E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70n21b-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11.1.5.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

Flash Size (Kbytes)	Number of Lock Bits	Lock Region Size
2048	128	16 Kbytes
1024	64	16 Kbytes
512	32	16 Kbytes

Table 11-2. Flash Lock Bits

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

11.1.5.5 Security Bit Feature

The SAM E70/S70/V70/V71 features a security bit based on the GPNVM bit 0. When security is enabled, any access to the Flash, SRAM, core registers and internal peripherals, either through the SW-DP, the ETM interface or the Fast Flash Programming Interface, is blocked. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled through the command "Set General-purpose NVM Bit 0" of the EEFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.

11.1.5.6 Unique Identifier

The device contains a unique identifier of 2 pages of 512 bytes. These 2 pages are read-only and cannot be erased even by the ERASE pin.

The sequence to read the unique identifier area is described in 22.4.3.8 Unique Identifier Area.

The mapping is as follows:

- Bytes [0..15]: 128 bits for unique identifier
- Bytes[16..1023]: Reserved

11.1.5.7 User Signature

Each device contains a user signature of 512 bytes that is available to the user. The user signature can be used to store information such as trimming, keys, etc., that the user does not want to be erased by asserting the ERASE pin or by software ERASE command. Read, write and erase of this area is allowed.

11.1.5.8 Fast Flash Programming Interface (FFPI)

The Fast Flash Programming Interface (FFPI) allows programming the device through a multiplexed fullyhandshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The FFPI is enabled and the Fast Programming mode is entered when TST and PA3 and PA4 are tied low.

With main supply < 2.7V, MediaLB is not usable. With main supply > 3V, all peripherals are usable.

The following figure illustrates an example of the powering scheme when using a backup battery. Since the PIO state is preserved when in Backup mode, any free PIO line can be used to switch off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after backup reset). System wakeup can be performed using a wakeup pin (WKUPx). See the "Wakeup Sources" section for further details.

Figure 23-4. Battery Backup

Note: The two diodes provide a "switchover circuit" between the backup battery and the main supply when the system is put in Backup mode.

23.4.5 Supply Monitor

The SUPC embeds a supply monitor located in the VDDIO power supply and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power supply drops below a certain level.

The threshold of the supply monitor is programmable in the SMTH field of the Supply Monitor Mode register (SUPC_SMMR). Refer to the section "Electrical Characteristics".

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow clock periods, depending on the user selection. This is configured in the SUPC_SMMR.SMSMPL.

Enabling the supply monitor for such reduced times divides the typical supply monitor power consumption by factors of 2, 16 and 128, respectively, if continuous monitoring of the VDDIO power supply is not required.

A supply monitor detection generates either a reset of the core power supply or a wakeup of the core power supply. Generating a core reset when a supply monitor detection occurs is enabled by setting SUPC_SMMR.SMRSTEN.

© 2018 Microchip Technology Inc.

Supply Controller (SUPC)

Value	Name	Description
4	4096_SLCK	WKUPx shall be in its active state for at least 4,096 SLCK periods
5	32768_SLCK	WKUPx shall be in its active state for at least 32,768 SLCK periods

Bit 7 – LPDBCCLR Low-power Debouncer Clear

Value	Description
0	(NOT_ENABLE): A low-power debounce event does not create an immediate clear on the
	first half of GPBR registers.
1	(ENABLE): A low-power debounce event on WKUP0 or WKUP1 generates an immediate
	clear on the first half of GPBR registers.

Bit 6 – LPDBCEN1 Low-power Debouncer Enable WKUP1

Value	Description
0	(NOT_ENABLE): The WKUP1 input pin is not connected to the low-power debouncer.
1	(ENABLE): The WKUP1 input pin is connected to the low-power debouncer and forces a
	system wakeup.

Bit 5 – LPDBCEN0 Low-power Debouncer Enable WKUP0

Value	Description
0	(NOT_ENABLE): The WKUP0 input pin is not connected to the low-power debouncer.
1	(ENABLE): The WKUP0 input pin is connected to the low-power debouncer and forces a
	system wakeup.

Bit 3 – RTCEN Real-time Clock Wakeup Enable

Value	Description
0	(NOT_ENABLE): The RTC alarm signal has no wakeup effect.
1	(ENABLE): The RTC alarm signal forces the wakeup of the core power supply.

Bit 2 – RTTEN Real-time Timer Wakeup Enable

Value	Description
0	(NOT_ENABLE): The RTT alarm signal has no wakeup effect.
1	(ENABLE): The RTT alarm signal forces the wakeup of the core power supply.

Bit 1 – SMEN Supply Monitor Wakeup Enable

Value	Description
0	(NOT_ENABLE): The supply monitor detection has no wakeup effect.
1	(ENABLE): The supply monitor detection forces the wakeup of the core power supply.

27.6.5 RTC Time Alarm Register

Name:	RTC_TIMALR
Offset:	0x10
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and then re-enable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first access clears the enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already cleared, this access is not required. The second access performs the change of the value (SEC, MIN, HOUR). The third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN fields.

Bit	31	30	29	28	27	26	25	24
ſ								
Access		•						
Reset								
Bit	23	22	21	20	19	18	17	16
	HOUREN	AMPM			HOUI	R[5:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ	MINEN				MIN[6:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ	SECEN				SEC[6:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 23 – HOUREN Hour Alarm Enable

Value	Description
0	The hour-matching alarm is disabled.
1	The hour-matching alarm is enabled.

Bit 22 - AMPM AM/PM Indicator

This field is the alarm field corresponding to the BCD-coded hour counter.

Bits 21:16 - HOUR[5:0] Hour Alarm

This field is the alarm field corresponding to the BCD-coded hour counter.

Bit 15 – MINEN Minute Alarm Enable

Power Management Controller (PMC)

31.20.29 PMC SleepWalking Enable Register 1

Name:PMC_SLPWK_ER1Offset:0x0134Property:Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
		PID62		PID60	PID59	PID58	PID57	PID56
Access		•						
Reset								
Bit	23	22	21	20	19	18	17	16
			PID53	PID52	PID51	PID50	PID49	PID48
Access		•			•			
Reset								
Bit	15	14	13	12	11	10	9	8
Γ	PID47	PID46	PID45	PID44	PID43	PID42	PID41	PID40
Access		•						,
Reset								
Bit	7	6	5	4	3	2	1	0
Γ	PID39		PID37		PID35	PID34	PID33	PID32
Access					•			,
Reset								

Bits 0:3,5,7:28,30 - PID Peripheral Clock x Disable

Value	Description
0	No effect.
1	Disables the corresponding peripheral clock.

Static Memory Controller (SMC)

Parameter	Value	Definition
NCS_RD_PULSE	t _{pa}	Access time of first access to the page.
NRD_SETUP	'x'	No impact.
NRD_PULSE	t _{sa}	Access time of subsequent accesses in the page.
NRD_CYCLE	'x'	No impact.

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page access timing (t_{pa}) and the NRD_PULSE for accesses to the page (t_{sa}), even if the programmed value for t_{pa} is shorter than the programmed value for t_{sa} .

35.15.2 Page Mode Restriction

The Page mode is not compatible with the use of the NWAIT signal. Using the Page mode and the NWAIT signal may lead to unpredictable behavior.

35.15.3 Sequential and Non-sequential Accesses

If the chip select and the MSB of addresses as defined in Table 35-7 are identical, then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum access time (t_{sa}). The following figure illustrates access to an 8-bit memory device in Page mode, with 8-byte pages. Access to D1 causes a page access with a long access time (t_{pa}). Accesses to D3 and D7, though they are not sequential accesses, only require a short access time (t_{sa}).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip select is different from the previous access, a page break occurs. If two sequential accesses are made to the Page mode memory, but separated by an other internal or external peripheral access, a page break occurs on the second access because the chip select of the device was deasserted between both accesses.

Figure 35-36. Access to Non-Sequential Data within the Same Page

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
		23:16		SA[23:16]								
		31:24				SA[3	1:24]					
		7:0		DA[7:0]								
		15:8	DA[15:8]									
0x03E4	XDMAC_CDA14	23:16	DA[23:16]									
		31:24				DA[3	1:24]					
		7:0			NDA	[5:0]				NDAIF		
		15:8				NDA	[13:6]					
0x03E8	XDMAC_CNDA14	23:16				NDA[2	21:14]					
		31:24				- NDA[2	29:22]					
		7:0				NDVIE	- W[1:0]	NDDUP	NDSUP	NDE		
		15:8						-	-			
0x03EC	XDMAC_CNDC14	23.16										
		31.24										
		7:0				UBI F	N[7·0]					
		15.8					N[15·8]					
0x03F0	XDMAC_CUBC14	23.16					1[23.16]					
		31.24				OBEEN	[20.10]					
		7:0				BLEN	J[7·0]					
		15.8										
0x03F4	XDMAC_CBC14	23.16						DEEN	i[11.0]			
		23.10										
		7:0	MEMSET	SWREO		DSVNC		MBSIZ	7E[1:0]	TVDE		
		15.8	MENIOLI	DIE	SIE		ГН[1·0]	CSIZE[?:0]				
0x03F8	XDMAC_CC14	23.16	WRIP	RUIP		DWID						
		31.24	WIXI		INTE			1[1:0]	0/ (1)	[1.0]		
		7:0				SDS M		10[0:0]				
	YDMAC CDS MSP	15.8										
0x03FC	11	22:16				M. 200						
		23.10										
		7:0					3F[13.0]					
		15.0				SUD3	5[7:0]					
0x0400	XDMAC_CSUS14	10.0				0000	[10.0]					
		23.10				3063	[23.10]					
		7:0					2[7:0]					
		15.0					5[7.0]					
0x0404	XDMAC_CDUS14	10.0					[15.0]					
		23.10				DOBS	[23:10]					
0~0400		31.24										
0x0408	Record											
 0x040F	Reserved											
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE		
		15:8										
0x0410	XDMAC_CIE15	23:16										
		31:24										
0x0414	XDMAC_CID15	7:0		ROID	WBEID	RBEID	FID	DID	LID	BID		

DMA Controller (XDMAC)

Offset	Name	Bit Pos.									
		31:24									
		7:0				UBLE	N[7:0]				
		15:8	UBLEN[15:8]								
0x0570	XDMAC_CUBC20	23:16		UBLEN[23:16]							
		31:24									
		7:0				BLEN	I[7:0]				
		15:8						BLEN	J[11:8]		
0x0574	XDMAC_CBC20	23:16									
		31:24									
		7:0	MEMSET	SWREQ		DSYNC		MBSI	ZE[1:0]	TYPE	
		15:8		DIF	SIF	DWIDT	-H[1:0]		CSIZE[2:0]		
0x0578	XDMAC_CC20	23:16	WRIP	RDIP	INITD		DAM	[1:0]	SAN	[[1:0]	
		31:24					PERID[6:0]				
		7:0				SDS M	SP[7:0]				
	XDMAC CDS MSP	15:8				SDS M	SP[15:8]				
0x057C	20	23:16				DDS M	SP[7:0]				
		31:24				DDS MS	SP[15:8]				
		7:0				SUBS	S[7:0]				
		15.8									
0x0580	XDMAC_CSUS20	23:16	SUBS[10.0]								
		31.24									
		7:0				DUBS	\$[7:0]				
		15:8	DUBS[15:8]								
0x0584	XDMAC_CDUS20	23.16				DUBSI	23.16]				
		31.24				0000	20.10]				
0x0588		01.24									
0,0000	Reserved										
0x058F											
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE	
		15:8									
0x0590	XDMAC_CIE21	23:16									
		31:24									
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID	
		15:8									
0x0594	XDMAC_CID21	23:16									
		31:24									
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM	
		15:8									
0x0598	XDMAC_CIM21	23:16									
		31:24									
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS	
		15.8						2.0		2.0	
0x059C	XDMAC_CIS21	23.16									
		31.24									
		7:0				142	7.01				
0x05A0	XDMAC_CSA21	15.8				0A[0.142	5.81				
		13.0				SAL	5.0]				

High-Speed Multimedia Card Interface (HSMCI)

Bit 0 – FIFOMODE HSMCI Internal FIFO control mode

When the block length is greater than or equal to 3/4 of the HSMCI internal FIFO size, then the write transfer starts as soon as half the FIFO is filled. When the block length is greater than or equal to half the internal FIFO size, then the write transfer starts as soon as one quarter of the FIFO is filled. In other cases, the transfer starts as soon as the total amount of data is written in the internal FIFO.

Value	Description
0	A write transfer starts when a sufficient amount of data is written into the FIFO.
1	A write transfer starts as soon as one data is written into the FIFO.

Two-wire Interface (TWIHS)

Offset	Name	Bit Pos.									
		7:0	TXDATA[7:0]								
		15:8									
0x34	TWIHS_THR	23:16									
		31:24									
		7:0					PRES	C[3:0]			
020		15:8			TLOW	'S[7:0]					
0x38	TWIHS_SMBTR	23:16			TLOW	M[7:0]					
		31:24			THMA	X[7:0]					
0x3C											
	Reserved										
0x43											
		7:0					PADFCFG	PADFEN	FILT		
0x44	TWIHS FILTR	15:8					THRES	THRES[2:0]			
		23:16									
		31:24									
0x48	(48										
	Reserved										
0x4B											
		7:0	SADR1[6:0]								
0x4C	TWIHS SWMR	15:8	SADR2[6:0]								
	_	23:16	SADR3[6:0]								
		31:24			DATAI	M[7:0]					
0x50											
	Reserved										
0xE3											
		7:0							WPEN		
0xE4	TWIHS_WPMR	15:8			WPKE	Y[7:0]					
		23:16			WPKE	Y[15:8]					
		31:24			WPKEY	′[23:16]					
		7:0							WPVS		
0xE8	TWIHS_WPSR	15:8			WPVSF	RC[7:0]					
	_	23:16			WPVSR	RC[15:8]					
		31:24			WPVSR	C[23:16]					

Two-wire Interface (TWIHS)

43.7.6 TWIHS Status Register

Name:	TWIHS_SR
Offset:	0x20
Reset:	0x03000009
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
[SDA	SCL
Access		·	·				R	R
Reset							1	1
Bit	23	22	21	20	19	18	17	16
			SMBHHM	SMBDAM	PECERR	TOUT		MCACK
Access			R	R	R	R		R
Reset			0	0	0	0		0
Bit	15	14	13	12	11	10	9	8
					EOSACC	SCLWS	ARBLST	NACK
Access					R	R	R	R
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	UNRE	OVRE	GACC	SVACC	SVREAD	TXRDY	RXRDY	TXCOMP
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	1	0	0	1

Bit 25 – SDA SDA Line Value

Value	Description
0	SDA line sampled value is '0'.
1	SDA line sampled value is '1'.

Bit 24 – SCL SCL Line Value

Value	Description
0	SCL line sampled value is '0'.
1	SCL line sampled value is '1.'

Bit 21 – SMBHHM SMBus Host Header Address Match (cleared on read)

Value	Description
0	No SMBus Host Header Address received since the last read of TWIHS_SR.
1	An SMBus Host Header Address was received since the last read of TWIHS_SR.

Bit 20 - SMBDAM SMBus Default Address Match (cleared on read)

Value	Description
0	No SMBus Default Address received since the last read of TWIHS_SR.
1	An SMBus Default Address was received since the last read of TWIHS_SR.

Universal Synchronous Asynchronous Receiver Transc...

Value	Description
0	There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.
1	There are no characters in US_THR, nor in the Transmit Shift Register.

Bit 5 – OVRE Overrun Error (cleared by writing a one to bit US_CR.RSTSTA)

Value	Description
0	No overrun error has occurred since the last RSTSTA.
1	At least one overrun error has occurred since the last RSTSTA.

Bit 1 – TXRDY Transmitter Ready (cleared by writing US_THR)

Value	Description
0	A character is in the US_THR waiting to be transferred to the Transmit Shift Register or the
	transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.
1	There is no character in the US_THR.

Bit 0 – RXRDY Receiver Ready (cleared by reading US_RHR)

Value	Description
0	No complete character has been received since the last read of US_RHR or the receiver is
	disabled. If characters were being received when the receiver was disabled, RXRDY
	changes to 1 when the receiver is enabled.
1	At least one complete character has been received and US RHR has not yet been read.

Figure 48-22. Single-packet Asynchronous or Control System Memory Structure

Table 48-23. Single-packet Asynchronous and Control Entry Format

Bit Offset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	CE	LE	PG	Reserv	Reserved											
16	Reserved															
32	RDY1	DNE1	ERR1	PS1	MEP1	BD1[10:0]										
48	RDY2	DNE2	ERR2	PS2	MEP2	BD2[10:0]										
64	BA1[15:0]															
80	BA1[31:16]															
96	BA2[15:0]															
112	BA2[31:16]															

Multiple-packet Mode

The multiple-packet mode asynchronous and control buffering scheme supports more than one packet per system memory buffer, as shown in the following figure. Multiple- packet mode reduces the interrupt rate for packet channels at the cost of increasing buffering and latency.

For Tx packet channels in multiple-packet mode, software sets the packet start bit (PSn) for every buffer. Setting PSn informs hardware that the first two bytes of the buffer contains the port message length (PML) of the first packet. After the first packet, hardware keeps track of where packets start and end within the current buffer. Software should not write to PSn while the buffer is active (RDYn = 1 and DNEn = 0). For Tx packet channels, the buffer is done (DNEn= 1) when the last byte of the last packet in the

© 2018 Microchip Technology Inc.

	Name: Offset: Reset: Property:	MLB_MSS 0x020 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
5.4					10	10		10
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
								_
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
			SERVREQ	SWSYSCMD	CSSYSCMD	ULKSYSCMD	LKSYSCMD	RSTSYSCMD
Access								
Reset			0	0	0	0	0	0

48.7.4 MediaLB System Status Register

Bit 5 - SERVREQ Service Request Enabled

Value	Description
0	The MediaLB block responds with a "device present" system response.
1	The MediaLB block responds with a "device present, request service" system response if a
	matching channel scan system command is detected.

Bit 4 – SWSYSCMD Software System Command Detected in the System Quadlet (cleared by writing a 0)

Set by hardware, cleared by software. Data is stored in the MLB_MSD register for this command.

Bit 3 – CSSYSCMD Channel Scan System Command Detected in the System Quadlet (cleared by writing a 0)

Set by hardware, cleared by software. If the node address specified in Data quadlet matches the value in MLB_MLBC1.NDA, the device responds either "device present" or "device present, request service" system response in the next system quadlet.

Bit 2 – ULKSYSCMD Network Unlock System Command Detected in the System Quadlet (cleared by writing a 0)

Set by hardware, cleared by software.

Timer Counter (TC)

Value	Name	Description
0	UP	UP mode without automatic trigger on RC Compare
1	UPDOWN	UPDOWN mode without automatic trigger on RC Compare
2	UP_RC	UP mode with automatic trigger on RC Compare
3	UPDOWN RC	UPDOWN mode with automatic trigger on RC Compare

Bit 12 – ENETRG External Event Trigger Enable

Whatever the value programmed in ENETRG, the selected external event only controls the TIOAx output and TIOBx if not used as input (trigger event input or other input used).

Value	Description
0	The external event has no effect on the counter and its clock.
1	The external event resets the counter and starts the counter clock.

Bits 11:10 – EEVT[1:0] External Event Selection

Signal selected as external event.

Value	Name	Description	TIOB Direction
0	TIOB	TIOB	Input
1	XC0	XC0	Output
2	XC1	XC1	Output
3	XC2	XC2	Output

Note: If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subsequently no IRQs.

Bits 9:8 – EEVTEDG[1:0] External Event Edge Selection

Value	Name	Description
0	NONE	None
1	RISING	Rising edge
2	FALLING	Falling edge
3	EDGE	Each edge

Bit 7 – CPCDIS Counter Clock Disable with RC Compare

Value	Description
0	Counter clock is not disabled when counter reaches RC.
1	Counter clock is disabled when counter reaches RC.

Bit 6 – CPCSTOP Counter Clock Stopped with RC Compare

Value	Description
0	Counter clock is not stopped when counter reaches RC.
1	Counter clock is stopped when counter reaches RC.

Bits 5:4 – BURST[1:0] Burst Signal Selection

51. Pulse Width Modulation Controller (PWM)

51.1 Description

The Pulse Width Modulation Controller (PWM) generates output pulses on 4 channels independently according to parameters defined per channel. Each channel controls two complementary square output waveforms. Characteristics of the output waveforms such as period, duty-cycle, polarity and dead-times (also called dead-bands or non-overlapping times) are configured through the user interface. Each channel selects and uses one of the clocks provided by the clock generator. The clock generator provides several clocks resulting from the division of the PWM peripheral clock. External triggers can be managed to allow output pulses to be modified in real time.

All accesses to the PWM are made through registers mapped on the peripheral bus. All channels integrate a double buffering system in order to prevent an unexpected output waveform while modifying the period, the spread spectrum, the duty-cycle or the dead-times.

Channels can be linked together as synchronous channels to be able to update their duty-cycle or deadtimes at the same time.

The update of duty-cycles of synchronous channels can be performed by the DMA Controller channel which offers buffer transfer without processor Intervention.

The PWM includes a spread-spectrum counter to allow a constantly varying period (only for Channel 0). This counter may be useful to minimize electromagnetic interference or to reduce the acoustic noise of a PWM driven motor.

The PWM provides 8 independent comparison units capable of comparing a programmed value to the counter of the synchronous channels (counter of channel 0). These comparisons are intended to generate software interrupts, to trigger pulses on the 2 independent event lines (in order to synchronize ADC conversions with a lot of flexibility independently of the PWM outputs) and to trigger DMA Controller transfer requests.

PWM outputs can be overridden synchronously or asynchronously to their channel counter.

The PWM provides a fault protection mechanism with 8 fault inputs, capable to detect a fault condition and to override the PWM outputs asynchronously (outputs forced to '0', '1' or Hi-Z).

For safety usage, some configuration registers are write-protected.

51.2 Embedded Characteristics

- 4 Channels
- Common Clock Generator Providing Thirteen Different Clocks
 - A Modulo n Counter Providing Eleven Clocks
 - Two Independent Linear Dividers Working on Modulo n Counter Outputs
- Independent Channels
 - Independent 16-bit Counter for Each Channel
 - Independent Complementary Outputs with 12-bit Dead-Time Generator (Also Called Dead-Band or Non-Overlapping Time) for Each Channel
 - Independent Push-Pull Mode for Each Channel
 - Independent Enable Disable Command for Each Channel

Pulse Width Modulation Controller (PWM)

Offset	Name	Bit Pos.										
		23:16	DTL[7:0]									
		31:24		DTL[15:8]								
		7:0				DTHUF	PD[7:0]					
		15:8		DTHUPD[15:8]								
0x021C	PWM_DTUPD0	23:16		DTLUPD[7:0]								
		31:24				DTLUP	D[15:8]					
		7:0						CPR	E[3:0]			
		15:8			TCTS	DPOLI	UPDS	CES	CPOL	CALG		
0x0220	PWM_CMR1	23:16			_		PPM	DTLI	DTHI	DTE		
		31:24										
		7:0				CDT	/[7:0]					
0.0004		15:8				CDTY	[15:8]					
0x0224	PWM_CDTY1	23:16				CDTY	[23:16]					
		31:24										
		7:0				CDTYU	PD[7:0]					
0.0000	PWM_CDTYUPD1	15:8				CDTYU	PD[15:8]					
0x0228		23:16				CDTYUP	D[23:16]					
		31:24										
		7:0		1		CPRI	D[7:0]	1	1			
0x022C		15:8	CPRD[15:8]									
	PWM_CPRD1	23:16				CPRD	[23:16]					
		31:24										
		7:0				CPRDU	PD[7:0]	1				
0,0220		15:8				CPRDU	PD[15:8]					
0x0230		23:16				CPRDUF	PD[23:16]					
		31:24										
		7:0				CNT	[7:0]					
0x0234	PWM CONT1	15:8				CNT[15:8]					
0,0204		23:16				CNT[2	23:16]					
		31:24										
		7:0				DTH	[7:0]					
0x0238	PWM DT1	15:8				DTH[15:8]					
UNO200		23:16				DTL	[7:0]					
		31:24				DTL[15:8]					
		7:0				DTHUF	PD[7:0]					
0x023C		15:8				DTHUP	D[15:8]					
0.0200		23:16				DTLUF	PD[7:0]					
		31:24				DTLUP	D[15:8]					
		7:0						CPR	E[3:0]			
0x0240	PWM CMR2	15:8			TCTS	DPOLI	UPDS	CES	CPOL	CALG		
		23:16					PPM	DTLI	DTHI	DTE		
		31:24										
		7:0				CDTY	/[7:0]					
0x0244	PWM CDTY2	15:8				CDTY	[15:8]					
		23:16				CDTY	23:16]					
		31:24										

Electrical Characteristics for SAM ...

where, C_{PCB} is the capacitance of the printed circuit board (PCB) track layout from the crystal to the pin.

58.4.7 3 to 20 MHz Crystal Characteristics Table 58-24. 3 to 20 MHz Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor	Fundamental at 3 MHz	_	_	150	Ohm
		Fundamental at 8 MHz			140	
		Fundamental at 12 MHz			120	
		Fundamental at 16 MHz			80	
		Fundamental at 20 MHz			50	
C _M	Motional capacitance	Fundamental at 3 MHz	3	-	8	fF
		Fundamental at 8–20 MHz	1.6	_	8	
C _{SHUNT}	Shunt capacitance	-	_	-	7	pF
C _{CRYSTAL}	Allowed Crystal Capacitance Load	From crystal specification	12.5	-	17.5	pF
P _{ON}	Drive Level	3 MHz	-	-	15	μW
		8 MHz	_	_	30	
		12 MHz, 20 MHz	_	-	50	

58.4.83 to 20 MHz XIN Clock Input Characteristics in Bypass ModeTable 58-25.3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
1/(t _{CPXIN})	XIN Clock Frequency	(see Note 1)	-	-	20	MHz
t _{CHXIN}	XIN Clock High Half- period	(see Note 1)	25	_	-	ns
t _{CLXIN}	XIN Clock Low Half-period	(see Note 1)	25	-	-	ns
$V_{XIN_{IL}}$	V _{XIN} Input Low-level Voltage	(see Note 1)	Min of V _{IL} for CLOCK pad	_	Max of V _{IL} for CLOCK pad	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(see Note 1)	Min of V _{IH} for CLOCK pad	_	Max of V _{IH} for CLOCK pad	V

Note:

1. These characteristics apply only when the 3–20 MHz crystal oscillator is in Bypass mode.

58.4.9 Crystal Oscillator Design Considerations

58.4.9.1 Choosing a Crystal

When choosing a crystal for the 32768 Hz Slow Clock Oscillator or for the 3–20 MHz oscillator, several parameters must be taken into account. Important parameters between crystal and product specifications are as follows:

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		ESR	_	_	2	Ohm
t _{ON}	Turn-on Time	$C_{DOUT} = 1 \ \mu F$, V_{DDOUT} reaches DC output voltage	_	1	2.5	ms

Note:

- A 4.7 μF (±20%) or higher ceramic capacitor must be connected between V_{DDIN} and the closest GND pin of the device. This large decoupling capacitor is mandatory to reduce startup current, improving transient response and noise rejection.
- 2. To ensure stability, an external 1 μ F (±20%) output capacitor, C_{DOUT}, must be connected between V_{DDOUT} and the closest GND pin of the device. Solid tantalum and multilayer ceramic capacitors are suitable as output capacitors. A 100 nF bypass capacitor between V_{DDOUT} and the closest GND pin of the device helps decrease output noise and improves the load transient response.

Table 59-6. Core Power Supply Brownout Detector Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Supply Falling Threshold (see Note					
V _{T-}	1)	-	0.97	1.0	1.04	V
V _{hys}	Hysteresis Voltage	_	_	25	50	mV
1	Startur Time	From disabled state to enabled			400	
ISTART	Startup Time	state	-	-	400	μs

Note:

1. The Brownout Detector is configured using the BODDIS bit in the SUPC_MR register.

Figure 59-1. Core Brownout Output Waveform

Table 59-7. VDDCORE Power-on Reset Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{T+}	Threshold Voltage Rising	-	0.79	0.95	1.07	V
V _{T-}	Threshold Voltage Falling	-	0.66	0.89	_	V
V _{hys}	Hysteresis Voltage	-	10	60	115	mV
t _{RES}	Reset Timeout Period	-	240	350	800	μs

Revision History

Date	Changes
	Section 25.5.2 "Reinforced Safety Watchdog Timer Mode Register": bit 14 now reserved.
	Section 26. "Reset Controller (RSTC)" Section 26.4.3.1 "General Reset": removed reference to NRSTB.
	Table 26.5 "Reset Controller (RSTC) User Interface": updated reset value for RSTC_MR.
	Section 27. "Real-time Clock (RTC)" Updated Section 27.5.7 "RTC Accurate Clock Calibration".
	Figure 27-4, "Calibration Circuitry Waveforms": corrected two instances of "3,906 ms" to "3.906 ms".
	Table 27-2 "Register Mapping": corrected reset for RTC_CALR. Added offset 0xCC as reserved. Added RTC_WPMR at offset 0xE4
	Section 27.6.1 "RTC Control Register": updated descriptions of value '0' for bits UPDTIM and UPDCAL.
	Added Section 27.6.13 "RTC Write Protection Mode Register".
	Added write protection for Section 27.6.1 "RTC Control Register", Section 27.6.2 "RTC Mode Register", Section 27.6.5 "RTC Time Alarm Register" and Section 27.6.6 "RTC Calendar Alarm Register".
	Section 30. "General Purpose Backup Registers (GPBR)" Corrected total size of backup registers.
08-Feb-16	Section 31. "Clock Generator" Section 31.2 "Embedded Characteristics": updated bullet on embedded RC oscillator.
	Figure 31-3, "Main Clock Block Diagram": renamed "3-20 MHz Crystal or Ceramic Resonator Oscillator" to "Main Crystal or Ceramic Resonator Oscillator". Renamed "3-20 MHz Oscillator Counter" to "Main Oscillator Counter".
	Section 31.5.1 "Embedded 4/8/12 MHz RC Oscillator": changed last paragraph beginning "The user can adjust the value".
	Section 31.5.4 "Main Clock Source Selection": added that the RC oscillator must be selected for Wait mode.
	Updated Section 31.5.6 "Main Clock Frequency Counter".
	Updated Section 31.5.7 "Switching Main Clock between the RC Oscillator and Crystal Oscillator".
	Updated Section 31.6.1 "Divider and Phase Lock Loop Programming" with paragraph on correct programming of the multiplication factor of the PLL.
	Section 31.7 "UTMI Phase Lock Loop Programming": deleted sentence on crystal requirements for USB.
	Section 32. "Power Management Controller (PMC)" Section 32.1 "Description": corrected list of oscillators that can be trimmed by software.