

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167k48f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes to Pin Definitions

 Ctrl.: The output signal for a port pin is selected by bitfield PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bitfield PC to 1x00_B, output O1 is selected by 1x01_B, etc. Output signal OH is controlled by hardware.

2. **Type**: Indicates the pad type used (St=standard pad, Sp=special pad, DP=double pad, In=input pad, PS=power supply) and its power supply domain (A, B, M, 1).

Pin	Symbol	Ctrl.	Туре	Function
3	TESTM	I	In/B	Testmode EnableEnables factory test modes, must be held HIGH fornormal operation (connect to V_{DDPB}).An internal pullup device will hold this pin highwhen nothing is driving it.
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)
	TxDC4	02	St/B	CAN Node 4 Transmit Data Output
	CCU62_ CCPOS0A	I	St/B	CCU62 Position Input 0
	TDI_C	Ι	St/B	JTAG Test Data Input
5	P8.4	O0 / I	St/B	Bit 4 of Port 8, General Purpose Input/Output
	CCU60_ COUT61	01	St/B	CCU60 Channel 1 Output
	TMS_D	I	St/B	JTAG Test Mode Selection Input
6	TRST		In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE167's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pulldown device will hold this pin low when nothing is driving it.
7	P8.3	O0 / I	St/B	Bit 3 of Port 8, General Purpose Input/Output
	CCU60_ COUT60	01	St/B	CCU60 Channel 0 Output
. <u></u>	TDI_D	Ι	St/B	JTAG Test Data Input

Table 4Pin Definitions and Functions

Table	Fable 4Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output	
	T3OUT	01	St/B	GPT1 Timer T3 Toggle Latch Output	
	T6OUT	O2	St/B	GPT2 Timer T6 Toggle Latch Output	
	TDO_A	OH	St/B	JTAG Test Data Output	
	ESR2_1	I	St/B	ESR2 Trigger Input 1	
	RxDC4B	I	St/B	CAN Node 4 Receive Data Input	
9	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output	
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)	
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output	
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output	
	CCU62_ CCPOS1A	I	St/B	CCU62 Position Input 1	
	TMS_C	I	St/B	JTAG Test Mode Selection Input	
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input	
10	P8.2	O0 / I	St/B	Bit 2 of Port 8, General Purpose Input/Output	
	CCU60_ CC62	01 / I	St/B	CCU60 Channel 2 Input/Output	
11	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output	
	EXTCLK	01	St/B	Programmable Clock Signal Output	
	TxDC4	O2	St/B	CAN Node 4 Transmit Data Output	
	CCU62_ CTRAPA	I	St/B	CCU62 Emergency Trap Input	
	BRKIN_C	I	St/B	OCDS Break Signal Input	

Pin	Symbol	Ctrl.	Туре	Function
60	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output
	CC2_24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.
	CS0	OH	St/B	External Bus Interface Chip Select 0 Output
61	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output
	CCU63_ COUT63	O2	St/B	CCU63 Channel 3 Output
	CC2_16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.
	A16	OH	St/B	External Bus Interface Address Line 16
	ESR2_0	I	St/B	ESR2 Trigger Input 0
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input
62	P11.2	O0 / I	St/B	Bit 2 of Port 11, General Purpose Input/Output
	CCU63_ CCPOS2A	I	St/B	CCU63 Position Input 2
63	P4.1	O0 / I	St/B	Bit 1 of Port 4, General Purpose Input/Output
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output
	CC2_25	O3 / I	St/B	CAPCOM2 CC25IO Capture Inp./ Compare Out.
	CS1	OH	St/B	External Bus Interface Chip Select 1 Output
64	P2.4	O0 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output
	CC2_17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.
	A17	OH	St/B	External Bus Interface Address Line 17
	ESR1_0	I	St/B	ESR1 Trigger Input 0
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input
65	P11.1	O0 / I	St/B	Bit 1 of Port 11, General Purpose Input/Output
	CCU63_ CCPOS1A	I	St/B	CCU63 Position Input 1

