

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70n20a-cn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.4.4 Bus Matrix Priority Registers B For Slaves

Name:	MATRIX_PRBSx
Offset:	0x84 + x*0x08 [x=08]
Reset:	0x00000222
Property:	Read/Write

This register can only be written if the WPE bit is cleared in the Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							M12P	R[1:0]
Access							R/W	R/W
Reset							0	0
Bit	15	14	13	12	11	10	9	8
			M11PR[1:0]				M10PR[1:0]	
Access			R/W	R/W			R/W	R/W
Reset			0	0			1	0
Bit	7	6	5	4	3	2	1	0
			M9PR[1:0]				M8PF	R[1:0]
Access			R/W	R/W			R/W	R/W
Reset			1	0			1	0

Bits 0:1, 4:5, 8:9, 12:13, 16:17 – MxPR Master 8 Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.

Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See "Arbitration Priority Scheme" for details.

25. Reinforced Safety Watchdog Timer (RSWDT)

25.1 Description

The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if the software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the WDT. Its clock source is automatically selected from either the Slow RC oscillator clock, or from the Main RC oscillator divided clock to get an equivalent Slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz crystal oscillator) fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the monitoring. Thus, there is no lack of safety regardless of the external operating conditions. The RSWDT shares the same features as the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug mode or Idle mode.

25.2 Embedded Characteristics

- Automatically Selected Reliable RSWDT Clock Source (independent of WDT clock source)
- 12-bit Key-protected Programmable Counter
- Provides Reset or Interrupt Signals to the System
- Counter may be Stopped While Processor is in Debug State or Idle Mode

Parallel Input/Output Controller (PIO)

32.6.1.2 PIO Disable Register

Name:PIO_PDROffset:0x0004Property:Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Disable

Value	Description
0	No effect.
1	Disables the PIO from controlling the corresponding pin (enables peripheral control of the
	pin).

Image Sensor Interface (ISI)

37.6.10 ISI Control Register

	Name: Offset: Reset: Property:	ISI_CR 0x24 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								ISI_CDC
Access								W
Reset								-
Bit	7	6	5	4	3	2	1	0
						ISI_SRST	ISI_DIS	ISI_EN
Access						W	W	W
Reset						-	-	-

Bit 8 – ISI_CDC ISI Codec Request

Write a one to this bit to enable the codec datapath and capture a full resolution frame. A new request cannot be taken into account while CDC_PND bit is active in the ISI_SR.

Bit 2 - ISI_SRST ISI Software Reset Request

Write a one to this bit to request a software reset of the module. Software must poll the SRST bit in the ISI_SR to verify that the software request command has terminated.

Bit 1 – ISI_DIS ISI Module Disable Request

Write a one to this bit to disable the module. If both ISI_EN and ISI_DIS are asserted at the same time, the disable request is not taken into account. Software must poll the DIS_DONE bit in the ISI_SR to verify that the command has successfully completed.

Bit 0 – ISI_EN ISI Module Enable Request

Write a one to this bit to enable the module. Software must poll the ENABLE bit in the ISI_SR to verify that the command has successfully completed.

USB High-Speed Interface (USBHS)

39.6.19 Device Endpoint Interrupt Set Register (Control, Bulk, Interrupt Endpoints)

 Name:
 USBHS_DEVEPTIFRx

 Offset:
 0x0190 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if EPTYPE = 0x0, 0x2, or 0x3 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Status Register (Control, Bulk, Interrupt Endpoints)". This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Sets the corresponding bit in USBHS_DEVEPTISRx, which may be useful for test or debug purposes.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				NBUSYBKS				
Access								
Reset				0				
Bit		6	5	4	3	2	1	0
	SHORTPACKE	STALLEDIS	OVERFIS	NAKINIS	NAKOUTIS	RXSTPIS	RXOUTIS	TXINIS
	TS							
Access								
Reset	0	0	0	0	0	0	0	0
	Bit 12 – NBU		nhor of Bucy	Ranks Intorru	nt Sot			
	BIL 12 - NBU	SIBKS NUL	liber of Busy	Dariks Interru	pi Sei			
	Bit 7 – SHOF	RTPACKETS	Short Packe	t Interrupt Set	t			
	Bit 6 – STAL	LEDIS STAL	Led Interrupt	Set				
			N Interrupt Se	st				
	Bit 5 – OVERFIS Overflow Interrupt Set							

- Bit 4 NAKINIS NAKed IN Interrupt Set
- Bit 3 NAKOUTIS NAKed OUT Interrupt Set

USB High-Speed Interface (USBHS)

39.6.39 Host Address 1 Register

Name:	USBHS_HSTADDR1
Offset:	0x0424
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
					HSTADDRP3[6:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				l	HSTADDRP2[6:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			HSTADDRP1[6:0]					
Access								
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			HSTADDRP0[6:0]					
Access								
Reset		0	0	0	0	0	0	0

Bits 30:24 – HSTADDRP3[6:0] USB Host Address

This field contains the address of the Pipe3 of the USB device.

This field is cleared when a USB reset is requested.

Bits 22:16 - HSTADDRP2[6:0] USB Host Address

This field contains the address of the Pipe2 of the USB device.

This field is cleared when a USB reset is requested.

Bits 14:8 – HSTADDRP1[6:0] USB Host Address

This field contains the address of the Pipe1 of the USB device.

This field is cleared when a USB reset is requested.

Bits 6:0 - HSTADDRP0[6:0] USB Host Address

This field contains the address of the Pipe0 of the USB device.

This field is cleared when a USB reset is requested.

USB High-Speed Interface (USBHS)

39.6.56 Host Pipe x Mask Register (Isochronous Pipes)

Name:	USBHS_HSTPIPIMRx (ISOPIPES)
Offset:	0x05C0 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

This register view is relevant only if PTYPE = 0x1 in "Host Pipe x Configuration Register".

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						RSTDT	PFREEZE	PDISHDMA
Access								
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
		FIFOCON		NBUSYBKE				
Access								
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERRE	OVERFIE	NAKEDE	PERRE	UNDERFIE	TXOUTE	RXINE
	TIE							
Access								
Reset	0	0	0	0	0	0	0	0

Bit 18 – RSTDT Reset Data Toggle

Value	Description
0	No reset of the Data Toggle is ongoing.
1	Set when USBHS_HSTPIPIER.RSTDTS = 1. This resets the Data Toggle to its initial value for the current pipe.

Bit 17 – PFREEZE Pipe Freeze

This freezes the pipe request generation.

Value	Description						
0	Cleared when USBHS_HSTPIPIDR.PFREEZEC = 1. This enables the pipe request generation.						
1	1 Set when one of the following conditions is met:						
	• USBHS_HSTPIPIER.PFREEZES = 1.						
	The pipe is not configured.						
	A STALL handshake has been received on the pipe.						
	 An error has occurred on the pipe (USBHS_HSTPIPISR.PERRI = 1). 						

High-Speed Multimedia Card Interface (HSMCI)

40.14.9 HSMCI Response Register

Name:	HSMCI_RSPR
Offset:	0x20
Reset:	0x0
Property:	Read-only

Note: 1. The response register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to 0x2C).

N depends on the size of the response.

Bit	31	30	29	28	27	26	25	24
				RSP[31:24]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				RSP[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				RSP	[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RSF	P[7:0]			
Access	-							
Reset	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - RSP[31:0] Response

Synchronous Serial Controller (SSC)

Value	Description
0	No effect.
1	Disables Receive. If a character is currently being received, disables at end of current character reception.

Bit 0 - RXEN Receive Enable

Value	Description
0	No effect.
1	Enables Receive if RXDIS is not set.

Universal Synchronous Asynchronous Receiver Transc...

46.7.10 USART Interrupt Disable Register (SPI_MODE)

Name:US_IDR (SPI_MODE)Offset:0x000CProperty:Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt.

Bit	31	30	29	28	27	26 2		24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					NSSE			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						UNRE	TXEMPTY	
Access					L	•		
Reset								
Bit	7	6	5	4	3	2	1	0
			OVRE				TXRDY	RXRDY
Access								

Reset

Bit 19 – NSSE NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Disable

Bit 10 – UNRE SPI Underrun Error Interrupt Disable

Bit 9 – TXEMPTY TXEMPTY Interrupt Disable

Bit 5 – OVRE Overrun Error Interrupt Disable

Bit 1 – TXRDY TXRDY Interrupt Disable

Bit 0 – RXRDY RXRDY Interrupt Disable

- Bit 6 LSFE LON Short Frame Error Interrupt Mask
- Bit 5 OVRE Overrun Error Interrupt Mask
- Bit 1 TXRDY TXRDY Interrupt Mask
- Bit 0 RXRDY RXRDY Interrupt Mask

Media Local Bus (MLB)

Field	Description	Details	Accessibility
		- Counts the read address offset within a buffer	
		- DMA read address = BA + RPTR	
WPTR	Write Pointer	 Software initializes to zero, hardware updates Counts the write address offset within a buffer DMA write address = BA + WPTR 	r,w,u ⁽¹⁾
RSTS	Read Status	 Software initializes to zero, hardware updates RSTS states:⁽²⁾ xx1 = active xx0 = idle 	r,w,u ⁽¹⁾
WSTS	Write Status	 Software initializes to zero, hardware updates WSTS states:⁽²⁾ xx1 = active xx0 = idle x1x = command protocol error 1xx = buffer overflow (FCE = 0 only) 	r,w,u ⁽¹⁾
Reserved	Reserved	- Software writes a zero to all Reserved bits when the entry is initialized. The Reserved bits are Read-only after initialization.	r,w,u ⁽¹⁾

Notes: 1. "u" means "Updated periodically by hardware".

2. Only valid for DMA pointers associated with the MediaLB block (Not valid for HBI block related pointers).

Asynchronous and Control Channel Descriptors

The format and field definitions for asynchronous and control CDT entries are shown in Table 48-18 and Table 48-19, respectively.

Table 48-18. Asynchronous/Control CDT Entry Format

Bit Offset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	WPC[4:0]					Reserved										
16	RPC[4:0]	RPC[4:0] Reserved														
32	rsvd	WPC[7:5]	WPC[7:5]			erved										
48	rsvd	RPC[7:5] Reserved														
64	WSTS[3:0]				/STS[3:0] WPTR[11:0]											
80	RSTS[3:0]				RPTR[11:0]											

Controller Area Network (MCAN)

49.6.5 MCAN Test Register

Name:	MCAN_TEST
Offset:	0x10
Reset:	0x00000000
Property:	Read/Write

Write access to the Test Register has to be enabled by setting bit MCAN_CCCR.TEST to '1'.

All MCAN Test Register functions are set to their reset values when bit MCAN_CCCR.TEST is cleared.

Loop Back mode and software control of pin CANTX are hardware test modes. Programming of TX \neq 0 disturbs the message transfer on the CAN bus.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	RX		1:0]	LBCK				
Access	R	R/W	R/W	R/W				
Reset	х	0	0	0				

The reset value for MCAN_TEST.RX is undefined.

Bit 7 – RX Receive Pin (read-only) Monitors the actual value of pin CANRX.

The reset value for this bit is undefined.

Value	Description
0	The CAN bus is dominant (CANRX = '0').
1	The CAN bus is recessive (CANRX = '1').

Bits 6:5 – TX[1:0] Control of Transmit Pin (read/write)

Value	Name	Description
0	RESET	Reset value, CANTX controlled by the CAN Core,
		updated at the end of the CAN bit time.
1	SAMPLE_POINT_MONITORING	Sample Point can be monitored at pin CANTX.

Pulse Width Modulation Controller (PWM)

	Name: Offset: Reset: Property:	PWM_OSC 0x50 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					OSCL3	OSCL2	OSCL1	OSCL0
Access					W	W	W	W
Reset					0	0	0	_
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					OSCH3	OSCH2	OSCH1	OSCH0
Access					W	W	W	W
Reset					0	0	0	_

51.7.21 PWM Output Selection Clear Register

Bits 16, 17, 18, 19 - OSCLx Output Selection Clear for PWML output of the channel x

Value	Description
0	No effect.
1	Dead-time generator output DTOLx selected as PWML output of channel x.

Bits 0, 1, 2, 3 – OSCHx Output Selection Clear for PWMH output of the channel x

V	/alue	Description
0		No effect.
1		Dead-time generator output DTOHx selected as PWMH output of channel x.

Pulse Width Modulation Controller (PWM)

51.7.48 PWM Channel Mode Update Register

 Name:
 PWM_CMUPDx

 Offset:
 0x0400 + x*0x20 [x=0..3]

 Reset:

 Property:
 Write-only

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the CPOL value. This prevents an unexpected waveform when modifying the polarity value.

Bit	31	30	29	28	27	26	25	24
Access		•	•				•	
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
			CPOLINVUP				CPOLUP	
Access			W				W	
Reset			-				-	
Bit	7	6	5	4	3	2	1	0
Access								
Reset								

Bit 13 – CPOLINVUP Channel Polarity Inversion Update

If this bit is written at '1', the write of the bit CPOLUP is not taken into account.

Value	Description
0	No effect.
1	The OCx output waveform (output from the comparator) is inverted.

Bit 9 – CPOLUP Channel Polarity Update

The write of this bit is taken into account only if the bit CPOLINVUP is written at '0' at the same time.

Value	Description
0	The OCx output waveform (output from the comparator) starts at a low level.
1	The OCx output waveform (output from the comparator) starts at a high level.

Analog Comparator Controller (ACC)

54.7.7 ACC Analog Control Register

Name:	ACC_ACR
Offset:	0x94
Reset:	0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in ACC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
D :4	45		10	10	44	10	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
	_		_			_		
Bit	7	6	5	4	3	2	1	0
						HYS.	T[1:0]	ISEL
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:1 – HYST[1:0] Hysteresis Selection

Refer to the ACC characteristics in the section "Electrical Characteristics".

Value	Name	Description
0	NONE	No hysteresis
1	MEDIUM	Medium hysteresis
2	MEDIUM	Medium hysteresis
3	HIGH	High hysteresis

Bit 0 - ISEL Current Selection

Refer to the ACC characteristics in the section "Electrical Characteristics".

0 (LOPW): Low-power option.

1 (HISP): High-speed option.

Related Links

58. Electrical Characteristics for SAM V70/V71

55.5 Functional Description

55.5.1 Overview

The Integrity Check Monitor (ICM) is a DMA controller that performs SHA-based memory hashing over memory regions. As shown in figure Integrity Check Monitor Block Diagram, it integrates a DMA interface, a Monitoring Finite State Machine (FSM), an integrity scheduler, a set of context registers, a SHA engine, an interface for configuration and status registers.

The ICM integrates a Secure Hash Algorithm engine (SHA). This engine requires a message padded according to FIPS180-2 specification when used as a SHA calculation unit only. Otherwise, if the ICM is used as integrated check for memory content, the padding is not mandatory. The SHA module produces an N-bit message digest each time a block is read and a processing period ends. N is 160 for SHA1, 224 for SHA224, 256 for SHA256.

When the ICM module is enabled, it sequentially retrieves a circular list of region descriptors from the memory (Main List described in figure ICM Region Descriptor and Hash Areas). Up to four regions may be monitored. Each region descriptor is composed of four words indicating the layout of the memory region (see figure Region Descriptor). It also contains the hashing engine configuration on a per-region basis. As soon as the descriptor is loaded from the memory and context registers are updated with the data structure, the hashing operation starts. A programmable number of blocks (see TRSIZE field of the ICM_RCTRL structure member) is transferred from the memory to the SHA engine. When the desired number of blocks have been transferred, the digest is either moved to memory (Write Back function) or compared with a digest reference located in the system memory (Compare function). If a digest mismatch occurs, an interrupt is triggered if unmasked. The ICM module passes through the region descriptor list until the end of the list marked by an end of list marker (WRAP or EOM bit in ICM_RCFG structure member set to one). To continuously monitor the list of regions, the WRAP bit must be set to one in the last data structure and EOM must be cleared.

Electrical Characteristics for SAM E70/S70

Symbol VDDIO Supply		1.7V Domain	3.3V Domain	Unit			
	Parameter	Min					
SMC ₁₁	Data Hold after NCS High	0	0	ns			
HOLD or NO HOLD Settings (NCS_RD_HOLD ≠ 0, NCS_RD_HOLD = 0)							
SMC ₁₂	A0–A22 valid before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE) × t _{CPMCK} - 4.0	(NCS_RD_SETUP + NCS_RD_PULSE) × t _{CPMCK} - 3.9	ns			
SMC ₁₃	NRD low before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 2.8	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 4.2	ns			
SMC ₁₄	NCS Pulse Width	NCS_RD_PULSE length × t _{CPMCK} - 0.9	NCS_RD_PULSE length × t _{CPMCK} - 0.2	ns			

59.13.1.9.3 Write Timings

Table 59-62. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit
	Parameter	Min		Мах		
HOLD or	NO HOLD Setting	gs (NWE_HOLD ≠ 0, NV	VE_HOLD = 0)			
SMC ₁₅	Data Out Valid before NWE High	NWE_PULSE × t _{CPMCK} - 5.4	NWE_PULSE × t _{CPMCK} - 4.6	-	-	ns
SMC ₁₆	NWE Pulse Width	NWE_PULSE × t _{CPMCK} - 0.7	NWE_PULSE × t _{CPMCK} - 0.3	-	-	ns
SMC ₁₇	A0–A22 valid before NWE low	NWE_SETUP × t _{CPMCK} - 4.9	NWE_SETUP × t _{CPMCK} - 4.2	-	-	ns
SMC ₁₈	NCS low before NWE high	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 3.2	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 2.2	_	-	ns
HOLD Se	ettings (NWE_HO	LD ≠ 0)				
SMC ₁₉	NWE High to Data OUT, NBS0/A0 NBS1, A1, A2– A25 change	NWE_HOLD × t _{CPMCK} - 4.6	NWE_HOLD × t _{CPMCK} - 3.9	_	-	ns
SMC ₂₀	NWE High to NCS Inactive ⁽¹⁾	(NWE_HOLD - NCS_WR_HOLD) × t _{CPMCK} - 3.9	(NWE_HOLD - NCS_WR_HOLD) × t _{CPMCK} - 3.6	-	-	ns

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Condition	Min	Мах	Unit
V _{hys}	Hysteresis of Schmitt Trigger Inputs	-	0.150	-	V
V _{OL}	Low-level Output Voltage	3 mA sink current	-	0.4	V
t _R	Rise Time for both TWD and TWCK		$20 + 0.1 C_b^{(1)(2)}$	300	ns
t _{OF}	Output Fall Time from V_{IHmin} to V_{ILmax}	10 pF < C _b < 400 pF see the figure below	$20 + 0.1 C_b^{(1)(2)}$	250	ns
C _i ⁽¹⁾	Capacitance for each I/O Pin	-	-	10	pF
f _{TWCK}	TWCK Clock Frequency	-	0	400	kHz
R _P	Value of Pull-up resistor	f _{TWCK} ≤ 100 kHz	(V _{DDIO} - 0.4V) ÷	1000ns ÷ C _b	Ω
		f _{TWCK} > 100 kHz	3mA	300ns ÷ C _b	Ω
t _{LOW}	Low Period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(3)	-	μs
		f _{TWCK} > 100 kHz	(3)	-	μs
t _{HIGH}	High period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(4)	-	μs
		f _{TWCK} > 100 kHz	(4)	-	μs
t _{HD;STA}	Hold Time (repeated) START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	Condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{SU;STA}	Set-up time for a repeated	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	START condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;DAT}	Data hold time	$f_{TWCK} \le 100 \text{ kHz}$	0	$3 \times t_{CPMCK}^{(5)}$	μs
		f _{TWCK} > 100 kHz	0	3 ×t _{CPMCK} ⁽⁵⁾	μs
t _{SU;DAT}	Data setup time	f _{TWCK} ≤ 100 kHz	t _{LOW -} 3 × t _{CPMCK} ⁽⁵⁾	-	ns
		f _{TWCK} > 100 kHz	t _{LOW -} 3 × t _{CPMCK} ⁽⁵⁾	-	ns
t _{SU;STO}	Setup time for STOP condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;STA}	Hold Time (repeated) START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	Condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs

Note:

- 1. Required only for $f_{TWCK} > 100 \text{ kHz}$.
- 2. C_b = capacitance of one bus line in pF. Per I²C standard, C_b max = 400pF.
- 3. The TWCK low period is defined as follows: $t_{LOW} = ((CLDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.
- 4. The TWCK high period is defined as follows: $t_{HIGH} = ((CHDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.

Revision History

Date	Comments
01-June-16	Section 42. "Quad SPI Interface (QSPI)" Section 42.2 "Embedded Characteristics": added bullet on Single Data Rate and Double Data Rate modes.
	Figure 42-2 "QSPI Transfer Format (QSPI_SCR.CPHA = 0, 8 bits per transfer)" and Figure 42-3 "QSPI Transfer Format (QSPI_SCR.CPHA = 1, 8 bits per transfer)": modified NSS to QCS.
	Section 42.7.2 "QSPI Mode Register": updated CSMODE description.
	Section 42.7.5 "QSPI Status Register": updated descriptions of bits CSR and INSTRE.
	Section 43. "Two-wire Interface (TWIHS)" Updated Figure 43-1 "Block Diagram".
	Section 43.6.3.9 "SMBus Mode": deleted bullet on SMBALERT.
	Section 43.6.5.6 "SMBus Mode": deleted bullet on SMBALERT.
	Section 43.7.5 "TWIHS Clock Waveform Generator Register": Bit 20 now 'reserved' (was CKSRC: Transfer Rate Clock Source). HOLD field extended to 6 bits.
	Section 44. "Synchronous Serial Controller (SSC)" in Figure 44-19 "Interrupt Block Diagram": renamed RXSYNC to RXSYN; renamed TXSYNC to TXSYN.
	Section 45. "Inter-IC Sound Controller (I2SC)" Throughout:
	In text, tables and figures, pin names changed to:
	- I2SC_MCK
	- I2SC_CK
	- I2SC_WS
	- I2SC_DI
	- I2SC_DO
	Updated Figure 45-1 "I2SC Block Diagram".
	Section 45.6.1 "Initialization": modified register name from CCFG_I2SCLKSEL to CCFG_PCCR.
	Section 45.6.5 "Serial Clock and Word Select Generation": updated paragraph on I2SC input clock selection in Master mode.
	Updated Figure 45-3 "I2SC Clock Generation".
	Section 45.8.2 "I2SC Mode Register": updated MODE bit description for value '1'. Updated IMCKDIV and IMCKMODE field descriptions.
	Section 46. "Universal Synchronous Asynchronous Receiver Transceiver (USART)" Section 46.2 "Embedded Characteristics": added bullet "Optimal for Node-to-Node Communication (no embedded digital line filter)" to LON Mode features.