

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	66MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe167k72f66lacfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

- Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
- On-chip MultiCAN interface (Rev. 2.0B active) with up to 128 message objects (Full CAN/Basic CAN) on up to 5 CAN nodes and gateway functionality
 On-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Five programmable chip-select signals
 - Hold- and hold-acknowledge bus arbitration support
- Single power supply from 3.0 V to 5.5 V
- Programmable watchdog timer and oscillator watchdog
- Up to 118 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via JTAG interface
- 144-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For ordering codes for the XE167 please contact your sales representative or local distributor.

This document describes several derivatives of the XE167 group. **Table 1** lists these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

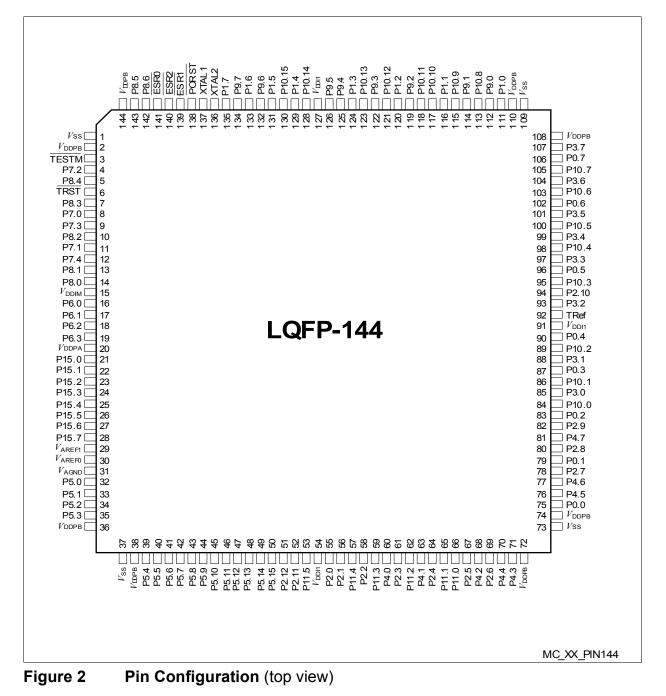
For simplicity the term **XE167** is used for all derivatives throughout this document.

Summary of Features

Table 1 XE167 Derivative Synopsis										
Derivative ¹⁾	Temp. Range	Program Memory ²⁾	PSRAM ³⁾	CCU6 Mod.	ADC ⁴⁾ Chan.	Interfaces ⁴⁾				
SAF-XE167F- 48F66L	-40 °C to 85 °C	384 Kbytes Flash	16 Kbytes	0, 1, 2, 3	16 + 8	5 CAN Nodes, 6 Serial Chan.				
SAF-XE167F- 72F66L	-40 °C to 85 °C	576 Kbytes Flash	32 Kbytes	0, 1, 2, 3	16 + 8	5 CAN Nodes, 6 Serial Chan.				
SAF-XE167F- 96FxxL	-40 °C to 85 °C	768 Kbytes Flash	64 Kbytes	0, 1, 2, 3	16 + 8	5 CAN Nodes, 6 Serial Chan.				
SAF-XE167G- 48F66L	-40 °C to 85 °C	384 Kbytes Flash	16 Kbytes	0, 1	8 + 8	2 CAN Nodes, 4 Serial Chan.				
SAF-XE167G- 72F66L	-40 °C to 85 °C	576 Kbytes Flash	32 Kbytes	0, 1	8 + 8	2 CAN Nodes, 4 Serial Chan.				
SAF-XE167G- 96F66L	-40 °C to 85 °C	768 Kbytes Flash	64 Kbytes	0, 1	8 + 8	2 CAN Nodes, 4 Serial Chan.				
SAF-XE167H- 48F66L	-40 °C to 85 °C	384 Kbytes Flash	16 Kbytes	0, 1, 2, 3	16 + 8	No CAN Node, 6 Serial Chan.				
SAF-XE167H- 72F66L	-40 °C to 85 °C	576 Kbytes Flash	32 Kbytes	0, 1, 2, 3	16 + 8	No CAN Node, 6 Serial Chan.				
SAF-XE167H- 96F66L	-40 °C to 85 °C	768 Kbytes Flash	64 Kbytes	0, 1, 2, 3	16 + 8	No CAN Node, 6 Serial Chan.				
SAF-XE167K- 48F66L	-40 °C to 85 °C	384 Kbytes Flash	16 Kbytes	0, 1	8 + 8	No CAN Node, 4 Serial Chan.				
SAF-XE167K- 72F66L	-40 °C to 85 °C	576 Kbytes Flash	32 Kbytes	0, 1	8 + 8	No CAN Node, 4 Serial Chan.				
SAF-XE167K- 96F66L	-40 °C to 85 °C	768 Kbytes Flash	64 Kbytes	0, 1	8 + 8	No CAN Node, 4 Serial Chan.				

