

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 45x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19195t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 14	nk 14												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
70Ch	PIR0			TMR0IF	IOCIF	—	—	—	INTF	001	001		
70Dh	PIR1	OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF	0000	0000		
70Eh	PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	0000 0000	0000 0000		
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	000000	000000		
710h	PIR4	_	_	_	_	TMR4IF	_	TMR2IF	TMR1IF	0000 0000	0000 0000		
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	00000	00000		
712h	PIR6	CRIF	_	_	_	_		CCP2IF	CCP1IF	000	000		
713h	PIR7	_	_	NVMIF	_	_	_	_	CWG1IF	0000 0000	0000 0000		
714h	PIR8	LCDIF	RTCCIF	_		_	SMT1PWAIF	SMT1PRAIF	SMT1IF	00000	00000		
715h	—		I		Unimpler	mented							
716h	PIE0	_	_	TMR0IE	IOCIE	—	—	—	INTE	0000 0000	0000 0000		
717h	PIE1	OSFIE	CSWIE	—		—	—	ADTIE	ADIE	0000	0000		
718h	PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	0000 0000	0000 0000		
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	—	_	BCL1IE	SSP1IE	000000	000000		
71Ah	PIE4	—	_	—	_	TMR4IF	—	TMR2IE	TMR1IE	0000 0000	0000 0000		
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	_	_	TMR1GIE	00000	00000		
71Ch	PIE6	CRIE	_	—	_	_	—	CCP2IE	CCP1IE	000	000		
71Dh	PIE7	_		NVMIE	_	_	—	_	CWG1IE	0000 0000	0000 0000		
71Eh	PIE8	LCDIE	RTCCIE	-	_	_	SMT1PWAIE	SMT1PRAIE	SMT1IE	00000	00000		
71Fh	_				Unimpler	mented							

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19195/6/7 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

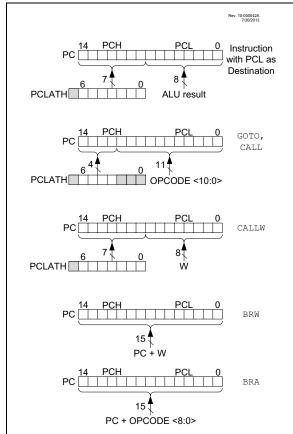
Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR			
Bank 63														
				CPU	CORE REGISTER	S: see Table 4-3 fo	specifics							
				010			opeoinee							
1F8Ch					Unimple	emented								
1F8Dh	_				Unimple	emented								
1F8Eh	_				Unimple	emented								
1F8Fh					Unimple	emented								
1F90h					Unimple	emented								
1F91h					Unimple	emented								
1F92h					Unimple	emented								
1F93h	_				Unimple	emented								
1F94h	_				Unimple	emented								
1F95h	_				Unimple	emented								
1F96h	_				Unimple	emented								
1F97h	_				Unimple	emented								
1F98h	_				Unimple	emented								
1F99h	—				Unimple	emented								
1F9Ah	—				Unimple	emented								
1F9Bh	—				Unimple	emented								
1F9Ch	—				Unimple									
1F9Dh	—		Unimplemented											
1F9Eh	—				Unimple									
1F9Fh	—				Unimple									
1FA0h					Unimplemented									

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19195/6/7 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.


© 2017 Microchip Technology Inc.

Preliminary

4.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-3 shows the five situations for the loading of the PC.

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

4.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

4.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

4.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

10.6 Register Definitions: Interrupt Control

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	/0 R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-1/1
GIE	PEIE	—	_	—	—	—	INTEDG
bit 7	·						bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	GIE: Global I	nterrupt Enable	bit				
	1 = Enables a	all active interru	pts				
	0 = Disables	all interrupts					
bit 6		eral Interrupt Ei					
		all active periph		6			
		all peripheral in	•				
bit 5-1	Unimplemen	ted: Read as ')'				
bit 0		errupt Edge Sel					
		on rising edge o					
	0 = Interrupt 6	on falling edge	of INT pin				
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, r	egardless of the	e state of				
	its corresponding						
	Enable bit, GIE, c		•				
	User software						
	appropriate interriprior to enabling a						
	phor to chability a	n interrupt.					