Tabl	e 4 Pin De	finitior	ns and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
87	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output
	U1C0_ SELO0	01	St/B	USIC1 Channel 0 Select/Control 0 Output
	U1C1_ SELO1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output
	CCU61_ COUT60	O3	St/B	CCU61 Channel 0 Output
	A3	OH	St/B	External Bus Interface Address Line 3
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input
88	P3.1	O0 / I	St/B	Bit 1 of Port 3, General Purpose Input/Output
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output
	TxDC3	02	St/B	CAN Node 3 Transmit Data Output
	HLDA	OH/I	St/B	External Bus Hold Acknowledge Output/Input Output in master mode, input in slave mode.
	U2C0_DX0B	I	St/B	USIC2 Channel 0 Shift Data Input
89	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output
	U0C0_ SCLKOUT	01	St/B	USIC0 Channel 0 Shift Clock Output
	CCU60_ CC62	02 / 1	St/B	CCU60 Channel 2 Input/Output
	AD2	OH/I	St/B	External Bus Interface Address/Data Line 2
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input
90	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output
	U1C1_ SELO0	01	St/B	USIC1 Channel 1 Select/Control 0 Output
	U1C0_ SELO1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output
	CCU61_ COUT61	O3	St/B	CCU61 Channel 1 Output
	A4	OH	St/B	External Bus Interface Address Line 4
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input

Table	e 4 Pin De	finitior	is and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
140	ESR2	O0 / I	St/B	External Service Request 2
	U1C1_DX0D	I	St/B	USIC1 Channel 1 Shift Data Input
	U1C1_DX2C	I	St/B	USIC1 Channel 1 Shift Control Input
	U2C1_DX0E	I	St/B	USIC1 Channel 1 Shift Data Input
	U2C1_DX2B	I	St/B	USIC2 Channel 1 Shift Control Input
	EX1AINB	I	St/B	External Interrupt Trigger Input
141	ESR0	O0 / I	St/B	External Service Request 0
				Note: After power-up, ESR0 operates as open- drain bidirectional reset with a weak pull-up.
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input
142	P8.6	O0 / I	St/B	Bit 6 of Port 8, General Purpose Input/Output
	CCU60_ COUT63	01	St/B	CCU60 Channel 3 Output
	CCU60_ CTRAPB	I	St/B	CCU60 Emergency Trap Input
	BRKIN_D	I	St/B	OCDS Break Signal Input
143	P8.5	O0 / I	St/B	Bit 5 of Port 8, General Purpose Input/Output
	CCU60_ COUT62	01	St/B	CCU60 Channel 2 Output
	TCK_D	I	St/B	JTAG Clock Input
15	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Table 12 for details.
54, 91, 127	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Table 12 for details. All V_{DDI1} pins must be connected to each other.
20	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6, and P15 are fed from supply voltage V_{DDPA} .

Pin	Symbol	Ctrl.	Туре	Function
2, 36, 38, 72, 74, 108, 110, 144	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6, and P15 are fed from supply voltage V_{DDPB} .
1, 37, 73, 109	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane. <i>Note: Also the exposed pad is connected to</i> V_{SS} .
				The respective board area must be connected to ground (if soldered) or left free.

Table 4Pin Definitions and Functions (cont'd)

1) To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

2) Pin TRef was used to control the core voltage generation in step AA. For that step, pin TRef must be connected to V_{DDPB} .

This connection is no more required from step AB on. For the current step, pin TRef is logically not connected. Future derivatives will feature an additional general purpose IO pin at this position.

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

Up to five external \overline{CS} signals (four windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

A HOLD/HLDA protocol is available for bus arbitration; this allows the sharing of external resources with other bus masters. The bus arbitration is enabled by software, after which pins P3.0 ... P3.2 (BREQ, HLDA, HOLD) are automatically controlled by the EBC. In Master Mode (default after reset) the HLDA pin is an output. In Slave Mode pin HLDA is switched to be an input. This allows the direct connection of the slave controller to another master controller without glue logic.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