1) This Data Sheet is valid for devices starting with and including design step AC.

2) Specific inormation about the on-chip Flash memory in **Table 2**.


3) All derivatives additionally provide 1 Kbyte SBRAM, 2 Kbytes DPRAM, and 16 Kbytes DSRAM.

4) Specific information about the available channels in **Table 3**. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

2.1 Pin Configuration and Definition

The pins of the XE167 are described in detail in **Table 4**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. **Figure 2** summarizes all pins, showing their locations on the four sides of the package.

Table 4Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function				
18	P6.2	O0 / I	St/A	Bit 2 of Port 6, General Purpose Input/Output				
	EMUX2	01	St/A	External Analog MUX Control Output 2 (ADC0)				
	T6OUT	02	St/A	GPT2 Timer T6 Toggle Latch Output				
	U1C1_ SCLKOUT	O3	St/A	USIC1 Channel 1 Shift Clock Output				
	U1C1_DX1C	I	St/A	USIC1 Channel 1 Shift Clock Input				
19	P6.3	O0 / I	St/A	Bit 3 of Port 6, General Purpose Input/Output				
	T3OUT	02	St/A	GPT1 Timer T3 Toggle Latch Output				
	U1C1_ SELO0	O3	St/A	USIC1 Channel 1 Select/Control 0 Output				
	U1C1_DX2D	I	St/A	USIC1 Channel 1 Shift Control Input				
	ADCx_ REQTRyD	I	St/A	External Request Trigger Input for ADC0/1				
21	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input				
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1				
22	P15.1	I	In/A	Bit 1 of Port 15, General Purpose Input				
	ADC1_CH1	I	In/A	Analog Input Channel 1 for ADC1				
23	P15.2	1	In/A	Bit 2 of Port 15, General Purpose Input				
	ADC1_CH2	1	In/A	Analog Input Channel 2 for ADC1				
	T5IN	I	In/A	GPT2 Timer T5 Count/Gate Input				
24	P15.3	1	In/A	Bit 3 of Port 15, General Purpose Input				
	ADC1_CH3	1	In/A	Analog Input Channel 3 for ADC1				
	T5EUD	I	In/A	GPT2 Timer T5 External Up/Down Control Input				
25	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input				
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1				
	T6IN	1	In/A	GPT2 Timer T6 Count/Gate Input				
26	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input				
	ADC1_CH5	Ι	In/A	Analog Input Channel 5 for ADC1				
	T6EUD	I	In/A	GPT2 Timer T6 External Up/Down Control Input				
27	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input				
	ADC1_CH6	Ι	In/A	Analog Input Channel 6 for ADC1				

Tabl	Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
43	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input				
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0				
	CCU6x_ T12HRC	I	In/A	External Run Control Input for T12 of CCU6x				
	CCU6x_ T13HRC	I	In/A	External Run Control Input for T13 of CCU6x				
44	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input				
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0				
	CC2_T7IN	I	In/A	CAPCOM2 Timer T7 Count Input				
45	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input				
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0				
	BRKIN_A	I	In/A	OCDS Break Signal Input				
46	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input				
_	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0				
47	P5.12	I	In/A	Bit 12 of Port 5, General Purpose Input				
	ADC0_CH12	I	In/A	Analog Input Channel 12 for ADC0				
48	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input				
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0				
	EX0BINB	I	In/A	External Interrupt Trigger Input				
49	P5.14	I	In/A	Bit 14 of Port 5, General Purpose Input				
	ADC0_CH14	I	In/A	Analog Input Channel 14 for ADC0				
50	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input				
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0				
51	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output				
	U0C0_ SELO4	01	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_ SELO3	02	St/B	USIC0 Channel 1 Select/Control 3 Output				
	READY	I	St/B	External Bus Interface READY Input				
-	· · ·							

Table 4Pin Definitions and Functions (cont'd)									
Pin	Symbol	Ctrl.	Туре	Function					
126	P9.5	O0 / I	St/B	Bit 5 of Port 9, General Purpose Input/Output					
	CCU63_ COUT62	01	St/B	CCU63 Channel 2 Output					
	U2C0_DOUT	02	St/B	USIC2 Channel 0 Shift Data Output					
	U2C0_DX0E	I	St/B	USIC2 Channel 0 Shift Data Input					
	CCU60_ CCPOS2B	1	St/B	CCU60 Position Input 2					
128	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output					
	U1C0_ SELO1	01	St/B	USIC1 Channel 0 Select/Control 1 Output					
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output					
	RD	ОН	St/B	External Bus Interface Read Strobe Output					
	ESR2_2	I	St/B	ESR2 Trigger Input 2					
	U0C1_DX0C	Ι	St/B	USIC0 Channel 1 Shift Data Input					
	RxDC3C	Ι	St/B	CAN Node 3 Receive Data Input					
129	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output					
	CCU62_ COUT61	O1	St/B	CCU62 Channel 1 Output					
	U1C1_ SELO4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output					
	U2C0_ SELO5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output					
	A12	ОН	St/B	External Bus Interface Address Line 12					
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input					
130	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output					
	U1C0_ SELO2	01	St/B	USIC1 Channel 0 Select/Control 2 Output					
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output					
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output					
	ALE	OH	St/B	External Bus Interf. Addr. Latch Enable Output					
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input					

Table	Table 4Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
131	P1.5	O0 / I	St/B	Bit 5 of Port 1, General Purpose Input/Output					
	CCU62_ COUT60	01	St/B	CCU62 Channel 0 Output					
	U1C1_ SELO3	O2	St/B	USIC1 Channel 1 Select/Control 3 Output					
	BRKOUT	O3	St/B	OCDS Break Signal Output					
	A13	OH	St/B	External Bus Interface Address Line 13					
	U2C0_DX0C	I	St/B	USIC2 Channel 0 Shift Data Input					
132	P9.6	O0 / I	St/B	Bit 6 of Port 9, General Purpose Input/Output					
	CCU63_ COUT63	01	St/B	CCU63 Channel 3 Output					
	CCU63_ COUT62	O2	St/B	CCU63 Channel 2 Output					
	CCU63 _ CTRAPA	I	St/B	CCU63 Emergency Trap Input					
	CCU60_ CCPOS1B	I	St/B	CCU60 Position Input 1					
133	P1.6	O0 / I	St/B	Bit 6 of Port 1, General Purpose Input/Output					
	CCU62_ CC61	01/1	St/B	CCU62 Channel 1 Input/Output					
	U1C1_ SELO2	02	St/B	USIC1 Channel 1 Select/Control 2 Output					
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output					
	A14	OH	St/B	External Bus Interface Address Line 14					
	U2C0_DX0D	I	St/B	USIC2 Channel 0 Shift Data Input					
134	P9.7	O0 / I	St/B	Bit 7 of Port 9, General Purpose Input/Output					
	CCU63_ CTRAPB	I	St/B	CCU63 Emergency Trap Input					
	U2C0_DX1D	I	St/B	USIC2 Channel 0 Shift Clock Input					
	CCU60_ CCPOS0B	I	St/B	CCU60 Position Input 0					

3 Functional Description

The architecture of the XE167 combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 3**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XE167.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XE167.

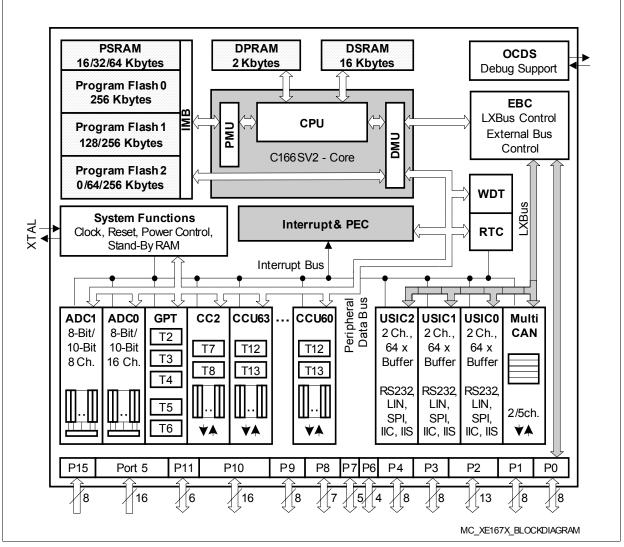


Figure 3 Block Diagram

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XE167 provides a broad range of debug and emulation features. User software running on the XE167 can be debugged within the target system environment.

