

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product StatusNot For New DesignsCore ProcessorC166SV2Core Size16-BitSpeed66MHzConnectivityEBI/EMI, I°C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI°S, POR, PWM, WDTNumber of I/O118Program Memory Size768KB (768K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K × 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4Purrhase LIBLhttps://www.e-xfl.com/product-detail/infineon-technologies/xe167b96f66lacfxuma1		
Core Size16-BitSpeed66MHzConnectivityEBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size768KB (768K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Product Status	Not For New Designs
Speed66MHzConnectivityEBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size768KB (768K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Core Processor	C1665V2
ConnectivityEBI/EMI, I²C, LINbus, SPI, SSC, UART/USART, USIPeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size768KB (768K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Core Size	16-Bit
PeripheralsI²S, POR, PWM, WDTNumber of I/O118Program Memory Size768KB (768K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Speed	66MHz
Number of I/O118Program Memory Size768KB (768K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K × 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Program Memory Size768KB (768K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Peripherals	I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Number of I/O	118
EEPROM Size-RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Program Memory Size	768KB (768K x 8)
RAM Size82K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	EEPROM Size	-
Data ConvertersA/D 24x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	RAM Size	82K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case144-LQFP Exposed PadSupplier Device PackagePG-LQFP-144-4	Data Converters	A/D 24x10b
Mounting Type Surface Mount Package / Case 144-LQFP Exposed Pad Supplier Device Package PG-LQFP-144-4	Oscillator Type	Internal
Package / Case 144-LQFP Exposed Pad Supplier Device Package PG-LQFP-144-4	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package PG-LQFP-144-4	Mounting Type	Surface Mount
	Package / Case	144-LQFP Exposed Pad
Purchase LIBI https://www.e-xfl.com/product-detail/infineon-technologies/xe167h96f66lacfxuma1	Supplier Device Package	PG-LQFP-144-4
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167h96f66lacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

- Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
- On-chip MultiCAN interface (Rev. 2.0B active) with up to 128 message objects (Full CAN/Basic CAN) on up to 5 CAN nodes and gateway functionality
 On-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Five programmable chip-select signals
 - Hold- and hold-acknowledge bus arbitration support
- Single power supply from 3.0 V to 5.5 V
- Programmable watchdog timer and oscillator watchdog
- Up to 118 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via JTAG interface
- 144-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For ordering codes for the XE167 please contact your sales representative or local distributor.

This document describes several derivatives of the XE167 group. **Table 1** lists these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

For simplicity the term **XE167** is used for all derivatives throughout this document.

General Device Information

Table	Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
12	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output			
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C1_ SCLKOUT	O3	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU62_ CCPOS2A	1	St/B	CCU62 Position Input 2			
	TCK_C	I	St/B	JTAG Clock Input			
	U0C0_DX0D	Ι	St/B	USIC0 Channel 0 Shift Data Input			
_	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input			
13	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output			
	CCU60_ CC61	01 / I	St/B	CCU60 Channel 1 Input/Output			
14	P8.0	O0 / I	St/B	Bit 0 of Port 8, General Purpose Input/Output			
	CCU60_ CC60	O1 / I	St/B	CCU60 Channel 0 Input/Output			
16	P6.0	O0 / I	St/A	Bit 0 of Port 6, General Purpose Input/Output			
	EMUX0	01	St/A	External Analog MUX Control Output 0 (ADC0)			
	BRKOUT	O3	St/A	OCDS Break Signal Output			
	ADCx_ REQGTyC	I	St/A	External Request Gate Input for ADC0/1			
	U1C1_DX0E	1	St/A	USIC1 Channel 1 Shift Data Input			
17	P6.1	O0 / I	St/A	Bit 1 of Port 6, General Purpose Input/Output			
	EMUX1	01	St/A	External Analog MUX Control Output 1 (ADC0)			
	T3OUT	O2	St/A	GPT1 Timer T3 Toggle Latch Output			
	U1C1_DOUT	O3	St/A	USIC1 Channel 1 Shift Data Output			
	ADCx_ REQTRyC	1	St/A	External Request Trigger Input for ADC0/1			