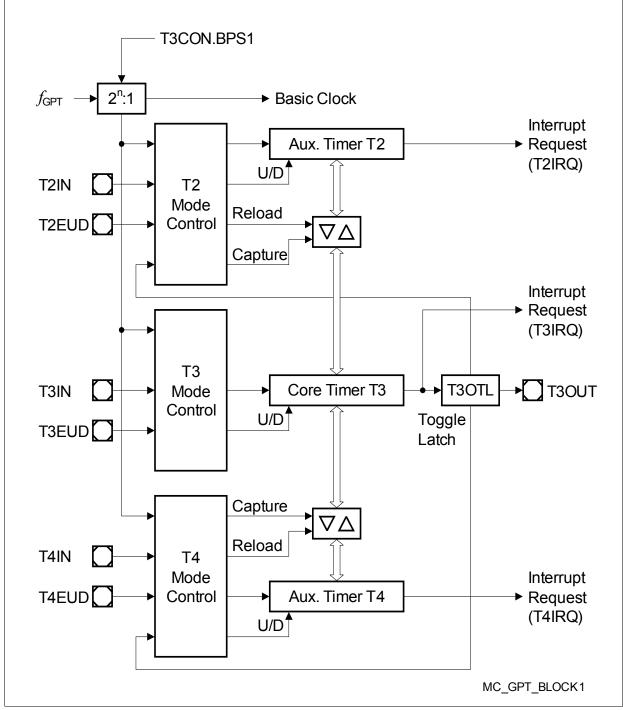
The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

Table 6 XE167 Interrupt N	lodes (cont'd)		
Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
USIC2 Cannel 1, Request 0	U2C1_0IC	xx'017C _H	5F _H / 95 _D
USIC2 Cannel 1, Request 1	U2C1_1IC	xx'0180 _H	60 _H / 96 _D
USIC2 Cannel 1, Request 2	U2C1_2IC	xx'0184 _H	61 _H / 97 _D
Unassigned node	_	xx'0188 _H	62 _H / 98 _D
Unassigned node	_	xx'018C _H	63 _H / 99 _D
Unassigned node	-	xx'0190 _H	64 _H / 100 _D
Unassigned node	_	xx'0194 _H	65 _H / 101 _D
Unassigned node	_	xx'0198 _H	66 _H / 102 _D
Unassigned node	_	xx'019C _H	67 _H / 103 _D
Unassigned node	_	xx'01A0 _H	68 _H / 104 _D
Unassigned node	_	xx'01A4 _H	69 _H / 105 _D
Unassigned node	_	xx'01A8 _H	6A _H / 106 _D
SCU Request 1	SCU_1IC	xx'01AC _H	6B _H / 107 _D
SCU Request 0	SCU_0IC	xx'01B0 _H	6C _H / 108 _D
Program Flash Modules	PFM_IC	xx'01B4 _H	6D _H / 109 _D
RTC	RTC_IC	xx'01B8 _H	6E _H / 110 _D
End of PEC Subchannel	EOPIC	xx'01BC _H	6F _H / 111 _D

1) Register VECSEG defines the segment where the vector table is located.

Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting with a distance of 4 (two words) between two vectors.



When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

Table 10Instruction Set Summary (cont'd)					
Mnemonic	Description	Bytes			
NOP	Null operation	2			
CoMUL/CoMAC	Multiply (and accumulate)	4			
CoADD/CoSUB	Add/Subtract	4			
Co(A)SHR	(Arithmetic) Shift right	4			
CoSHL	Shift left	4			
CoLOAD/STORE	Load accumulator/Store MAC register	4			
CoCMP	Compare	4			
CoMAX/MIN	Maximum/Minimum	4			
CoABS/CoRND	Absolute value/Round accumulator	4			
CoMOV	Data move	4			
CoNEG/NOP	Negate accumulator/Null operation	4			

1) The Enter Power Down Mode instruction is not used in the XE167, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
External Pin Load Capacitance	CL	-	20	-	pF	Pin drivers in default mode ⁶⁾
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM}$	1.0	-	4.7	μF	7)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$	0.47	-	2.2	μF	One for each supply pin ⁷⁾
Operating frequency	$f_{\rm SYS}$	-	-	80	MHz	8)
Ambient temperature	T _A	_	_	_	°C	See Table 1

Table 12Operating Condition Parameters (cont'd)

 If both core power domains are clocked, the difference between the power supply voltages must be less than 10 mV. This condition imposes additional constraints when using external power supplies. Do not combine internal and external supply of different core power domains.
Do not supply the core power domains with two independent external voltage regulators. The simplest method

Do not supply the core power domains with two independent external voltage regulators. The simplest method is to supply both power domains directly via a single external power supply.