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0			
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	_	_	TMR1GIF			
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	ire set					
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit							
				curred (must l	be cleared in so	ftware)				
		interrupt event								
bit 6		3 Interrupt Flag								
	 1 = A CLC3OUT interrupt condition has occurred (must be cleared in software) 0 = No CLC3 interrupt event has occurred 									
		•								
bit 5		2 Interrupt Flag	•							
				curred (must l	be cleared in so	ftware)				
		interrupt event								
bit 4		1 Interrupt Flag				. .				
		UT interrupt co interrupt event		curred (must b	be cleared in so	tware)				
bit 3-1		ted: Read as '								
bit 0	-									
bit 0	TMR1GIF: Timer1 Gate Interrupt Flag bit 1 = The Timer1 Gate has gone inactive (the acquisition is complete)									
		r1 Gate has go	•	•	s complete)					
				-						
Note: Inte	rrupt flag bits a	re set when an	interrupt							

REGISTER 10-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear prior to enabling an interrupt.

11.4 Register Definitions: Voltage Regulator and DOZE Control

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 U-0 VREGPM ____ ____ — — ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F19195/6/7 only.

bit 1

2: See Section 39.0 "Electrical Specifications".

14.5 Register Definitions: PORTB

REGISTER 14-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7				•			bit 0
Legend:							
R = Readable bi	+	W = Writable	hit	= Inimpler	nented hit read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RB<7:0>**: PORTB I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 14-10: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
bit 7							bit 0
l egend:							

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	RE7	RE6	RE5	RE4	RE3	—	RE1	RE0	229
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	—	TRISE1	TRISE0	229
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	_	LATE1	LATE0	230
ANSELE	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	_	ANSE1	ANSE0	230
WPUE	WPUE7	WPUE6	WPUE5	WPUE4	WPUE3	_	WPUE1	WPUE0	231
ODCONE	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	_	ODCE1	ODCE0	231
SLRCONE	SLRE7	SLRE6	SLRE5	SLRE4	SLRE3	_	SLRE1	SLRE0	232
INLVLE	INLVLE7	INLVLE6	INLVLE5	INLVLE4	INLVLE3	_	INLVLE1	INLVLE0	232

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
SLRG7	SLRG6	—	SLRG4	SLRG3	SLRG2	SLRG1	SLRG0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is uncl	nanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	For RG<7:6> 1 = Port pin s	PORTG Slew F pins, respectiv lew rate is limit lews at maximu	ely ed	vits				

REGISTER 14-55: SLRCONG: PORTG SLEW RATE CONTROL REGISTER

	o i ort pin olowo at maximam rato
bit 5	Unimplemented: Read as '0'
bit 4-0	SLRG<4:0>: PORTG Slew Rate Enable bits
	For PC<1:0> nine_respectively

- For RG<4:0> pins, respectively 1 = Port pin slew rate is limited
- 0 = Port pin slews at maximum rate

REGISTER 14-56: INLVLG: PORTG INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLG7 | INLVLG6 | INLVLG5 | INLVLG4 | INLVLG3 | INLVLG2 | INLVLG1 | INLVLG0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLG<7:0>: PORTG Input Level Select bits For RG<7:0> pins, respectively 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_	—			ACT<4:0>		
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	ented bit, read as	· '0'	
u = Bit is unchanged x		x = Bit is unkn	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets
'1' = Bit is se	t	'0' = Bit is clea	ired				
bit 7-5	Unimplemer	nted: Read as '0'					
bit 4-0	-	uto-Conversion T	rigger Select Bit	s			
		tware write to ADI	00	•			
	11110 = Re s	served, do not use	•				
		tware read of ADF					
	11100 = Sof	tware read of ADE	ERRH				
	11011 = CL	C4_out					
	11010 = CLO	C3_out					
	11001 = CL	C2_out					
	11000 = CLO	C1_out					
		ical OR of all Inte	rrupt-on-change	Interrupt Flags			
	10110 = CM	P2_out					
	10101 = CM	served, do not use					
		served, do not use					
		served, do not use					
		served, do not use					
	10000 = Res	served, do not use	•				
	01111 = PW						
	01110 = PW	—					
		served, do not use					
		served, do not use	;				
	01011 = CC 01010 = CC						
	01000 = CC						
	01000 = RT(
	00111 = Res	served, do not use	•				
	00110 = TM	R4_postscaled					
	00101 = Res	served, do not use	•				
		R2_postscaled					
	00011 = TM						
	00010 = TM						
		selected by ADC					
	00000 = EXC	emai migger Disa	neu				

REGISTER 19-35: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINH<2:0>			MINL	<3:0>	
bit 7	•						bit 0
L							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	= Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknov	vn

REGISTER 24-8: MINUTES⁽¹⁾: MINUTE VALUE REGISTER

bit 7 Unimplemented: Read as '0'

bit 6-4	MINH<2:0>: Binary	Coded Decimal value of minutes '10' digit; valid values from 0 to 5	5
			, ,

bit 3-0 MINL<3:0>: Binary Coded Decimal value of minutes '1' digit; valid values from 0 to 9

Note 1: Writes to the MINUTE registers are only allowed when RTCWREN = 1.