General Device Information

Table	Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
28	P15.7	I	In/A	Bit 7 of Port 15, General Purpose Input				
	ADC1_CH7	I	In/A	Analog Input Channel 7 for ADC1				
29	V _{AREF1}	-	PS/A	Reference Voltage for A/D Converter ADC1				
30	V _{AREF0}	-	PS/A	Reference Voltage for A/D Converter ADC0				
31	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1				
32	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input				
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0				
33	P5.1	I	In/A	Bit 1 of Port 5, General Purpose Input				
	ADC0_CH1	I	In/A	Analog Input Channel 1 for ADC0				
34	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input				
	ADC0_CH2	Ι	In/A	Analog Input Channel 2 for ADC0				
	TDI_A	I	In/A	JTAG Test Data Input				
35	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input				
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0				
	T3IN	I	In/A	GPT1 Timer T3 Count/Gate Input				
39	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input				
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0				
	CCU63_ T12HRB	I	In/A	External Run Control Input for T12 of CCU63				
	T3EUD	I	In/A	GPT1 Timer T3 External Up/Down Control Input				
	TMS_A	I	In/A	JTAG Test Mode Selection Input				
40	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input				
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0				
	CCU60_ T12HRB	Ι	In/A	External Run Control Input for T12 of CCU60				
41	P5.6	Ι	In/A	Bit 6 of Port 5, General Purpose Input				
	ADC0_CH6	Ι	In/A	Analog Input Channel 6 for ADC0				
42	P5.7	Ι	In/A	Bit 7 of Port 5, General Purpose Input				
	ADC0_CH7	Ι	In/A	Analog Input Channel 7 for ADC0				

3.1 Memory Subsystem and Organization

The memory space of the XE167 is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ¹⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	64 Kbytes	Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'FFFF _H	64 Kbytes	Maximum speed
Reserved for pr. mem.	CC'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	2)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ³⁾	20'5800 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
USIC registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-

Table 5XE167 Memory Map

1) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

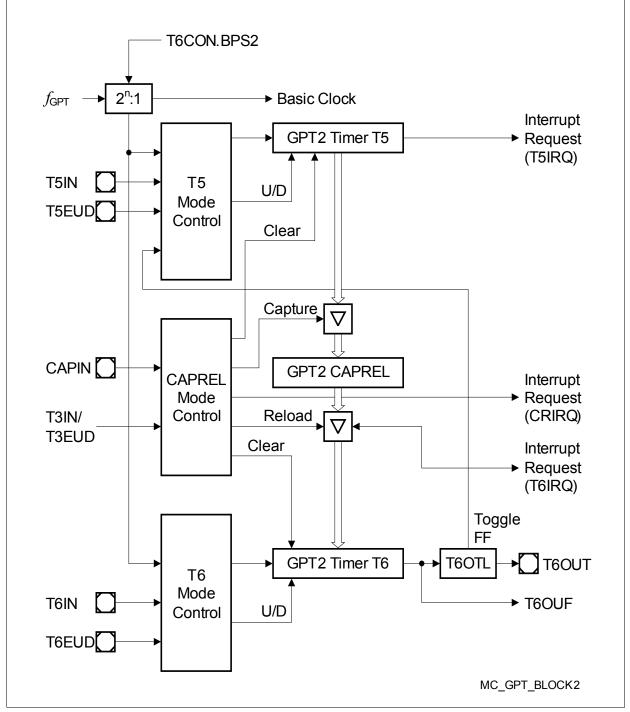

3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

Table 6XE167 Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
GPT2 Timer 5	GPT12E_T5IC	xx'008C _H	23 _H / 35 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0090 _H	24 _H / 36 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'0094 _H	25 _H / 37 _D
CAPCOM Timer 7	CC2_T7IC	xx'0098 _H	26 _H / 38 _D
CAPCOM Timer 8	CC2_T8IC	xx'009C _H	27 _H / 39 _D
A/D Converter Request 0	ADC_0IC	xx'00A0 _H	28 _H / 40 _D
A/D Converter Request 1	ADC_1IC	xx'00/4 _H	29 _H / 41 _D
A/D Converter Request 2	ADC_2IC	xx'00/(4 _H	20 _H / 42 _D
A/D Converter Request 3	ADC_3IC	xx'00AC _H	28 _H / 43 _D
A/D Converter Request 4	ADC_4IC	xx'00B0 _H	2C _H / 44 _D
A/D Converter Request 5	ADC_5IC	xx'00B4 _H	20 _H / 45 _D
A/D Converter Request 6	ADC_6IC	xx'00B4 _H	2E _H / 46 _D
A/D Converter Request 7	ADC_7IC	xx'00BC _H	$2E_{\rm H} / 47_{\rm D}$
CCU60 Request 0	CCU60_0IC	xx'00C0 _H	30 _H / 48 _D
CCU60 Request 1	CCU60_1IC	xx'00C4 _H	31 _H / 49 _D
CCU60 Request 2	CCU60_2IC	xx'00C8 _H	32 _H / 50 _D
CCU60 Request 3	CCU60_3IC	xx'00CC _H	33 _H / 51 _D
CCU61 Request 0	CCU61_0IC	xx'00D0 _H	34 _H / 52 _D
CCU61 Request 1	CCU61_1IC	xx'00D4 _H	35 _H / 53 _D
CCU61 Request 2	CCU61_2IC	xx'00D8 _H	36 _H / 54 _D
CCU61 Request 3	CCU61 3IC	xx'00DC _H	37 _H / 55 _D
CCU62 Request 0	CCU62_0IC	xx'00E0 _H	38 _H / 56 _D
CCU62 Request 1	CCU62_1IC	xx'00E4 _H	39 _H / 57 _D
CCU62 Request 2	CCU62_2IC	xx'00E8 _H	3A _H / 58 _D
CCU62 Request 3	CCU62 3IC	xx'00EC _H	3B _H / 59 _D
CCU63 Request 0	CCU63_0IC	xx'00E0 _H	3C _H / 60 _D
CCU63 Request 1	CCU63_1IC	xx'00F4 _H	3D _H / 61 _D
CCU63 Request 2	CCU63_2IC	xx'00F8 _H	3E _H / 62 _D
CCU63 Request 3	CCU63 3IC	xx'00FC _H	3F _H / 63 _D
CAN Request 0	CAN_0IC	xx'0100 _H	40 _H / 64 _D

3.13 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.14 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE167 from a number of external or internal clock sources:

- External clock signals with pad or core voltage levels
- External crystal using the on-chip oscillator
- On-chip clock source for operation without crystal
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

4 Electrical Parameters

The operating range for the XE167 is defined by its electrical parameters. For proper operation the specified limits must be respected during system design.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol Values				Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Storage temperature	T _{ST}	-65	_	150	°C	_	
Junction temperature	T _J	-40	_	125	°C	under bias	
Voltage on $V_{\rm DDI}$ pins with respect to ground ($V_{\rm SS}$)	$V_{ m DDIM}, \ V_{ m DDI1}$	-0.5	-	1.65	V	-	
Voltage on V_{DDP} pins with respect to ground (V_{SS})	$V_{ m DDPA},\ V_{ m DDPB}$	-0.5	-	6.0	V	-	
Voltage on any pin with respect to ground ($V_{\rm SS}$)	V _{IN}	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN}$ < $V_{\rm DDPmax}$	
Input current on any pin during overload condition	-	-10	-	10	mA	-	
Absolute sum of all input currents during overload condition	-	-	-	100	mA	-	
Output current on any pin	$I_{\rm OH}, I_{\rm OL}$	_	_	30	mA	-	

 Table 11
 Absolute Maximum Rating Parameters

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Pullup/Pulldown Device Behavior

Most pins of the XE167 feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 12** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

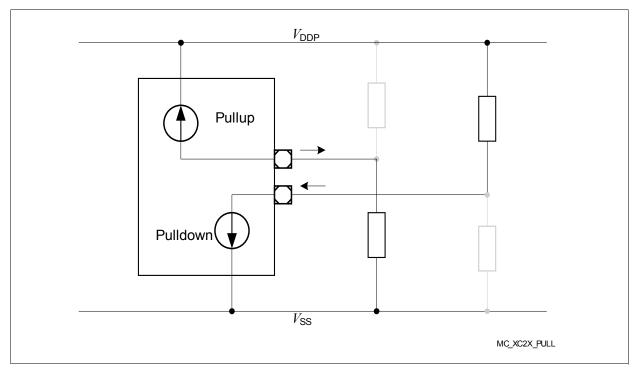


Figure 12 Pullup/Pulldown Current Definition

- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_1 = junction temperature [°C]):

 $I_{OZ} = 0.05 \times e^{(1.5 + 0.028 \times TJ)} [\mu A]$. For example, at a temperature of 95°C the resulting leakage current is 3.2 μ A. Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.6 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IH} for a pullup; V_{PIN} ≤ V_{IL} for a pulldown. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by

the enabled pull device: $V_{\text{PIN}} \leq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IH}}$ for a pulldown. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in

These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.

 Not subject to production test - verified by design/characterization. Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

Table 18A/D Converter Characteristics (cont'd)(Operating Conditions apply)

Parameter	Symbol		Limi	t Values	Unit	Test
			Min.	Max.		Condition
Switched capacitance of the reference input	C_{AREFS}	CC	_	7	pF	6)7)
Resistance of the reference input path	R _{AREF}	CC	_	2	kΩ	6)7)

1) TUE is tested at $V_{AREFx} = V_{DDPA}$, $V_{AGND} = 0$ V. It is verified by design for all other voltages within the defined voltage range.

The specified TUE is valid only if the absolute sum of input overload currents on Port 5 or Port 15 pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.

- V_{AIN} may exceed V_{AGND} or V_{AREFx} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{ADCI} must not be exceeded when selecting the peripheral frequency and the prescaler setting.
- 4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming and are found in Table 19.
- 5) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors.

All error specifications are based on measurement methods standardized by IEEE 1241.2000.

- 6) Not subject to production test verified by design/characterization.
- 7) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used:

 $C_{AINTtyp}$ = 12 pF, $C_{AINStyp}$ = 5 pF, R_{AINtyp} = 1.0 k Ω , $C_{AREFTtyp}$ = 15 pF, $C_{AREFStyp}$ = 10 pF, $R_{AREFtyp}$ = 1.0 k Ω .

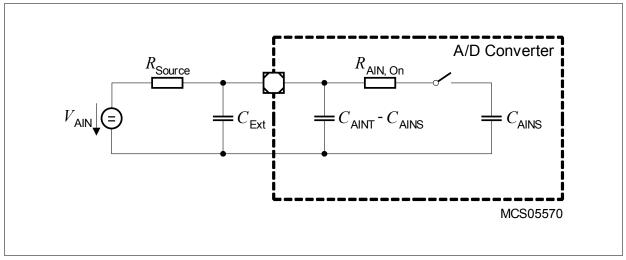


Figure 15 Equivalent Circuitry for Analog Inputs

Table 21	Coding of Bitfields LEVXV	oaing of Bittleias LEVXV in Register SWDCONU								
Code	Default Voltage Level	Notes ¹⁾								
0000 _B	2.9 V									
0001 _B	3.0 V	LEV1V: reset request								
0010 _B	3.1 V									
0011 _B	3.2 V									
0100 _B	3.3 V									
0101 _B	3.4 V									
0110 _B	3.6 V									
0111 _B	4.0 V									
1000 _B	4.2 V									
1001 _B	4.5 V	LEV2V: no request								
1010 _B	4.6 V									
1011 _B	4.7 V									
1100 _B	4.8 V									
1101 _B	4.9 V									
1110 _B	5.0 V									
1111 _B	5.5 V									

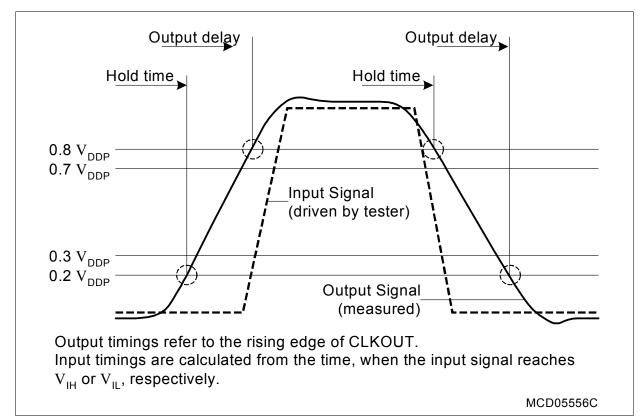
Table 21 Coding of Bitfields LEVxV in Register SWDCON0

1) The indicated default levels are selected automatically after a power reset.

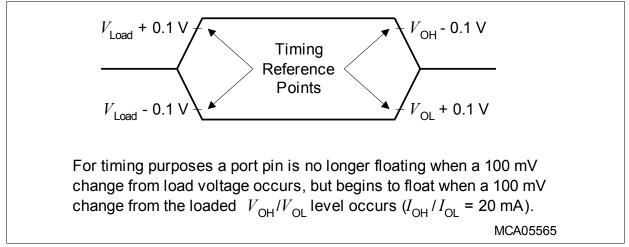
Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.9 V	
001 _B	1.0 V	
010 _B	1.1 V	
011 _B	1.2 V	
100 _B	1.3 V	LEV1V: reset request
101 _B	1.4 V	LEV2V: interrupt request
110 _B	1.5 V	
111 _B	1.6 V	

1) The indicated default levels are selected automatically after a power reset.



4.6 AC Parameters


These parameters describe the dynamic behavior of the XE167.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 16 Input Output Waveforms

Figure 17 Floating Waveforms

4.6.2 Definition of Internal Timing

The internal operation of the XE167 is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XE167.

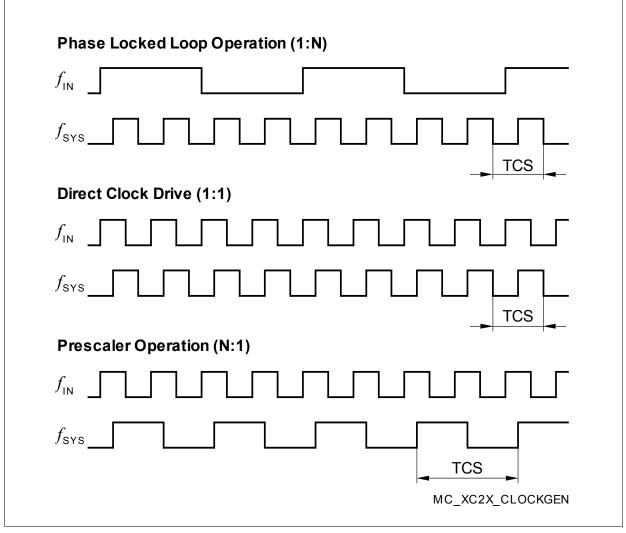


Figure 18 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 18** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE167. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an **external clock signal**. This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. In connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

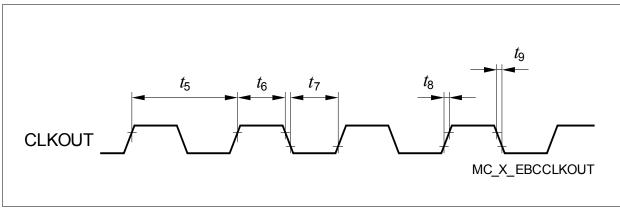
Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Parameter	Symbol	L	imit Val	ues	Unit	Note / Test
		Min.	Тур.	Max.		Condition
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDI}	-	1.7	V	1)
Input voltage (amplitude) on XTAL1	$V_{AX1}SR$	$0.3 \times V_{ m DDI}$	-	-	V	Peak-to-peak voltage ²⁾
XTAL1 input current	I _{IL} CC	_	-	±20	μA	$0 \vee \langle V_{\rm IN} \langle V_{\rm DI} \rangle$
Oscillator frequency	$f_{\rm OSC}$ CC	4	-	40	MHz	Clock signal
		4	-	16	MHz	Crystal or Resonator
High time	t ₁ SR	6	-	-	ns	
Low time	t_2 SR	6	_	-	ns	
Rise time	t ₃ SR	_	8	8	ns	
Fall time	t_4 SR	_	8	8	ns	

Table 26External Clock Input Characteristics
(Operating Conditions apply)

1) Overload conditions must not occur on pin XTAL1.

2) The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF} . This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1} .


4.6.4 External Bus Timing

The following parameters specify the behavior of the XE167 bus interface.

Table 27 CLKOUT Reference Signal

Parameter	Sym	bol		Limits	Unit	Note / Test
			Min.	Max.		Condition
CLKOUT cycle time	<i>t</i> ₅	CC	40	/25/12.5 ¹⁾	ns	
CLKOUT high time	t ₆	CC	3	_	ns	
CLKOUT low time	<i>t</i> ₇	CC	3	_	ns	
CLKOUT rise time	<i>t</i> ₈	CC	_	3	ns	
CLKOUT fall time	t ₉	CC	_	3	ns	

1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{SYS} = 25/40/80 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 21 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XE167 are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 28 Programmable Bus Cycle Phases (see timing diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Table 29External Bus Cycle Timing for Upper Voltage Range
(Operating Conditions apply)

Parameter	Symbol	Limits			Unit	Note
		Min.	Тур.	Max.	_	
Output valid delay for: RD, WR(L/H)	<i>t</i> ₁₀ CC	-		13	ns	
Output valid delay for: BHE, ALE	<i>t</i> ₁₁ CC	-		13	ns	
Output valid delay for: A23 A16, A15 A0 (on P0/P1)	<i>t</i> ₁₂ CC	-		14	ns	
Output valid delay for: A15 A0 (on P2/P10)	<i>t</i> ₁₃ CC	-		14	ns	
Output valid delay for:	<i>t</i> ₁₄ CC	-		13	ns	
Output valid delay for: D15 D0 (write data, MUX-mode)	<i>t</i> ₁₅ CC	-		14	ns	
Output valid delay for: D15 … D0 (write data, DEMUX- mode)	<i>t</i> ₁₆ CC	-		14	ns	
Output hold time for: RD, WR(L/H)	<i>t</i> ₂₀ CC	0		8	ns	
Output hold time for: BHE, ALE	<i>t</i> ₂₁ CC	0		8	ns	
Output hold time for: A23 A16, A15 A0 (on P2/P10)	<i>t</i> ₂₃ CC	0		8	ns	
Output hold time for: CS	<i>t</i> ₂₄ CC	0		8	ns	
Output hold time for: D15 … D0 (write data)	<i>t</i> ₂₅ CC	0		8	ns	
Input setup time for: READY, D15 … D0 (read data)	<i>t</i> ₃₀ SR	18		-	ns	
Input hold time for: READY, D15 … D0 (read data) ¹⁾	<i>t</i> ₃₁ SR	-4		-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Table 34SSC Master/Slave Mode Timing for Lower Voltage Range
(Operating Conditions apply), $C_L = 50 \text{ pF}$

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.	1	Test Co ndition
Master Mode Timing	1					1
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	0	-	1)	ns	2)
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	$0.5 \times t_{\rm BIT}$	-	3)	ns	2)
Transmit data output valid time	t ₃ CC	-13	_	16	ns	
Receive data input setup time to SCLKOUT receive edge	t_4 SR	48	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	$t_5 \mathrm{SR}$	-11	-	-	ns	
Slave Mode Timing	1					1
Select input DX2 setup to first clock input DX1 transmit edge	<i>t</i> ₁₀ SR	12	-	-	ns	4)
Select input DX2 hold after last clock input DX1 receive edge	<i>t</i> ₁₁ SR	8	-	-	ns	7)
Data input DX0 setup time to clock input DX1 receive edge	<i>t</i> ₁₂ SR	12	-	-	ns	7)
Data input DX0 hold time from clock input DX1 receive edge	<i>t</i> ₁₃ SR	8	-	-	ns	7)
Data output DOUT valid time	<i>t</i> ₁₄ CC	11	-	44	ns	7)
	1					

1) The maximum value further depends on the settings for the slave select output leading delay.

2) $t_{SYS} = 1/f_{SYS}$ (= 12.5ns @ 80 MHz)

 The maximum value depends on the settings for the slave select output trailing delay and for the shift clock output delay.

4) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Package and Reliability

5 Package and Reliability

In addition to the electrical parameters, the following specifications ensure proper integration of the XE167 into the target system.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Table 36Package Parameters (PG-LQFP-144-4)

Parameter	Symbol	Lim	it Values	Unit	Notes	
		Min.	Max.			
Exposed Pad Dimension	$E x \times E y$	-	6.5 imes 6.5	mm	-	
Power Dissipation	P_{DISS}	-	1.0	W	-	
Thermal resistance	$R_{\Theta JA}$	-	45	K/W	No thermal via ¹⁾	
Junction-Ambient			36	K/W	4-layer, no pad ²⁾	
			22	K/W	4-layer, pad ³⁾	

1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias; exposed pad not soldered.

2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

3) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.