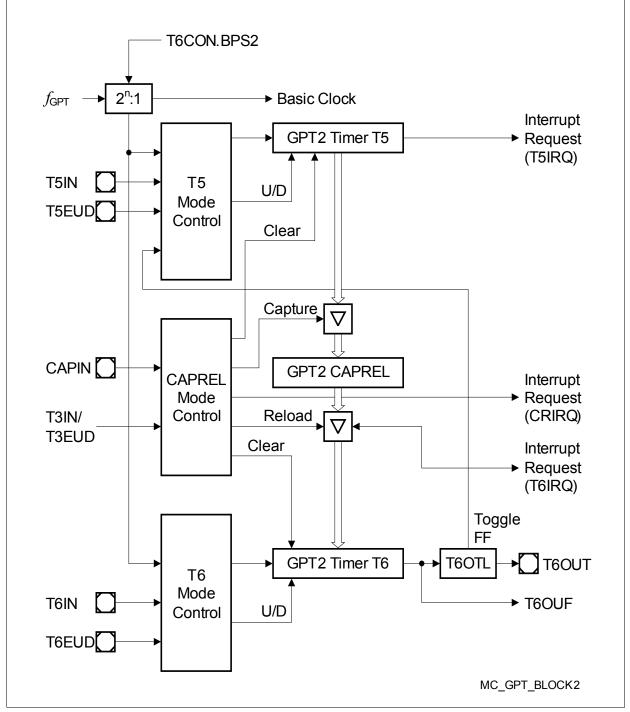
The OCDS is controlled by an external debugging device via the debug interface. This consists of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the debug interface, or via the external bus interface for increased performance.

The JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.



When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

Parameter	Symbol	Symbol Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition
External Pin Load Capacitance	CL	-	20	-	pF	Pin drivers in default mode ⁶⁾
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM}$	1.0	-	4.7	μF	7)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$	0.47	-	2.2	μF	One for each supply pin ⁷⁾
Operating frequency	$f_{\rm SYS}$	-	-	80	MHz	8)
Ambient temperature	T _A	-	_	_	°C	See Table 1

Table 12Operating Condition Parameters (cont'd)

 If both core power domains are clocked, the difference between the power supply voltages must be less than 10 mV. This condition imposes additional constraints when using external power supplies. Do not combine internal and external supply of different core power domains.
Do not supply the core power domains with two independent external voltage regulators. The simplest method

Do not supply the core power domains with two independent external voltage regulators. The simplest method is to supply both power domains directly via a single external power supply.

Performance of pad drivers, A/D Converter, and Flash module depends on V_{DDP}.
If the external supply voltage V_{DDP} becomes lower than the specified operating range, a power reset must be generated. Otherwise, the core supply voltage V_{DDI} may rise above its specified operating range due to parasitic effects.

This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be generated by activating the PORST input.

- 3) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: $V_{OV} > V_{IHmax}$ ($I_{OV} > 0$) or $V_{OV} < V_{ILmin}$ ($I_{OV} < 0$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDI}).
- 4) Not subject to production test verified by design/characterization.
- 5) An overload current (I_{OV}) through a pin injects an error current (I_{INJ}) into the adjacent pins. This error current adds to that pin's leakage current (I_{OZ}). The value of the error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is reversed from the polarity of the overload current that produces it.

The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.

- 6) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 7) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDI} pin to keep the resistance of the board tracks below 2 Ω . Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.
- 8) The operating frequency range may be reduced for specific types of the XE167. This is indicated in the device designation (...FxxL). 80-MHz devices are marked ...F80L.