REGISTER 24-9: SECONDS⁽¹⁾: SECOND VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECH<2:0>				SECL	<3:0>	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7 Unimplemented: Read as '0'

bit 6-4 SECH<2:0>: Binary Coded Decimal value of seconds '10' digit; valid values from 0 to 5

bit 3-0 SECL<3:0>: Binary Coded Decimal value of seconds '1' digit; valid values from 0 to 9

Note 1: Writes to the SECOND registers are only allowed when RTCWREN = 1.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
T2CON	ON		CKPS<2:0> OUTPS<3:0>								
T2TMR	Holding Register for the 8-bit TMR2 Register										
T2PR	TMR2 Period Register										
RxyPPS	_	_	—		Rx	xyPPS<4:0>			259		
CWG1ISM		—	—			IS<3	:0>		486		
CLCxSELy		_		LCxDyS<5:0>							
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	205		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	218		

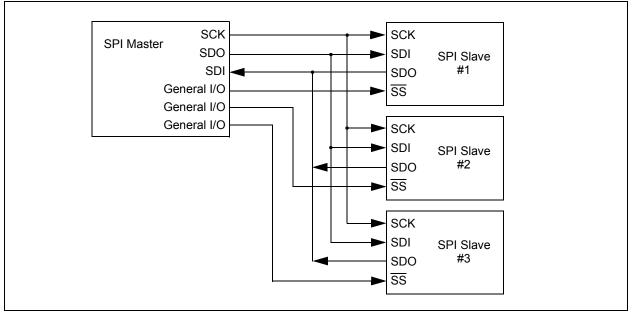
TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

*Page provides register information.

TABLE 31-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CWG1CLKCON	_	_	-	-	—	—	—	CS	486	
CWG1ISM	_	_	_	– <u> </u>					486	
CWG1DBR	_	_	DBR<5:0>						482	
CWG1DBF	_	_		DBF<5:0>						
CWG1CON0	EN	LD	_	_	_		MODE<2:0>	>	480	
CWG1CON1	_	_	IN	_	POLD	POLC	POLB	POLA	481	
CWG1AS0	SHUTDOWN	REN	LSBD	LSBD<1:0> LSAC<1:0>			_	—	483	
CWG1AS1	_	_	_	AS4E	AS3E	AS2E	AS1E	AS0E	484	
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	485	


Legend: – = unimplemented locations read as '0'. Shaded cells are not used by CWG.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	499		
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	500		
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	501		
CLCIN0PPS	-	_	_		CLCIN0PPS<4:0>						
CLCIN1PPS	_	_	_	CLCIN1PPS<4:0>							
CLCIN2PPS	-	_	_		CLCIN2PPS<4:0>						
CLCIN3PPS	-	—	_		CLCIN3PPS<4:0>						

 TABLE 32-4:
 SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)

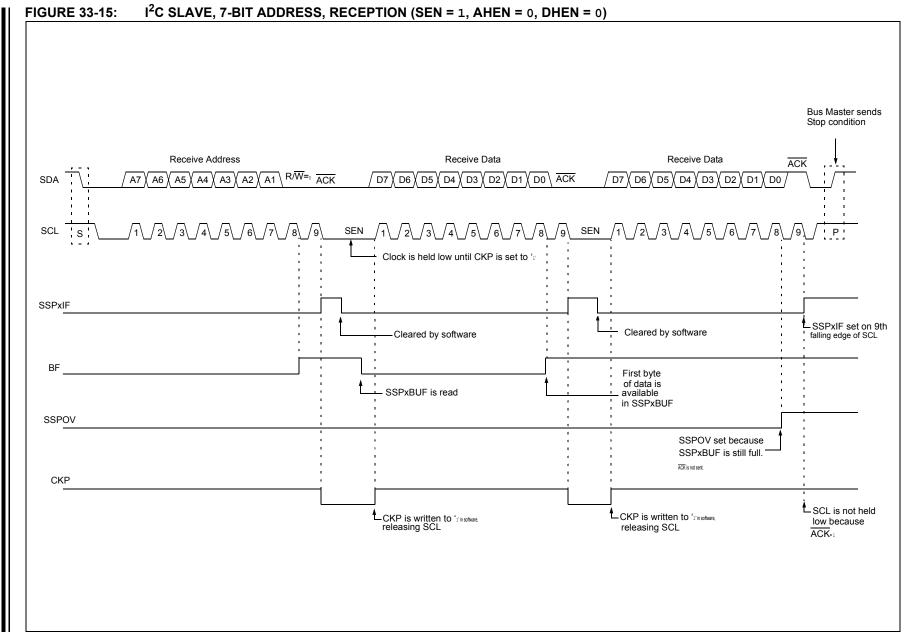
Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

33.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.


In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 33.7 "Baud Rate Generator"**.

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

© 2017 Microchip Technology Inc.

PIC16(L)F19195/6/7

PIC16(L)F19195/6/7

REGISTER 33-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SSPxBUF<7:0>											
bit 7							bit 0				
Legend:											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

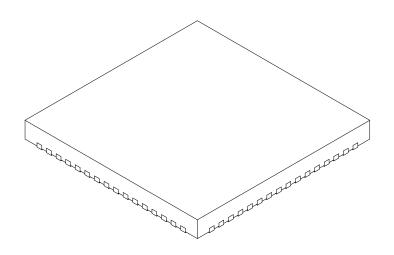
TABLE 33-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE		—		—	_	INTEDG	147	
PIR1	OSFIF	CSWIF	_	—	—	—	ADTIF	ADIF	158	
PIE1	OSFIE	CSWIE	_	—	—	—	ADTIE	ADIE	149	
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	550	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		551	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	552	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	553	
SSP1MSK	SSPMSK<7:0>									
SSP1ADD	SSPADD<7:0>									
SSP1BUF	SSPBUF<7:0>									
SSP2STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	550	
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		551	
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	552	
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	553	
SSP2MSK				SSPMS	K<7:0>				554	
SSP2ADD				SSPAD	D<7:0>				554	
SSP2BUF				SSPBU	F<7:0>				555	
SSP1CLKPPS		_			SSP	1CLKPPS<4	1:0>		258	
SSP1DATPPS	_	—			SSP	1DATPPS<4	l:0>		258	
SSP1SSPPS	—	—	—		258					
SSP2CLKPPS	—	—	_		SSP	2CLKPPS<4	1:0>		258	
SSP2DATPPS	—	—			SSP	2DATPPS<4	1:0>		258	
SSP2SSPPS	—	—				2SSPPS<4			258	
RxyPPS	—	_	_		R	xyPPS<4:0>	>		259	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module.

PIC16(L)F19195/6/7

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
68Dh	—		Unimplemented										
68Eh	—		Unimplemented										
68Fh			Unimplemented										
690h	_				Unimpl	emented							
691h	—				Unimpl	emented							
692h	—					emented							
693h						emented							
694h	_					emented							
695h						emented				-			
696h 697h						emented							
698h						emented emented							
699h	_					emented				<u> </u>			
69Ah	_					emented				1			
69Bh	_					emented							
69Ch	_					emented							
69Dh	_					emented							
69Eh	_		Unimplemented										
69Fh	—				Unimpl	emented							
70Ch	PIR0	—	-	TMR0IF	IOCIF	—	_	—	INTF	157			
70Dh	PIR1	OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF	158			
70Eh	PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	159			
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	160			
710h	PIR4	_	_	_	_	TMR4IF	_	TMR2IF	TMR1IF	161			
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	162			
712h	PIR6	CRIF	_	_	_	_	_	CCP2IF	CCP1IF	163			
713h	PIR7	_	_	NVMIF	_	_	_	_	CWG1IF	164			
714h	PIR8	LCDIF	RTCCIF	_	_	_	SMT1PWAIF	SMT1PRAIF	SMT1IF	165			
715h	_		1		Unimpl	emented							
716h	PIE0	_	_	TMR0IE	IOCIE	_	_	_	INTE	148			
717h	PIE1	OSFIE	CSWIE	_	_	_	_	ADTIE	ADIE	149			
718h	PIE2	—	ZCDIE	_	_	_	_	C2IE	C1IE	150			
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	151			
71Ah	PIE4	—	_	-	_	TMR4IF	_	TMR2IE	TMR1IE	152			
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	-	—	TMR1GIE	153			
71Ch	PIE6	CRIE	_	_	_	_	_	CCP2IE	CCP1IE	154			
71Dh	PIE7	—	_	NVMIE	_	_	_	—	CWG1IE	155			
71Eh	PIE8	LCDIE	RTCCIE	_	_	_	SMT1PWAIE	SMT1PRAIE	SMT1IE	156			
71Fh	_				Unimpl	emented				1			
Legend:			od ~ - doponde	on condition	= unimplemented	t road as '0'	record St	adad logations	unimplemented	read as '0'			


TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19195/6/7 DEVICES (CONTINUED)

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Dimension Limits					
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	5.30	5.40	5.50		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	5.30	5.40	5.50		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2