Performance of pad drivers, A/D Converter, and Flash module depends on V_{DDP}.
If the external supply voltage V_{DDP} becomes lower than the specified operating range, a power reset must be generated. Otherwise, the core supply voltage V_{DDI} may rise above its specified operating range due to parasitic effects.

This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be generated by activating the PORST input.

- 3) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: $V_{OV} > V_{IHmax}$ ($I_{OV} > 0$) or $V_{OV} < V_{ILmin}$ ($I_{OV} < 0$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDI}).
- 4) Not subject to production test verified by design/characterization.
- 5) An overload current (I_{OV}) through a pin injects an error current (I_{INJ}) into the adjacent pins. This error current adds to that pin's leakage current (I_{OZ}). The value of the error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is reversed from the polarity of the overload current that produces it.

The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.

- 6) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 7) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDI} pin to keep the resistance of the board tracks below 2 Ω . Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.
- 8) The operating frequency range may be reduced for specific types of the XE167. This is indicated in the device designation (...FxxL). 80-MHz devices are marked ...F80L.

4.2.2 DC Parameters for Lower Voltage Area

These parameters apply to the lower IO voltage range, 3.0 V $\leq V_{\text{DDP}} \leq$ 4.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Тур. Max. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) $V_{\rm DDP}$ $V_{\rm IH}\,{\rm SR}$ Input high voltage 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.07 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V Output low voltage V_{OI} CC 0.4 $I_{OH} \ge I_{OHmax}^{3)}$ Output high voltage⁵⁾ $V_{OH} CC$ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ $V_{OH} CC$ Output high voltage⁵⁾ $V_{\rm DDP}$ V _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{O71} CC _ ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{\rm J} \le 110^{\circ} {\rm C},$ Input leakage current I_{072} CC _ ± 0.2 ± 2.5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{INI}$ $< V_{\rm DDP}$ $V_{\mathsf{PIN}} \ge V_{\mathsf{IH}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level keep current ±10 μA I_{PLK} _ _ $V_{\text{PIN}} \le V_{\text{IL}}$ (dn) $V_{\mathsf{PIN}} \le V_{\mathsf{IL}} \ (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PLF} ±150 _ _ μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 15DC Characteristics for Lower Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

4.2.3 Power Consumption

The power consumed by the XE167 depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ (**Table 16**) and leakage current $I_{\rm LK}$ (**Table 17**) must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDI} are charged with the maximum possible current, see parameter I_{CC} in **Table 20**.

For additional information, please refer to Section 5.2, Thermal Considerations.

Table 16Switching Power Consumption XE167
(Operating Conditions apply)

Parameter	Sym-		Values	3	Unit	Note /
	bol	Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT}	-	10 + 0.6×f _{SYS}	10 + 1.0×f _{SYS}	mA	Active mode ¹⁾²⁾ $f_{\rm SYS}$ in [MHz]
Power supply current in stopover mode, EVVRs on	I _{SSO}	-	1.0	2.0	mA	Stopover Mode ²⁾

1) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers' input stages are switched.

2) The pad supply voltage has only a minor influence on this parameter.

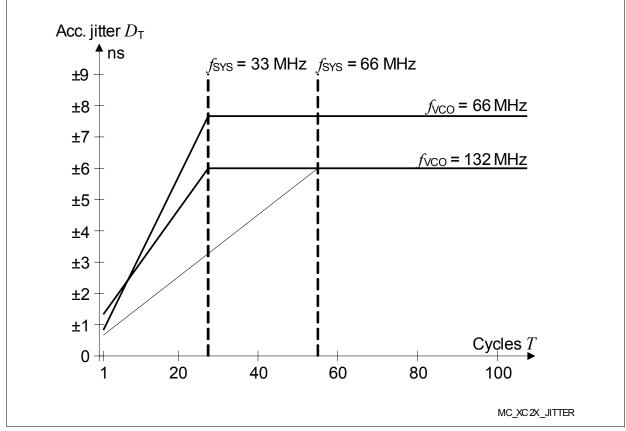


Figure 19 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed C_L = 20 pF (see **Table 12**).

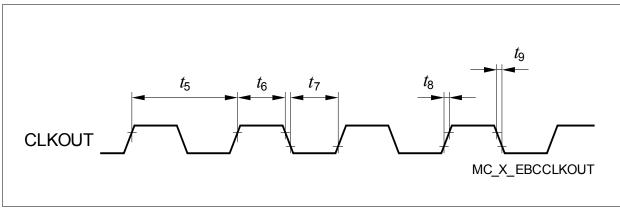
The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100/144 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

PLLCON0.VCOSEL	VCO Frequency Range	Base Frequency Range
00	50 110 MHz	10 40 MHz
01	100 160 MHz	20 80 MHz
1X	Reserved	

Table 25 VCO Bands for PLL Operation ¹⁾
--

1) Not subject to production test - verified by design/characterization.


4.6.4 External Bus Timing

The following parameters specify the behavior of the XE167 bus interface.

Table 27 CLKOUT Reference Signal

Parameter	Symbol		Limits		Unit	Note / Test
			Min.	Max.		Condition
CLKOUT cycle time	<i>t</i> ₅	CC	40	/25/12.5 ¹⁾	ns	
CLKOUT high time	t ₆	CC	3	_	ns	
CLKOUT low time	<i>t</i> ₇	CC	3	_	ns	
CLKOUT rise time	<i>t</i> ₈	CC	_	3	ns	
CLKOUT fall time	t ₉	CC	_	3	ns	

1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{SYS} = 25/40/80 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 21 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

XE167x XE166 Family Derivatives

Electrical Parameters

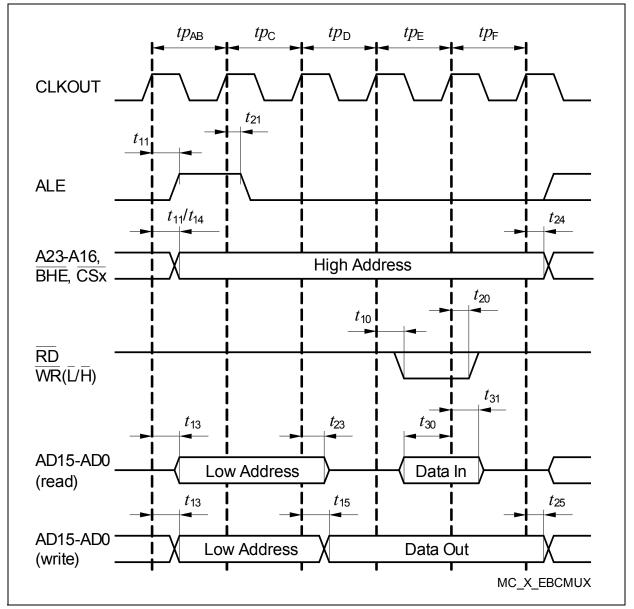
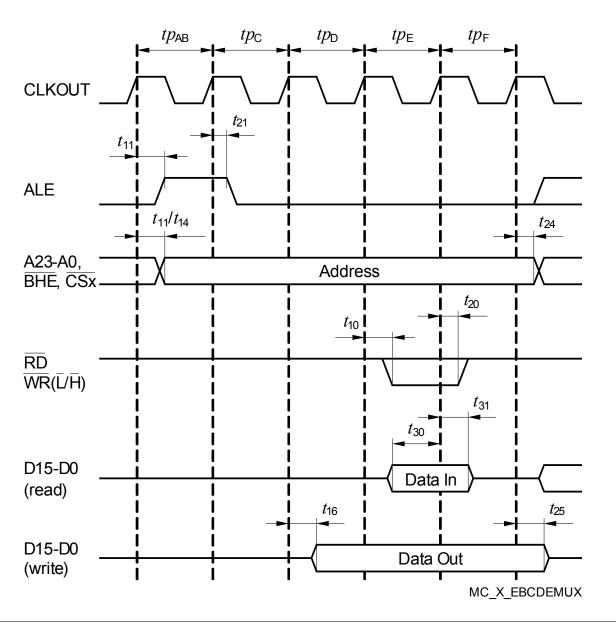



Figure 22 Multiplexed Bus Cycle

XE167x XE166 Family Derivatives

Electrical Parameters

Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (\overline{RD} or \overline{WR}).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.