

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 45x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19196-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/C2IN4-/C1IN4-/ANA0/CLCIN0 ⁽¹⁾ /SEG33	RA0	TTL/ST	CMOS/OD	General purpose I/O.
	C2IN4-	AN		Comparator negative input.
	C1IN4-	AN		Comparator negative input.
	ANA0	AN		ADC Channel input.
	CLCIN0 ⁽¹⁾	—		Configurable Logic Cell source input.
	SEG33	AN		LCD Analog output.
RA1/ANA1/CLCIN1 ⁽¹⁾ /T2IN ⁽¹⁾ /SEG18	RA1	TTL/ST	CMOS/OD	General purpose I/O.
	ANA1	AN		ADC Channel input.
	CLCIN1 ⁽¹⁾	—		Configurable Logic Cell source input.
	T2IN ⁽¹⁾	—		Timer2 external input.
	SEG18	AN		LCD Analog output.
RA2/C2IN1+/C1IN1+/ANA2/SEG34	RA2	TTL/ST	CMOS/OD	General purpose I/O.
	C2IN1+	AN		Comparator positive input.
	C1IN1+	AN		Comparator positive input.
	ANA2	AN		ADC Channel input.
	SEG34	AN		LCD Analog output.
RA3/ANA3/SEG35/VREF+ (ADC)/VREF+ (DAC1)	RA3	TTL/ST	CMOS/OD	General purpose I/O.
	ANA3	AN		ADC Channel input.
	SEG35	AN		LCD Analog output.
	VREF+ (ADC)	AN		ADC positive reference.
	VREF+ (DAC1)	AN		DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /SEG14	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN		ADC Channel input.
	T0CKI ⁽¹⁾	—		Timer0 clock input.
	SEG14	AN		LCD Analog output.
RA5/VBAT	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	VBAT	AN		RTCC Back-up Battery.
RA6/ANA6/SEG36/CLKOUT	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN		ADC Channel input.
	SEG36	AN		LCD Analog output.
	CLKOUT	TTL/ST		FOSC/4 digital output.
RA7/ANA7/SEG37/CLKIN	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN		ADC Channel input.
	SEG37	AN		LCD Analog output.
	CLKIN	ST		External Clock input.
RB0/IOCB0/ANB0/SEG30/ZCD	RB0	TTL/ST	CMOS/OD	General purpose I/O.
	IOCB0	TTL/ST		Interrupt-on-change input.
	ANB0	AN		ADC Channel input.
	SEG30	AN	1	LCD Analog output.
	ZCD	—		Zero-cross detect input pin (with constant current sink/source).

TABLE 1-2: PIC16(L)F19195/6/7 PINOUT DESCRIPTION

Legend: AN = Analog input or output TTL = TTL compatible input HV = High Voltage

CMOS = CMOS compatible input or output OD = Open-Drain ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

XTAL = Crystal levels

Note This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for l^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the l^2C specific or SMBus input buffer thresholds. 4:

TABLE 4-2: MEMORY ACCESS PARTITION

		Partition						
REG	Address	BBEN = 1 SAFEN = 1	BBEN = 1 SAFEN = 0	BBEN = 0 SAFEN = 1	BBEN = 0 SAFEN = 0			
	00 0000h ••• Last Boot Block Memory Address		APPLICATION	BOOT BLOCK (Note 4)	BOOT BLOCK (Note 4)			
PFM	Last Boot Block Memory Address + 1 ⁽¹⁾ •••• Last Program Memory Address - 80h	APPLICATION BLOCK (Note 4)	(Note 4)	APPLICATION	APPLICATION BLOCK (Note 4)			
	Last Program Memory Address - 7Fh ⁽²⁾ Last Program Memory Address		SAF (Note 4)	(Note 4)	SAF (Note 4)			
CONF IG	Config Memory Address ⁽³⁾	CONFIG (Note 4)						

Note 1: Last Boot Block Memory Address is based on BBSIZE[2:0] given in Table 5-1.

2: Last Program Memory Address is the Flash size given in Table 4-1.

3:

Config Memory Address are the address locations of the Configuration Words given in Table 13-2. Each memory block has a corresponding write protection fuse defined by the WRTAPP, WRTB and WRTSAF bits in the Configuration 4: Word (Register 5-4).

4.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-3 shows the five situations for the loading of the PC.

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

4.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

4.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

4.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

REGISTER 5-2:	CONFIGURATION WORD	2: SUPERVISORS

REGISTER	5-2: CON	NFIGURATIO	N WORD 2:	SUPERVISO	RS		
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		DEBUG ⁽²⁾	STVREN	PPS1WAY	ZCD	BORV	—
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	U-1	U-1	R/P-1	R/P-1	R/P-1
BOREN1	BOREN0	LPBOREN	-	_	PWRTS1	PWRTS0	MCLRE
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programma	able bit	x = Bit is unkno	wn U = Un	implemented bit,	read as '1'
'0' = Bit is clea	ared	'1' = Bit is set		W = Writable bi	t n = Valı	ue when blank or	after Bulk Erase
bit 13	DEBUG : Debu 1 = Backgrour 0 = Backgrour	gger Enable bit ⁽² nd debugger disa nd debugger ena	²⁾ bled bled				
bit 12	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	k Overflow/Unde rflow or Underflo rflow or Underflo	erflow Reset Ena w will cause a F w will not cause	able bit Reset e a Reset			
bit 11	PPS1WAY : PP 1 = The PPSL 0 = The PPSL	SLOCK One-Wa OCK bit can be o OCK bit can be s	ly Set Enable bi cleared and set set and cleared	t only once; PPS r repeatedly (subje	egisters remain le	ocked after one c sequence)	lear/set cycle
bit 10	ZCD: Zero-Cro 1 = ZCD disab 0 = ZCD alway	oss Detect Disab led. ZCD can be vs enabled (ZCD	le bit enabled by sett SEN bit is ignore	ting the ZCDSEN	bit of the ZCDC	ON register	
bit 9	BORV : Brown- 1 = Brown-out 0 = Brown-out	out Reset Voltag Reset voltage (\ Reset voltage (\	e Selection bit ⁽¹ /BOR) set to low /BOR) set to higl	I) er trip point level her trip point leve	91		
bit 8	Unimplement	ed: Read as '1'					
bit 7-6	BOREN<1:0>: When enabled 11 = Brown-c 10 = Brown-c 01 = Brown-c 00 = Brown-c	Brown-out Rese , Brown-out Rese out Reset is enab out Reset is enab out Reset is enab out Reset is disab	et Enable bits et Voltage (VBOF iled; SBOREN b iled while runnin iled according to bled	R) is set by the B bit is ignored ng, disabled in Slo SBOREN	ORV bit eep; SBOREN bit	t is ignored	
bit 5	LPBOREN : Lo 1 = ULPBOR 0 = ULPBOR	w-Power BOR E is disabled is enabled	nable bit				
bit 4-3	Unimplement	ed: Read as '1'					
bit 2-1	bit 2-1 PWRTS<1:0>: Power-up Timer selection bits 11 = PWRT disabled 10 = PWRT set at 64 ms 01 = PWRT set at 16 ms 00 = PWRT set at 1 ms						
bit 0	MCLRE: Maste If LVP = 1: RG5 pin function	er Clear (MCLR) on is MCLR (it w	Enable bit ill reset the devi	ce when driven le	ow)		
	$\frac{\text{If LVP = 0:}}{1 = \text{MCLR pin}}$ $0 = \text{MCLR pin}$	is MCLR (it will r may be used as	eset the device general purpose	when driven low e RG5 input)		
Note 1: S	ee <u>VBOR parame</u>	eter for specific t	rip point voltage	s.			

The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers 2: and programmers. For normal device operation, this bit should be maintained as a '1'.

REGISTER	5-4: CONF	IGURATION	WORD 4: M	EMORY						
		R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1			
		LVP	—	WRTSAF ⁽¹⁾	WRTD ⁽¹⁾	WRTC ⁽¹⁾	WRTB ⁽¹⁾			
		bit 13	12	11	10	9	bit 8			
R/W-1	U-1	U-1		R/W-1	R/W-1	R/W-1	R/W-1			
WRIAPP			SAFEN	BBEN	BBSIZE2	BBSIZE1	BBSIZEU			
bit 7	6	5	4	3	2	1	bit 0			
Lagandi										
Legena.		a ana mana a b la b it				enated bit read				
R = Readable		ogrammable bil	X = BIUS	unknown		nented bit, read				
$0^{\circ} = Bit is cle$	ared 1 = B	it is set	vv = vvrit	able bit	n = value wh	en blank or aπe	er Bulk Erase			
bit 13	LVP: Low Volt 1 = Low volt ignored. 0 = HV on M The LVP bit ca purpose of this mode, or acci The precondit	tage Programm age programmin ICLR/VPP must annot be writter s rule is to preve dentally elimina tioned (erased)	ing Enable bit ng enabled. M be used for pr (to zero) whil ent the user fro ting LVP mode state for this b	CLR/VPP pin fu rogramming. e operating fro om dropping ou e from the conf it is critical.	inction is MCLF m the LVP prog t of LVP mode iguration state.	R. MCLRE Cont gramming interf while programm	figuration bit is face. The ning from LVP			
bit 12	Unimplemen	ted: Read as '1	,							
bit 11	WRTSAF: Sto	orage Area Flas	h Write Protec	tion bit						
bit 10	1 = SAF NO 0 = SAF write Unimplemente WRTD: Data 1 = Data EEP 0 = Data EEP Unimplemente	 1 = SAF NOT write-protected 0 = SAF write-protected Unimplemented, if SAF is not supported in the device family and only applicable if SAFEN = 0. WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM NOT write-protected 0 = Data EEPROM write-protected 								
bit 9	WRTC: Config 1 = Configur 0 = Configur	guration Register I ration Register I ration Register V	er Write Protect NOT write-protected	ction bit tected						
bit 8	WRTB: Boot 1 = Boot Blo 0 = Boot Blo Only applicab	Block Write Pro ock NOT write-p ock write-protect le if BBEN = 0.	tection bit rotected red							
bit 7	WRTAPP: Ap 1 = Applicati 0 = Applicati	plication Block ion Block NOT ion Block write-	Write Protectic write-protectec protected	on bit J						
bit 6-5	Unimplemen	ted: Read as '1								
bit 4	SAFEN: SAF I 1 = SAF disa 0 = SAF ena	Enable bit abled bled								
bit 3	BBEN: Boot Blog 1 = Boot Blog 0 = Boot Blog	Block Enable bit ck disabled ck enabled								
bit 2-0	BBSIZE<2:0> BBSIZE is use BBSIZ bits ca	: Boot Block Size ed only when Bl n only be writte	e Selection bits BEN = 0 n while BBEN	= 1; after BBE	N = 0, BBSIZ is	s write-protecte	d.			
Note 1: Bit	s are implemente	d as sticky bits.	Once protection	is enabled it can	only be reset the	ough a Bulk Fra	se			

8.4 Register Definitions: Brown-out Reset Control

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	—	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active

0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the Idle mode (Section 11.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WWDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The \overline{PD} bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. CPU Clock and System Clock
- 5. 31 kHz LFINTOSC, HFINTOSC and SOSC are unaffected and peripherals using them may continue operation in Sleep.
- ADC is unaffected if the dedicated FRC oscillator is selected the conversion will be left abandoned if Fosc is selected and ADRES will have an incorrect value
- I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance). This does not apply in the case of any asynchronous peripheral which is active and may affect the I/O port value
- 8. Resets other than WWDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

11.4 Register Definitions: Voltage Regulator and DOZE Control

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 U-0 VREGPM ____ ____ — — ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F19195/6/7 only.

bit 1

2: See Section 39.0 "Electrical Specifications".

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (PFM)

; This write routine assumes the following:									
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR									
; 2. Each word of d	2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,								
; stored in litt	le endian format								
; 3. A valid starti	ng address (the least s	significant bits = 00000) is loaded in ADDRH:ADDRL							
; 4. ADDRH and ADDR	L are located in common	n RAM (locations 0x70 - 0x7F)							
; 5. NVM interrupts	are not taken into acc	count							
BANKSEL	NVMADRH								
MOVF	ADDRH, W								
MOVWF	NVMADRH	; Load initial address							
MOVF	ADDRL,W								
MOVWF	NVMADRL								
MOVLW	LOW DATA_ADDR	; Load initial data address							
MOVWF	FSR0L								
MOVLW	HIGH DATA ADDR								
MOVWF	FSR0H								
BCF	NVMCON1, NVMREGS	; Set Program Flash Memory as write location							
BSF	NVMCON1,WREN	; Enable writes							
BSF	NVMCON1, LWLO	; Load only write latches							
1000									
LOOP	ECD()++								
MOVIW		. Lood first data buta							
MOVWE		, LUAU IIIST UATA DYLE							
MOVIW	r Sru++ NVMDATH	: Load second data byte							
NOUT									
MOVF	NVMADRL,W								
XORLW	UXIF	; CHECK II lower bits of address are 00000							
ANDLW	UX3F	; and if on last of 64 addresses							
BTFSC	STATUS,Z	; Last of 64 words?							
GOIO	DIAKI_WKIIE	, IL SO, GO WIILE IACCHES INCO MEMOLY							
CALL	UNLOCK_SEQ	; If not, go load latch							
INCF	NVMADRL, F	; Increment address							
GOLO	TOOL								
START_WRITE									
BCF	NVMCON1,LWLO	; Latch writes complete, now write memory							
CALL	UNLOCK_SEQ	; Perform required unlock sequence							
BCF	NVMCON1,WREN	; Disable writes							
UNLOCK_SEQ									
MOVLW	55h								
BCF	INTCON, GIE	; Disable interrupts							
MOVWF	NVMCON2	; Begin unlock sequence							
MOVLW	AAh								
MOVWF	NVMCON2								
BSF	NVMCON1,WR								
BSF	INTCON, GIE	; Unlock sequence complete, re-enable interrupts							
return									

Register Definitions: ADC Control 19.6

REGISTE	R 19-1: ADCC	DNU: ADC CO	JNIROL REG	JISTER 0			
R/W-0/	0 R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0
ON	CONT	-	CS	-	FM	-	GO
bit 7	·						bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is	set	'0' = Bit is cle	eared	HC = Bit is cl	eared by hardw	are	
bit 7	ON: ADC En	able bit					
	1 = ADC is e	nabled					
	0 = ADC is d	isabled		(2)			
bit 6	CONT: ADC	Continuous O	peration Enable	e bit ⁽²⁾			
	1 = GO is re	triggered upor	completion of	each conversio	on trigger until A	DTIF is set (i	f ADSOI is set)
	0 = ADC is 0	cleared upon c	ompletion of e	s of the value of ach conversion	trigger		
bit 5	Unimplemer	nted: Read as	'0'				
bit 4	CS: ADC Clo	ock Selection b	it				
	1 = Clock su	upplied from FI	RC dedicated c	scillator			
	0 = Clock su	pplied by Fos	c, divided acco	ording to ADCL	K register		
bit 3	Unimplemer	nted: Read as	'0'				
bit 2	FM: ADC res	sults Format/al	gnment Select	ion			
	1 = ADRES	and PREV dat	a are right-just	ified			
	0 = ADRES	and PREV dat	a are left-justif	ied, zero-filled			
bit 1	Unimplemer	nted: Read as	'0'				
bit 0	GO: ADC Co	onversion Statu	ıs bit ⁽¹⁾				
	1 = ADC collected	nversion cycle	in progress. S	Setting this bit	starts an ADC	conversion c	ycle. The bit is
	0 = ADC con	version compl	eted/not in pro	y the CONT bit press			
Note 1:	This bit requires (ON bit to be se	t.				
2:	If cleared by softw	vare while a co	nversion is in p	progress, the re	sults of the con	version up to	this point will

be transfered to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set;

. .

filter and threshold operations will not be performed.

REGISTER 19-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
PPOL	IPEN	GPOL	-	-	-	-	DSEN
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 **PPOL:** Precharge Polarity bit If PRE>0x00:

	Action During 1st Precharge Stage					
FFUL	External (selected analog I/O pin)	Internal (AD sampling capacitor)				
1	Connected to VDD	C _{HOLD} connected to Vss				
0	Connected to Vss	C _{HOLD} connected to VDD				

- Otherwise:
- The bit is ignored

bit 6 IPEN: A/D Inverted Precharge Enable bit

If DSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 **GPOL:** Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 DSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in PREV
- 0 = One conversion is performed for each trigger

REGISTER 19-15: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			CNT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ired				

bit 7-0 **CNT<7:0>**: ADC Repeat Count bits Determines the number of times that the ADC is triggered before the threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table 19-2 for more details.

REGISTER 19-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FLTR<	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<15:8>**: ADC Filter Output Most Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS

bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 19-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
	FLTR<7:0>							
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

© 2017 Microchip Technology Inc.

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

28.0 SIGNAL MEASUREMENT TIMER (SMT)

The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals.

Features of the SMT include:

- 24-bit timer/counter
 - Three 8-bit registers (SMTxTMRL/H/U)
 - Readable and writable
 - Optional 16-bit operating mode
- Two 24-bit measurement capture registers
- One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- · Interrupt on period match
- Multiple clock, gate and signal sources
- Interrupt on acquisition complete
- · Ability to read current input values

28.7.4 HIGH AND LOW-MEASURE MODE

This mode measures the high and low-pulse time of the SMTSIGx relative to the SMT clock. It begins incrementing the SMTxTMR on a rising edge on the SMTSIGx input, then updates the SMTxCPW register with the value and resets the SMTxTMR on a falling edge, starting to increment again. Upon observing another rising edge, it updates the SMTxCPR register with its current value and once again resets the SMTxTMR value and begins incrementing again. See Figure 28-8 and Figure 28-9.

29.2.1 CCPX PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See Section 15.0 "Peripheral Pin Select (PPS) Module" for more details.

The CCP output can also be used as an input for other peripherals.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

29.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See **Section 26.0 "Timer1 Module with Gate Control"** for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

29.2.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an Auto-conversion Trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to **Section 19.2.5 "Auto-Conversion Trigger"** for more information.

Note:	Removing the match condition by
	changing the contents of the CCPRxH
	and CCPRxL register pair, between the
	clock edge that generates the
	Auto-conversion Trigger and the clock
	edge that generates the Timer1 Reset, will
	preclude the Reset from occurring

29.2.4 COMPARE DURING SLEEP

Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

29.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 29-3 shows a typical waveform of the PWM signal.

29.3.1 STANDARD PWM OPERATION

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers

Figure 29-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 29-3: CCP F

CCP PWM OUTPUT SIGNAL

REGISTER 29-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	—		CTS<2:0>	
bit 7							bit 0

Legend:

- J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture				
1000	RTCC_s	econds				
0111	LC4_	LC4_out				
0110	LC3_	LC3_out				
0101	LC2_	LC2_out				
0100	LC1_	LC1_out				
0011	IOC_int	IOC_interrupt				
0010	C20	C2OUT				
0001	C10	C1OUT				
0000	CCP1PPS	CCP2PPS				

REGISTER 29-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
CCPRx<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

 CCPxMODE = Capture mode

 CCPRxL<7:0>: Capture value of TMR1L

 CCPxMODE = Compare mode

 CCPRxL<7:0>: LS Byte compared to TMR1L

 CCPxMODE = PWM modes when CCPxFMT = 0:

 CCPRxL<7:0>: Pulse-width Least Significant eight bits

 CCPxMODE = PWM modes when CCPxFMT = 1:

 CCPRxL<7:6>: Pulse-width Least Significant two bits

 CCPRxL<5:0>: Not used.

© 2017 Microchip Technology Inc.

bit 7-0

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
SSPxMSK<7:0>									
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	l as '0'			
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-1	SSPxMSK<	7:1>: Mask bits							
	1 = The received address bit n is compared to SSPxADD <n> to detect I²C address match</n>						atch		
0 = The received address bit n is not used to detect I ² C address match									
bit 0	bit 0 SSPxMSK<0>: Mask bit for I ² C Slave mode, 10-bit Address								
I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):									
	1 = The received address bit 0 is compared to SSPxADD<0> to detect I ² C address match								
	0 = The received address bit 0 is not used to detect I ² C address match								
	I ² C Slave mode, 7-bit address:								

REGISTER 33-5: SSPxMSK: SSPx MASK REGISTER

MSK0 bit is ignored.

REGISTER 33-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SSPxAD | D<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPxADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

- bit 7-1 SSPxADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

TABLE 39-9:	PLL	SPECIFICATIONS
IADLE 33-3.	FLL	SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz	
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1
PLL03	TPLLST	PLL Lock Time from Start-up	_	200 /	$\overline{\langle - \rangle}$	_µ\$	7
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	_ \	0.25	~%/	
* These parameters are characterized but not tested							

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.