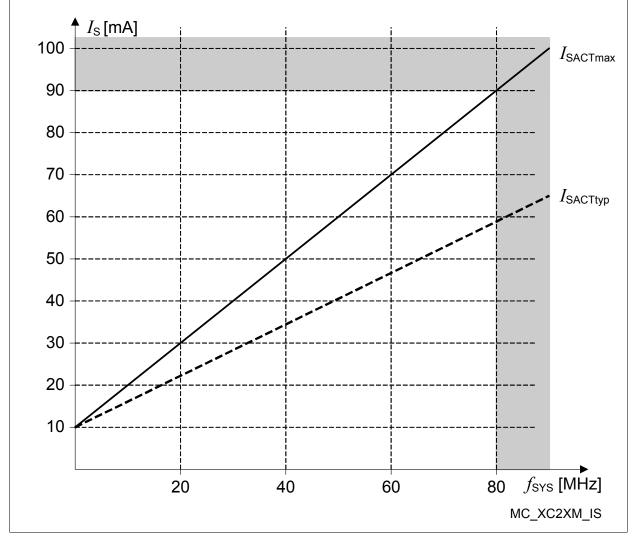


Figure 13 Supply Current in Active Mode as a Function of Frequency

4.5 Flash Memory Parameters

The XE167 is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XE167's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol Limit Values		Unit	Note / Test		
		Min.	Тур.	Max.		Condition
Programming time per 128-byte page	t _{PR}	-	3 ¹⁾	3.5	ms	ms
Erase time per sector/page	t _{ER}	-	4 ¹⁾	5	ms	ms
Data retention time	t _{RET}	20	_	-	years	1,000 erase / program cycles
Flash erase endurance for user sectors ²⁾	N_{ER}	15,000	-	-	cycles	Data retentior time 5 years
Flash erase endurance for security pages	N _{SEC}	10	-	-	cycles	Data retentior time 20 years
Drain disturb limit	$N_{\rm DD}$	64	-	_	cycles	3)

Table 23Flash Characteristics(Operating Conditions apply)

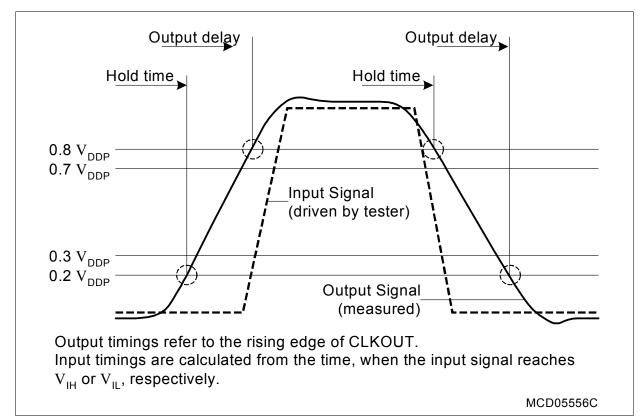
 Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. In the XE167 erased areas must be programmed completely (with actual code/data or dummy values) before that area is read.

2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.

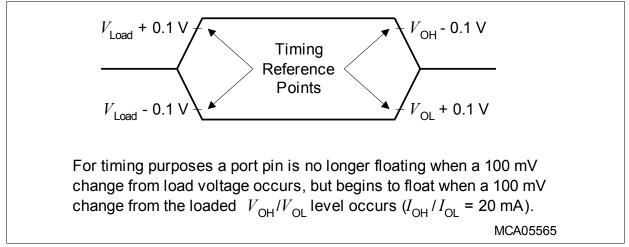
3) This parameter limits the number of subsequent programming operations within a physical sector. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated.

Access to the XE167 Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.



4.6 AC Parameters


These parameters describe the dynamic behavior of the XE167.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 16 Input Output Waveforms

Figure 17 Floating Waveforms

External Bus Arbitration

If the arbitration signals are enabled, the XE167 makes its external resources available in response to an arbitration request.

Table 31Bus Arbitration Timing for Upper Voltage Range
(Operating Conditions apply)

Parameter	Symbol		Limits	Unit	Note	
		Min.	Тур.	Max.		
Input setup time for: HOLD input	<i>t</i> ₄₀ SR	18		-	ns	
Output delay rising edge for: HLDA, BREQ	<i>t</i> ₄₁ CC	0		13	ns	
Output delay falling edge for: HLDA	<i>t</i> ₄₂ CC	1		14	ns	

Table 32Bus Arbitration Timing for Lower Voltage Range
(Operating Conditions apply)

Parameter	Symbol		Limits	Unit	Note	
		Min.	Тур.	Max.		
Input setup time for: HOLD input	<i>t</i> ₄₀ SR	28		-	ns	
Output delay rising edge for: HLDA, BREQ	<i>t</i> ₄₁ CC	0		19	ns	
Output delay falling edge for: HLDA	<i>t</i> ₄₂ CC	1		21	ns	

