speed
Reserved for pr. mem.	CC'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	2)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ³⁾	20'5800 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
USIC registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-

Table 5XE167 Memory Map

1) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XE166 Family. In order to to ensure upward compatibility they should either not be accessed or written with zeros.

In order to meet the requirements of designs where more memory is required than is available on chip, up to 12 Mbytes (approximately, see **Table 5**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

Up to 768 Kbytes of on-chip Flash memory store code, constant data, and control data. The on-chip Flash memory consists of up to three modules with a maximum capacity of 256 Kbytes each. Each module is organized in 4-Kbyte sectors.

The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Note: The actual size of the Flash memory depends on the chosen derivative (see **Table 1**).

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.5.

¹⁾ To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

Table 6XE167 Interrupt Nodes

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 16, or ERU Request 0	CC2_CC16IC	xx'0040 _H	10 _H / 16 _D
CAPCOM Register 17, or ERU Request 1	CC2_CC17IC	xx'0044 _H	11 _H / 17 _D
CAPCOM Register 18, or ERU Request 2	CC2_CC18IC	xx'0048 _H	12 _H / 18 _D
CAPCOM Register 19, or ERU Request 3	CC2_CC19IC	xx'004C _H	13 _H / 19 _D
CAPCOM Register 20, or USIC0 Request 6	CC2_CC20IC	xx'0050 _H	14 _H / 20 _D
CAPCOM Register 21, or USIC0 Request 7	CC2_CC21IC	xx'0054 _H	15 _H / 21 _D
CAPCOM Register 22, or USIC1 Request 6	CC2_CC22IC	xx'0058 _H	16 _H / 22 _D
CAPCOM Register 23, or USIC1 Request 7	CC2_CC23IC	xx'005C _H	17 _H / 23 _D
CAPCOM Register 24, or ERU Request 0	CC2_CC24IC	xx'0060 _H	18 _H / 24 _D
CAPCOM Register 25, or ERU Request 1	CC2_CC25IC	xx'0064 _H	19 _H / 25 _D
CAPCOM Register 26, or ERU Request 2	CC2_CC26IC	xx'0068 _H	1A _H / 26 _D
CAPCOM Register 27, or ERU Request 3	CC2_CC27IC	xx'006C _H	1B _H / 27 _D
CAPCOM Register 28, or USIC2 Request 6	CC2_CC28IC	xx'0070 _H	1C _H / 28 _D
CAPCOM Register 29, or USIC2 Request 7	CC2_CC29IC	xx'0074 _H	1D _H / 29 _D
CAPCOM Register 30	CC2_CC30IC	xx'0078 _H	1E _H / 30 _D
CAPCOM Register 31	CC2_CC31IC	xx'007C _H	1F _H / 31 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0080 _H	20 _H / 32 _D
GPT1 Timer 3	GPT12E_T3IC	xx'0084 _H	21 _H / 33 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0088 _H	22 _H / 34 _D

Table 6 XE167 Interrupt Nodes (cont'd) Source of Interrupt or PEC Control Vector Trap Location¹⁾ Number Service Request Register 41_н / 65_D CAN Request 1 CAN 1IC xx'0104_н CAN Request 2 CAN 2IC xx'0108_н 42_H / 66_D CAN Request 3 CAN 3IC xx'010C_н 43_H / 67_D **CAN Request 4** CAN 4IC 44_H / 68_D xx'0110_н CAN Request 5 CAN 5IC xx'0114_ц 45_H / 69_D CAN Request 6 CAN 6IC xx'0118_н 46_H / 70_D CAN Request 7 CAN 7IC xx'011C_н 47_H / 71_D CAN Request 8 CAN 8IC xx'0120_н 48_H / 72_D CAN Request 9 CAN 9IC xx'0124_н 49_H / 73_D CAN Request 10 CAN_10IC 4A_H / 74_D xx'0128_H 4B_н / 75_D CAN Request 11 CAN 11IC xx'012C_н CAN Request 12 CAN 12IC xx'0130_н 4C_H / 76_D CAN Request 13 CAN 13IC xx'0134_н 4D_H / 77_D CAN Request 14 CAN 14IC xx'0138_ц 4E_H / 78_D CAN Request 15 CAN 15IC xx'013C_н 4F_H / 79_D USIC0 Cannel 0, Request 0 **U0C0 0IC** xx'0140_н 50_H / 80_D USIC0 Cannel 0, Request 1 U0C0_1IC xx'0144_н 51_H / 81_D USIC0 Cannel 0, Request 2 U0C0 2IC xx'0148_н 52_н / 82_D USIC0 Cannel 1, Request 0 U0C1_0IC xx'014C_н 53_H / 83_D USIC0 Cannel 1, Request 1 U0C1_1IC xx'0150_н 54_H / 84_D USIC0 Cannel 1, Request 2 U0C1 2IC xx'0154_н 55_H / 85_D USIC1 Cannel 0, Request 0 U1C0 0IC xx'0158_н 56_H / 86_D USIC1 Cannel 0, Request 1 57_H / 87_D U1C0 1IC xx'015C_H USIC1 Cannel 0, Request 2 U1C0 2IC xx'0160_H 58_H / 88_D USIC1 Cannel 1, Request 0 U1C1 0IC xx'0164_н 59_H / 89_D USIC1 Cannel 1, Request 1 U1C1 1IC xx'0168_н 5A_H / 90_D USIC1 Cannel 1, Request 2 U1C1 2IC xx'016C_н 5B_H / 91_D USIC2 Cannel 0, Request 0 U2C0 0IC xx'0170_н 5C_н / 92_D USIC2 Cannel 0, Request 1 U2C0 1IC xx'0174_н 5D_н / 93_D USIC2 Cannel 0, Request 2 U2C0 2IC xx'0178_н 5E_H / 94_D

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XE167 provides a broad range of debug and emulation features. User software running on the XE167 can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This consists of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the debug interface, or via the external bus interface for increased performance.

The JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

3.6 Capture/Compare Unit (CAPCOM2)

The CAPCOM2 unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to a number of prescaled values of the internal system clock. It may also be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range for the timer period and resolution while allowing precise adjustments for application-specific requirements. An external count input for CAPCOM2 timer T7 allows event scheduling for the capture/compare registers with respect to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers. Each may be individually allocated to either CAPCOM2 timer T7 or T8 and programmed for a capture or compare function.

Each register of the CAPCOM2 module has one port pin associated with it. This serves as an input pin to trigger the capture function or as an output pin to indicate the occurrence of a compare event.

Compare Modes	Function	
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible	
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible	
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated	
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated	
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible	
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode	

Table 8	Compare Modes	(CAPCOM2)

Electrical Parameters

4.2.3 Power Consumption

The power consumed by the XE167 depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ (**Table 16**) and leakage current $I_{\rm LK}$ (**Table 17**) must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDI} are charged with the maximum possible current, see parameter I_{CC} in **Table 20**.

For additional information, please refer to Section 5.2, Thermal Considerations.

Electrical Parameters

Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (\overline{RD} or \overline{WR}).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Electrical Parameters

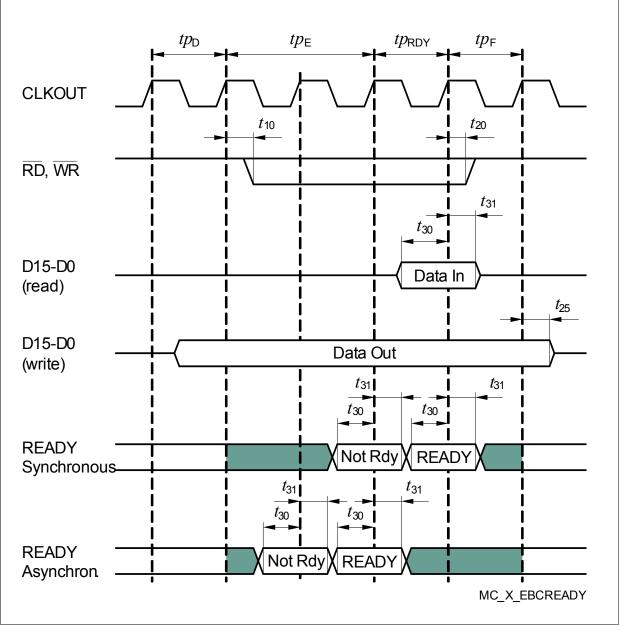


Figure 24 READY Timing

Note: If the READY input is sampled inactive at the indicated sampling point ("Not Rdy") a READY-controlled waitstate is inserted (tpRDY), sampling the READY input active at the indicated sampling point ("Boady")

sampling the READY input active at the indicated sampling point ("Ready") terminates the currently running bus cycle.

Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used.

Package and Reliability

Package Outlines

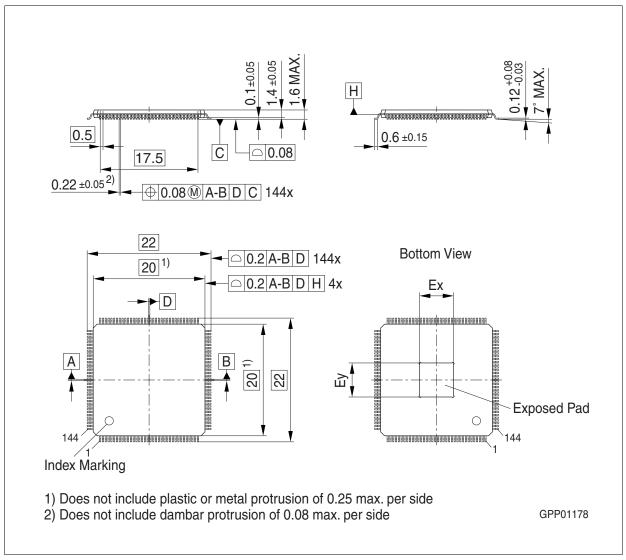


Figure 30PG-LQFP-144-4 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

5.2 Thermal Considerations

When operating the XE167 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (see Section 4.2.3).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers