

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	44
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70j21a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bus Matrix (MATRIX)

Offset	Name	Bit Pos.					
		31:24					
		7:0				ULBT[2:0]	
0x2C	MATRIX_MCFG11	15:8					
0/120		23:16					
		31:24					
		7:0				ULBT[2:0]	
0x30	MATRIX_MCFG12	15:8					
		23:16					
		31:24					
0x34							
	Reserved						
0x3F							
		7:0		SLOT_CYCLE[6:0]			
0x40	MATRIX_SCFG0	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x44	MATRIX_SCFG1	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x48	MATRIX_SCFG2	15:8					YCLE[8:7]
	_	23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]		0.07.0	
0x4C	MATRIX_SCFG3	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x50	MATRIX_SCFG4	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x54	MATRIX_SCFG5	15:8			D[2,0]		YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFINISTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]		SLOT C	
0x58	MATRIX_SCFG6	15:8		FIXED_DEFMST	D[3:0]		YCLE[8:7]
		23:16 31:24		FIXED_DEFINST	N[0.0]	DEFINISTR	_TYPE[1:0]
		7:0		SLOT_CYCLE[6:0]			
		15:8				SLOT O	
0x5C	MATRIX_SCFG7				P[3:0]		YCLE[8:7]
		23:16		FIXED_DEFMST	N[J.U]	DELINGIK	_TYPE[1:0]
		31:24					
0x60	MATRIX_SCFG8	7:0		SLOT_CYCLE[6:0]		SLOT O	
		15:8				SLUI_C	YCLE[8:7]

Enhanced Embedded Flash Controller (EEFC)

Bit 16 - UECCELSB Unique ECC Error on LSB Part of the Memory Flash Data Bus (cleared on read)

Value	Description
0	No unique error detected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.
1	One unique error detected but corrected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.

Bit 3 – FLERR Flash Error Status (cleared when a programming operation starts)

Value	Description
0	No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).
1	A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

Bit 2 – FLOCKE Flash Lock Error Status (cleared on read)

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

Value	Description
0	No programming/erase of at least one locked region has happened since the last read of
	EEFC_FSR.
1	Programming/erase of at least one locked region has happened since the last read of
	EEFC_FSR.

Bit 1 – FCMDE Flash Command Error Status (cleared on read or by writing EEFC_FCR)

Value	Description
0	No invalid commands and no bad keywords were written in EEFC_FMR.
1	An invalid command and/or a bad keyword was/were written in EEFC_FMR.

Bit 0 – FRDY Flash Ready Status (cleared when Flash is busy)

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.

This flag is automatically cleared when the EEFC is busy.

Value	Description
0	The EEFC is busy.
1	The EEFC is ready to start a new command.

23.5.5 Supply Controller Wakeup Inputs Register

Name:	SUPC_WUIR				
Offset:	0x10				
Reset:	0x00000000				
Property:	Read/Write				

This register is located in the VDDIO domain. This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

Bit	31	30	29	28	27	26	25	24			
				WKUPT[13:8]							
Access	L	•	R/W	R/W	R/W	R/W	R/W	R/W			
Reset			0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				WKUF	PT[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	_			
Bit	15	14	13	12	11	10	9	8			
					WKUPE	EN[13:8]					
Access			R/W	R/W	R/W	R/W	R/W	R/W			
Reset			0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WKUP	EN[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	_			

Bits 29:16 – WKUPT[13:0] Wakeup Input Type ('x' = 0-13)

Value	Description
0	(LOW): A falling edge followed by a low level for a period defined by WKUPDBC on the
	corresponding wakeup input forces the wakeup of the core power supply.
1	(HIGH): A rising edge followed by a high level for a period defined by WKUPDBC on the
	corresponding wakeup input forces the wakeup of the core power supply.

Bits 13:0 – WKUPEN[13:0] Wakeup Input Enablex ('x' = 0-13)

Value	Description
0	(DISABLE): The corresponding wakeup input has no wakeup effect.
1	(ENABLE): The corresponding wakeup input is enabled for a wakeup of the core power
	supply.

Parallel Input/Output Controller (PIO)

32.6 Register Summary

Offset	Name	Bit Pos.								
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0x00		15:8	P15	P14	P13	P12	P11	P10	P9	P8
	PIO_PER	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
004		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x04	PIO_PDR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x08	PIO_PSR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0x0C										
	Reserved									
0x0F										
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x10	PIO_OER	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
	PIO_ODR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x14		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x18	PIO_OSR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0x1C			-					-		
	Reserved									
0x1F										
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x20	PIO_IFER	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x24	PIO_IFDR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0x28	PIO_IFSR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P19	P16	P25	P10
		01.24	101	1.50	1 23	1 20	1 21	120	120	1.774

DMA Controller (XDMAC)

Value	Name	Description
0	FIXED_AM	The address remains unchanged.
1	INCREMENTED_AM	The addressing mode is incremented (the increment size is set to the
		data size).
2	UBS_AM	The microblock stride is added at the microblock boundary.
3	UBS_DS_AM	The microblock stride is added at the microblock boundary; the data
		stride is added at the data boundary.

Bits 17:16 - SAM[1:0] Channel x Source Addressing Mode

Value	Name	Description
0	FIXED_AM	The address remains unchanged.
1	INCREMENTED_AM	The addressing mode is incremented (the increment size is set to the data size).
2	UBS_AM	The microblock stride is added at the microblock boundary.
3	UBS_DS_AM	The microblock stride is added at the microblock boundary, the data stride is added at the data boundary.

Bit 14 – DIF Channel x Destination Interface Identifier

0 (AHB_IF0): The data is written through system bus interface 0.

1 (AHB_IF1): The data is written though system bus interface 1.

Bit 13 – SIF Channel x Source Interface Identifier

0 (AHB_IF0): The data is read through system bus interface 0.

1 (AHB_IF1): The data is read through system bus interface 1.

Bits 12:11 – DWIDTH[1:0] Channel x Data Width

Value	Name	Description
0	BYTE	The data size is set to 8 bits
1	HALFWORD	The data size is set to 16 bits
2	WORD	The data size is set to 32 bits

Bits 10:8 – CSIZE[2:0] Channel x Chunk Size

Value	Name	Description
0	CHK_1	1 data transferred
1	CHK_2	2 data transferred
2	CHK_4	4 data transferred
3	CHK_8	8 data transferred
4	CHK_16	16 data transferred

Bit 7 - MEMSET Channel x Fill Block of Memory

0 (NORMAL_MODE): Memset is not activated.

1 (HW_MODE): Sets the block of memory pointed by DA field to the specified value. This operation is performed on 8-, 16- or 32-bit basis.

Bit 6 – SWREQ Channel x Software Request Trigger

0 (HWR_CONNECTED): Hardware request line is connected to the peripheral request line.

© 2018 Microchip Technology Inc.

	Name: Offset: Reset: Property:	GMAC_TPFC 0x0C4 0x00000000 -	P					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access					1			
Reset								
Bit	15	14	13	12	11	10	9	8
		PQ[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					([7:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

38.8.28 GMAC Transmit PFC Pause Register

Bits 15:8 – PQ[7:0] Pause Quantum

When the Remove FCS bit in the GMAC Network Configuration register (GMAC_NCFGR.RFCS) is written to '1', and one or more bits in this bit field are written to '0', the associated PFC pause frame's pause quantum field value is taken from the Transmit Pause Quantum register (GMAC_TPQ).

For each entry equal to '1' in this bit field, the pause quantum associated with that entry will be zero.

Bits 7:0 – PEV[7:0] Priority Enable Vector

When the Remove FCS bit in the GMAC Network Configuration register (GMAC_NCFGR.RFCS) is written to '1', the priority enable vector of the PFC priority-based pause frame is set to the value stored in this bit field.

USB High-Speed Interface (USBHS)

- The host starts a SETUP transaction with a SET_ADDRESS (addr) request.
- The user writes this address to the USB Address (USBHS_DEVCTRL.UADD) field, and writes a zero to the Address Enable (USBHS_DEVCTRL.ADDEN) bit, so the actual address is still 0.
- The user sends a zero-length IN packet from the control endpoint.
- The user enables the recorded USB device address by writing a one to USBHS_DEVCTRL.ADDEN.

Once the USB device address is configured, the controller filters the packets to accept only those targeting the address stored in USBHS_DEVCTRL.UADD.

USBHS_DEVCTRL.UADD and USBHS_DEVCTRL.ADDEN must not be written all at once.

USBHS_DEVCTRL.UADD and USBHS_DEVCTRL.ADDEN are cleared:

- on a hardware reset,
- when the USBHS is disabled (USBHS_CTRL.USBE = 0),
- when a USB reset is detected.

When USBHS_DEVCTRL.UADD or USBHS_DEVCTRL.ADDEN is cleared, the default device address 0 is used.

39.5.2.7 Suspend and Wakeup

When an idle USB bus state has been detected for 3 ms, the controller sets the Suspend (USBHS_DEVISR.SUSP) interrupt bit. The user may then write a one to the USBHS_CTRL.FRZCLK bit to reduce power consumption.

To recover from the Suspend mode, the user should wait for the Wakeup (USBHS_DEVISR.WAKEUP) interrupt bit, which is set when a non-idle event is detected, then write a zero to USBHS_CTRL.FRZCLK.

As the USBHS_DEVISR.WAKEUP interrupt bit is set when a non-idle event is detected, it can occur whether the controller is in the Suspend mode or not. The USBHS_DEVISR.SUSP and USBHS_DEVISR.WAKEUP interrupts are thus independent, except that one bit is cleared when the other is set.

39.5.2.8 Detach

The reset value of the USBHS_DEVCTRL.DETACH bit is one.

It is possible to initiate a device re-enumeration by simply writing a one, and then a zero, to USBHS_DEVCTRL.DETACH.

USBHS_DEVCTRL.DETACH acts on the pull-up connections of the D+ and D- pads. See "Device Mode" for further details.

39.5.2.9 Remote Wakeup

The Remote Wakeup request (also known as Upstream Resume) is the only one the device may send without a host invitation, assuming a host command allowing the device to send such a request was previously issued. The sequence is the following:

- 1. The USBHS must have detected a "Suspend" state on the bus, i.e., the Remote Wakeup request can only be sent after a USBHS_DEVISR.SUSP interrupt has been set.
- 2. The user writes a one to the Remote Wakeup (USBHS_DEVCTRL.RMWKUP) bit to send an upstream resume to the host for a remote wakeup. This will automatically be done by the controller after 5 ms of inactivity on the USB bus.
- 3. When the controller sends the upstream resume, the Upstream Resume (USBHS_DEVISR.UPRSM) interrupt is set and USBHS_DEVISR.SUSP is cleared.

USB High-Speed Interface (USBHS)

39.6.26 Device Endpoint Interrupt Enable Register (Isochronous Endpoints)

 Name:
 USBHS_DEVEPTIERx (ISOENPT)

 Offset:
 0x01F0 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if EPTYPE = 0x1 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Mask Register (Isochronous Endpoints)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Clears the corresponding bit in USBHS_DEVEPTIMRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						RSTDTS		EPDISHDMAS
Access								
Reset						0		0
Bit	15	14	13	12	11	10	9	8
		FIFOCONS	KILLBKS	NBUSYBKES		ERRORTRANS	DATAXES	MDATAES
						ES		
Access								
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERRES	OVERFES	HBISOFLUSHE	HBISOINERRE	UNDERFES	RXOUTES	TXINES
	TES			S	S			
Access								
Reset	0	0	0	0	0	0	0	0

Bit 18 – RSTDTS Reset Data Toggle Enable

Bit 16 - EPDISHDMAS Endpoint Interrupts Disable HDMA Request Enable

Bit 14 – FIFOCONS FIFO Control

Bit 13 - KILLBKS Kill IN Bank

Bit 12 – NBUSYBKES Number of Busy Banks Interrupt Enable

Bit 10 – ERRORTRANSES Transaction Error Interrupt Enable

USB High-Speed Interface (USBHS)

39.6.32 Host Global Interrupt Status Register

Name: Offset: Reset: Property:		USBHS_HST 0x0404 0x00000000 Read-only	ISR					
Bit	31	30	29	28	27	26	25	24
	DMA_6	DMA_5	DMA_4	DMA_3	DMA_2	DMA_1	DMA_0	
Access		-						
Reset	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16
							PEP_9	PEP_8
Access								
Reset							0	0
Bit	[14	13	12	11	10	9	8
	PEP_7	PEP_6	PEP_5	PEP_4	PEP_3	PEP_2	PEP_1	PEP_0
Access								
Reset	0	0	0	0	0	0	0	0
D:4	7	6	-	4	2	2	4	0
Bit	7	6	5	4	3	2	1	0
		HWUPI	HSOFI	RXRSMI	RSMEDI	RSTI	DDISCI	DCONNI
Access								
Reset		0	0	0	0	0	0	0

Bits 25, 26, 27, 28, 29, 30, 31 - DMA_ DMA Channel x Interrupt

Value	Description
0	Cleared when the USBHS_HSTDMASTATUSx interrupt source is cleared.
1	Set when an interrupt is triggered by the DMA channel x. This triggers a USB interrupt if the corresponding bit in USBHS_HSTIMR = 1.

Bits 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 – PEP_ Pipe x Interrupt

Value	Description
0	Cleared when the interrupt source is served.
1	Set when an interrupt is triggered by pipe x (USBHS_HSTPIPISRx). This triggers a USB interrupt if the corresponding bit in USBHS_HSTIMR = 1.

Bit 6 – HWUPI Host Wakeup Interrupt

This bit is set when the host controller is in Suspend mode (SOFE = 0) and an upstream resume from the peripheral is detected.

This bit is set when the host controller is in Suspend mode (SOFE = 0) and a peripheral disconnection is detected.

This interrupt is generated even if the clock is frozen by the USBHS_CTRL.FRZCLK bit.

© 2018 Microchip Technology Inc.

USB High-Speed Interface (USBHS)

Value Description

• (INRQ+1) in requests have been processed.

• A Pipe Reset (USBHS_HSTPIP.PRSTx rising) has occurred.

• A Pipe Enable (USBHS_HSTPIP.PEN rising) has occurred.

Bit 16 – PDISHDMA Pipe Interrupts Disable HDMA Request Enable See the USBHS_DEVEPTIMR.EPDISHDMA bit description.

Bit 14 – FIFOCON FIFO Control

For OUT and SETUP pipes:

0: Cleared when USBHS_HSTPIPIDR.FIFOCONC = 1. This sends the FIFO data and switches the bank.

1: Set when the current bank is free, at the same time as USBHS_HSTPIPISR.TXOUTI or TXSTPI.

For IN pipes:

0: Cleared when USBHS_HSTPIPIDR.FIFOCONC = 1. This frees the current bank and switches to the next bank.

1: Set when a new IN message is stored in the current bank, at the same time as USBHS_HSTPIPISR.RXINI.

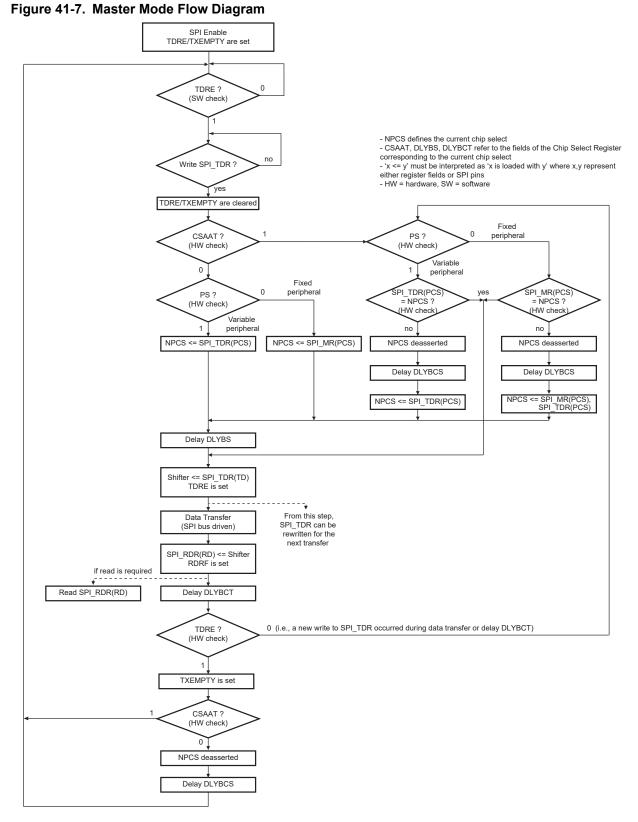
Bit 12 – NBUSYBKE Number of Busy Banks Interrupt Enable

Value	Description
0	Cleared when USBHS_HSTPIPIDR.NBUSYBKEC = 1. This disables the Transmitted IN
	Data interrupt (USBHS_HSTPIPIMR.NBUSYBKE).
1	Set when USBHS_HSTPIPIER.NBUSYBKES = 1. This enables the Transmitted IN Data
	interrupt (USBHS_HSTPIPIMR.NBUSYBKE).

Bit 7 – SHORTPACKETIE Short Packet Interrupt Enable

If this bit is set for non-control OUT pipes, a short packet transmission is guaranteed upon ending a DMA transfer, thus signaling an end of transfer, provided that the End of DMA Buffer Output Enable (USBHS_HSTDMACONTROL.END_B_EN) bit and the Automatic Switch (USBHS_HSTPIPCFG.AUTOSW) bit = 1.

Value	Description
0	Cleared when USBHS_HSTPIPIDR.SHORTPACKETEC = 1. This disables the Transmitted
	IN Data interrupt (USBHS_HSTPIPIMR.SHORTPACKETE).
1	Set when USBHS_HSTPIPIER.SHORTPACKETIES = 1. This enables the Transmitted IN
	Data interrupt (USBHS_HSTPIPIMR.SHORTPACKETIE).


Bit 6 – RXSTALLDE Received STALLed Interrupt Enable

Value	Description
0	Cleared when USBHS_HSTPIPIDR.RXSTALLDEC = 1. This disables the Transmitted IN
	Data interrupt (USBHS_HSTPIPIMR.RXSTALLDE).
1	Set when USBHS_HSTPIPIER.RXSTALLDES= 1. This enables the Transmitted IN Data
	interrupt (USBHS_HSTPIPIMR.RXSTALLDE).

Bit 5 – OVERFIE Overflow Interrupt Enable

Serial Peripheral Interface (SPI)

41.7.3.2 Master Mode Flow Diagram

Serial Peripheral Interface (SPI)

41.8.3 SPI Receive Data Register

Name:	SPI_RDR
Offset:	0x08
Reset:	0x0
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						PCS	[3:0]	
Access					R	R	R	R
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
				RD[²	15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RD[[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0

Bits 19:16 – PCS[3:0] Peripheral Chip Select

In Master mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits are read as zero.

When using Variable Peripheral Select mode (PS = 1 in SPI_MR), it is mandatory to set SPI_MR.WDRBT bit if the PCS field must be processed in SPI_RDR.

Bits 15:0 - RD[15:0] Receive Data

Data received by the SPI Interface is stored in this register in a right-justified format. Unused bits are read as zero.

Media Local Bus (MLB)

Value	e Description
0	Hardware clears interrupt after a MLB_ACSRn register read
1	Software writes a '1' to clear

Controller Area Network (MCAN)

49.6.9 MCAN Timestamp Counter Configuration Register

Name:	MCAN_TSCC		
Offset:	0x20		
Reset:	0x00000000		
Property:	Read/Write		

For a description of the Timestamp Counter see Timestamp Generation.

With CAN FD, an external counter is required for timestamp generation (TSS = 2).

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						TCP	[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								[1:0]
Access							R/W	R/W
Reset							0	0

Bits 19:16 – TCP[3:0] Timestamp Counter Prescaler

Configures the timestamp and timeout counters time unit in multiples of CAN bit times [1...16]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.

Bits 1:0 - TSS[1:0] Timest	amp Select
-----------------	-------------	------------

Value	Name	Description
0	ALWAYS_0	Timestamp counter value always 0x0000
1	TCP_INC	Timestamp counter value incremented according to TCP
2	EXT_TIMESTAMP	External timestamp counter value used
3	ALWAYS_0	Timestamp counter value always 0x0000

50.6 Functional Description

50.6.1 Description

All channels of the Timer Counter are independent and identical in operation except when the QDEC is enabled. The registers for channel programming are listed in 50.7 Register Summary.

50.6.2 16-bit Counter

Each 16-bit channel is organized around a 16-bit counter. The value of the counter is incremented at each positive edge of the selected clock. When the counter has reached the value 2¹⁶-1 and passes to zero, an overflow occurs and the COVFS bit in the Interrupt Status register (TC_SR) is set.

The current value of the counter is accessible in real time by reading the Counter Value register (TC_CV). The counter can be reset by a trigger. In this case, the counter value passes to zero on the next valid edge of the selected clock.

50.6.3 Clock Selection

At block level, input clock signals of each channel can be connected either to the external inputs TCLKx, or to the internal I/O signals TIOAx for chaining⁽¹⁾ by programming the Block Mode register (TC_BMR). See Clock Chaining Selection.

Each channel can independently select an internal or external clock source for its counter⁽²⁾:

- External clock signals: XC0, XC1 or XC2
- Internal clock signals: PCK6 or PCK7 (TC0 only), MCK/8, MCK/32, MCK/128, SLCK

This selection is made by the TCCLKS bits in the Channel Mode register (TC_CMRx).

The selected clock can be inverted with TC_CMRx.CLKI. This allows counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the TC_CMRx defines this signal (none, XC0, XC1, XC2). See Clock Selection.

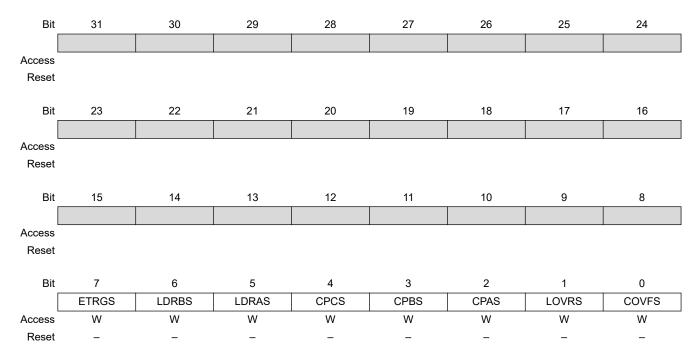
Note:

- 1. In Waveform mode, to chain two timers, it is mandatory to initialize some parameters:
 - Configure TIOx outputs to 1 or 0 by writing the required value to TC_CMRx.ASWTRG.
 - Bit TC_BCR.SYNC must be written to 1 to start the channels at the same time.
- 2. In all cases, if an external clock or asynchronous internal clock PCK6 or PCK7 (TC0 only) is used, the duration of each of its levels must be longer than the peripheral clock period, so the clock frequency will be at least 2.5 times lower than the peripheral clock.

50.7.11 TC Interrupt Enable Register

 Name:
 TC_IERx

 Offset:
 0x24 + x*0x40 [x=0..2]


 Reset:

 Property:
 Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit 7 – ETRGS External Trigger

Bit 6 - LDRBS RB Loading

Bit 5 - LDRAS RA Loading

Bit 4 – CPCS RC Compare

Bit 3 – CPBS RB Compare

Bit 2 – CPAS RA Compare

Bit 1 – LOVRS Load Overrun

Bit 0 - COVFS Counter Overflow

Advanced Encryption Standard (AES)

57.5.9 AES Output Data Register x

Name:	AES_ODATARx
Offset:	0x50 + x*0x04 [x=03]
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24	
	ODATA[31:24]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				ODATA	[23:16]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				ODAT	A[15:8]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				ODAT	A[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 - ODATA[31:0] Output Data

The four 32-bit Output Data registers contain the 128-bit data block that has been encrypted/decrypted. AES_ODATAR0 corresponds to the first word, AES_ODATAR3 to the last one.

Electrical Characteristics for SAM E70/S70

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit	
	Parameter	Min		Мах			
NO HOL	NO HOLD Settings (NWE_HOLD = 0)						
SMC ₂₁	NWE High to Data OUT, NBS0/A0 NBS1, A1, A2– A25, NCS change ⁽¹⁾	2.1	1.5	-	-	ns	

Note:

Hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "NCS_WR_HOLD length" or "NWE_HOLD length"

Symbol	ymbol VDDIO Supply 1.8V Domain 3.3V Domain		3.3V Domain	1.8V Domain	3.3V Domain	Unit
	Parameter	Min		Мах		
SMC ₂₂	Data Out Valid before NCS High	NCS_WR_PULSE × t _{CPMCK} - 2.8	NCS_WR_PULSE × t _{CPMCK} - 3.9	_		ns
SMC ₂₃	NCS Pulse Width	NCS_WR_PULSE × t _{CPMCK} - 0.9	NCS_WR_PULSE × t _{CPMCK} - 0.2	—	—	ns
SMC ₂₄	A0–A22 valid before NCS low	NCS_WR_SETUP × t _{CPMCK} - 4.0	NCS_WR_SETUP × t _{CPMCK} - 4.6			ns
SMC ₂₅	NWE low before NCS high	(NCS_WR_SETUP - NWE_SETUP + NCS pulse) × t_{CPMCK} - 4.6	(NCS_WR_SETUP - NWE_SETUP + NCS pulse) × t _{CPMCK} - 4.6			ns
SMC ₂₆	NCS High to Data Out, A0– A25, change	NCS_WR_HOLD × t _{CPMCK} - 4.4	NCS_WR_HOLD × t _{CPMCK} - 3.4			ns
SMC ₂₇	NCS High to NWE Inactive	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 2.8	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 2.4			ns

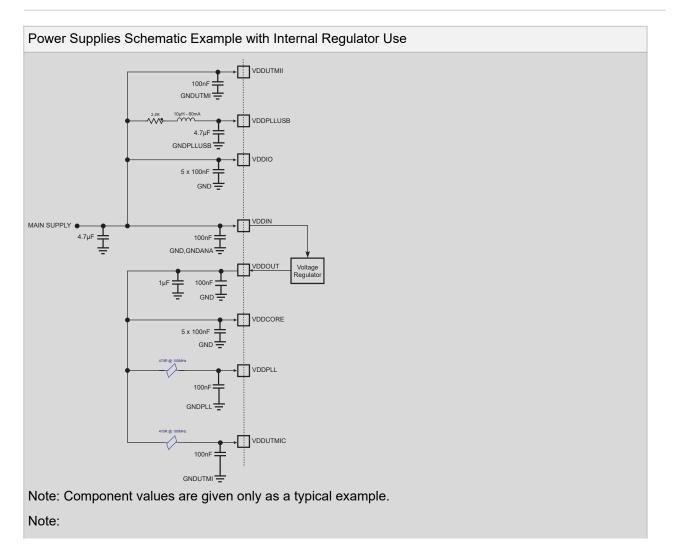
Table 59-63. SMC Write NCS Controlled (WRITE_MODE = 0)

Timings are given in the 3.3V domain, with VDDIO from 2.85V to 3.6V, maximum external capacitor = 50 pF.

Timings are given assuming a capacitance load on data, control and address pads.

In the tables that follow, t_{CPMCK} is MCK period.

60. Schematic Checklist


The schematic checklist provides the user with the requirements regarding the different pin connections that must be considered before starting any new board design. It also provides information on the minimum hardware resources required to quickly develop an application with the SAM E70/S70/V70/V71 device. It does not consider PCB layout constraints.

This information is not intended to be exhaustive. Its objective is to cover as many configurations of use as possible. The checklist contains a column for use by designers, making it easy to track and verify each line item.

60.1 **Power Supplies**

60.1.1 Supplying the Device With Only One Supply

 \triangle CAUTION To guarantee reliable operation of the device, the board design must comply with powerup and powerdown sequence guidelines provided in the "Power Considerations" chapter.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2900-5

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.