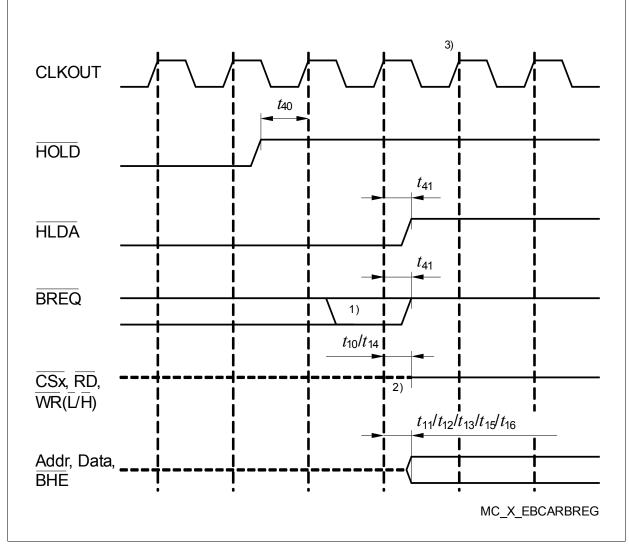


Figure 26 External Bus Arbitration, Regaining the Bus

Notes

- 1. This is the last chance for BREQ to trigger the indicated regain sequence. Even if BREQ is activated earlier, the regain sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the XE167 requesting the bus.
- 2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE will be low).
- 3. The next XE167-driven bus cycle may start here.

4.6.5 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Table 33SSC Master/Slave Mode Timing for Upper Voltage Range
(Operating Conditions apply), $C_1 = 50 \text{ pF}$

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Co ndition
Master Mode Timing	1	1	-			
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	0	-	1)	ns	2)
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	$0.5 \times t_{\rm BIT}$	-	3)	ns	
Transmit data output valid time	t ₃ CC	-6	-	13	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-7	-	-	ns	
Slave Mode Timing						
Select input DX2 setup to first clock input DX1 transmit edge	<i>t</i> ₁₀ SR	7	-	-	ns	4)
Select input DX2 hold after last clock input DX1 receive edge	<i>t</i> ₁₁ SR	5	-	-	ns	7)
Data input DX0 setup time to clock input DX1 receive edge	<i>t</i> ₁₂ SR	7	-	-	ns	7)
Data input DX0 hold time from clock input DX1 receive edge	<i>t</i> ₁₃ SR	5	-	-	ns	7)
Data output DOUT valid time	<i>t</i> ₁₄ CC	8	-	29	ns	7)
				*		•

1) The maximum value further depends on the settings for the slave select output leading delay.

2) $t_{SYS} = 1/f_{SYS}$ (= 12.5 ns @ 80 MHz)

- The maximum value depends on the settings for the slave select output trailing delay and for the shift clock output delay.
- 4) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

4.6.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
TCK clock period	t ₁ SR	60	50	_	ns	-	
TCK high time	t_2 SR	16	_	_	ns	-	
TCK low time	t_3 SR	16	_	_	ns	-	
TCK clock rise time	t ₄ SR	_	_	8	ns	-	
TCK clock fall time	t ₅ SR	_	_	8	ns	-	
TDI/TMS setup to TCK rising edge	$t_6 \mathrm{SR}$	6	-	-	ns	-	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	-	
TDO valid	t ₈ CC	_	_	30	ns	C _L = 50 pF	
after TCK falling edge ¹⁾	t ₈ CC	10	_	_	ns	C _L = 20 pF	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉ CC	-	-	30	ns	C _L = 50 pF	
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	-	30	ns	C _L = 50 pF	

Table 35JTAG Interface Timing Parameters
(Operating Conditions apply)

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

Package and Reliability

Package Outlines

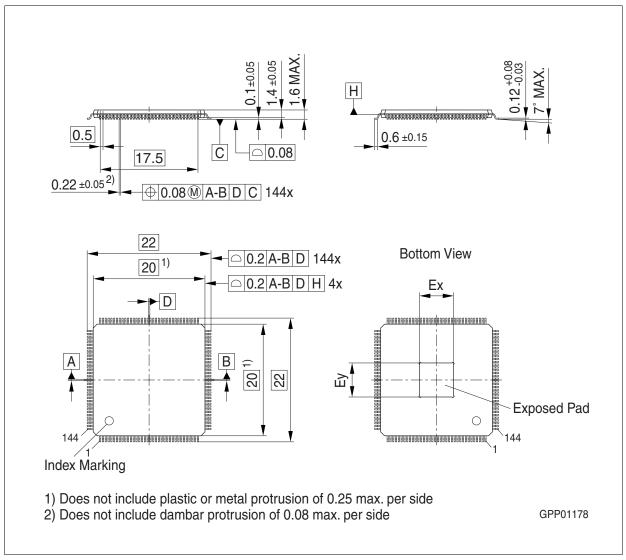


Figure 30PG-LQFP-144-4 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages