

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q19a-cfn
FUICIASE UKL	https://www.e-xn.com/product-detail/microcnip-technology/atsame/oq138-CIN

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9. Interconnect

The system architecture is based on the ARM Cortex-M7 processor connected to the main AHB Bus Matrix, the embedded Flash, the multi-port SRAM and the ROM.

The 32-bit AHBP interface is a single 32-bit wide interface that accesses the peripherals connected on the main Bus Matrix. It is used only for data access. Instruction fetches are never performed on the AHBP interface. The bus, AHBP or AXIM, accessing the peripheral memory area [0x40000000 to 0x60000000] is selected in the AHBP control register.

The 32-bit AHBS interface provides system access to the ITCM, D1TCM, and D0TCM. It is connected on the main Bus Matrix and allows the XDMA to transfer from memory or peripherals to the instruction or data TCMs.

The 64-bit AXIM interface is a single 64-bit wide interface connected through two ports of the AXI Bridge to the main AHB Bus Matrix and to two ports of the multi-port SRAM. The AXIM interface allows:

- Instruction fetches
- Data cache linefills and evictions
- Non-cacheable normal-type memory data accesses
- Device and strongly-ordered type data accesses, generally to peripherals

The interleaved multi-port SRAM optimizes the Cortex-M7 accesses to the internal SRAM.

The interconnect of the other masters and slaves is described in 19. Bus Matrix (MATRIX).

The figure below shows the connections of the different Cortex-M7 ports.

Figure 9-1. Interconnect Block Diagram

These additional modes are:

- Rising edge detection
- Falling edge detection
- Low-level detection
- High-level detection

In order to select an additional interrupt mode:

- The type of event detection (edge or level) must be selected by writing in the Edge Select Register (PIO_ESR) and Level Select Register (PIO_LSR) which select, respectively, the edge and level detection. The current status of this selection is accessible through the Edge/Level Status Register (PIO_ELSR).
- The polarity of the event detection (rising/falling edge or high/low-level) must be selected by writing in the Falling Edge/Low-Level Select Register (PIO_FELLSR) and Rising Edge/High-Level Select Register (PIO_REHLSR) which allow to select falling or rising edge (if edge is selected in PIO_ELSR) edge or high- or low-level detection (if level is selected in PIO_ELSR). The current status of this selection is accessible through the Fall/Rise - Low/High Status Register (PIO_FRLHSR).

When an input edge or level is detected on an I/O line, the corresponding bit in the Interrupt Status Register (PIO_ISR) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The interrupt signals of the 32 channels are ORed-wired together to generate a single interrupt signal to the interrupt controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a "level", the interrupt is generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

Figure 32-6. Event Detector on Input Lines (Figure Represents Line 0)

Example of interrupt generation on following lines:

- Rising edge on PIO line 0
- Falling edge on PIO line 1
- Rising edge on PIO line 2
- Low-level on PIO line 3

34.7.13 SDRAMC OCMS KEY2 Register

Name:	SDRAMC_OCMS_KEY2
Offset:	0x34
Reset:	_
Property:	Write-only

Bit	31	30	29	28	27	26	25	24
[KEY2	[31:24]			
Access	W	W	W	W	W	W	W	W
Reset	-	_	-	-	-	-	-	_
Bit	23	22	21	20	19	18	17	16
				KEY2	[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	-	_	-	-	-	_	-	_
Bit	15	14	13	12	11	10	9	8
				KEY2	[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	-	_	-	-	-	_	-	_
Bit	7	6	5	4	3	2	1	0
				KEY	2[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	_	_	_	_	_	-	-	_

Bits 31:0 – KEY2[31:0] Off-chip Memory Scrambling (OCMS) Key Part 2

When off-chip memory scrambling is enabled, the data scrambling depends on KEY1 and KEY2 values.

Static Memory Controller (SMC)

Figure 35-26. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

35.13 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC. The SMC_MODE.EXNW_MODE field on the corresponding chip select must be set either to "10" (Frozen mode) or "11" (Ready mode). When SMC_MODE.EXNW_MODE is set to "00" (disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write controlling signal, depending on the Read and Write modes of the corresponding chip select.

35.13.1 Restriction

When SMC_MODE.EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page mode (35.15 Asynchronous Page Mode), or in Slow clock mode ("Slow Clock Mode").

The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the NWAIT signal outside the expected period has no impact on SMC behavior.

35.13.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the point where it was stopped. See Figure 35-27. This mode must be selected when the external device uses the NWAIT signal to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 35-28.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
0x050F												
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE		
0.0540		15:8										
0x0510	XDMAC_CIE19	23:16										
		31:24										
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID		
020514		15:8										
0,0014	XDWAC_CID19	23:16										
		31:24										
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM		
0x0518		15:8										
0,0010		23:16										
		31:24										
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS		
0x051C	XDMAC CIS19	15:8										
0,0010		23:16										
		31:24										
		7:0				SA[7:0]					
0x0520	XDMAC_CSA19	15:8	SA[15:8]									
		23:16		SA[23:16]								
		31:24				SA[3	1:24]					
		7:0	DA[7:0]									
0x0524	XDMAC CDA19	15:8	DA[15:8]									
	_	23:16	DA[23:16]									
		31:24	DA[31:24]									
		7:0		NDA[5:0] NDAIF								
0x0528	XDMAC_CNDA19	15:8		NDA[13:6]								
	_	23:16	NDA[21:14]									
		31:24				NDA[2	29:22]	1				
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE		
0x052C	XDMAC_CNDC19	15:8										
		23:16										
		31:24										
		7:0				UBLE	N[7:0]					
0x0530	XDMAC_CUBC19	15:8				UBLEN	V[15:8]					
		23:16				UBLEN	[23:16]					
		31:24					177 01					
		/:0				BLEN	I[7:0]		1[44.0]			
0x0534	XDMAC_CBC19	15:8						BLEN	i[11:8]			
		23:16										
		31:24	MEMOET	014/050		DOVALO		MDO	7-[4.0]	TYPE		
		1:0	MEMSEI	SWREQ	OIE	DSYNC		MBSIZ		IYPE		
0x0538	XDMAC_CC19	02:40				DVVID		4[4:0]	CSIZE[2:0]	1[4.0]		
		23:16	WRIP	RUIP	INITD			/[1:0]	SAM	[1:0]		
		31:24		PERID[6:0]								

Image Sensor Interface (ISI)

Value	Name	Description
		Byte 3 B/G(MSB)
3	MODE3	Byte 0 G(LSB)/B
		Byte 1 R/G(MSB)
		Byte 2 G(LSB)/B
		Byte 3 R/G(MSB)

Bits 29:28 – YCC_SWAP[1:0] YCrCb Format Swap Mode Defines the YCC image data.

Value	Name	Description
0	DEFAULT	Byte 0 Cb(i)
		Byte 1 Y(i)
		Byte 2 Cr(i)
		Byte 3 Y(i+1)
1	MODE1	Byte 0 Cr(i)
		Byte 1 Y(i)
		Byte 2 Cb(i)
		Byte 3 Y(i+1)
2	MODE2	Byte 0 Y(i)
		Byte 1 Cb(i)
		Byte 2 Y(i+1)
		Byte 3 Cr(i)
3	MODE3	Byte 0 Y(i)
		Byte 1 Cr(i)
		Byte 2 Y(i+1)
		Byte 3 Cb(i)

Bits 26:16 – IM_HSIZE[10:0] Horizontal Size of the Image Sensor [0..2047] If 8-bit Grayscale mode is enabled, IM_HSIZE = (Horizontal size/2) - 1.

Else IM_HSIZE = Horizontal size - 1.

Bit 15 – COL_SPACE Color Space for the Image Data

Value	Description
0	YCbCr.
1	RGB.

Bit 14 – RGB_SWAP RGB Format Swap Mode

The RGB_SWAP has no effect when Grayscale mode is enabled.

	Name: Offset: Reset: Property:	GMAC_SCH 0x0E4 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				SEC	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
						_		
Bit	7	6	5	4	3	2	1	0
				SEC	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

38.8.33 GMAC 1588 Timer Second Comparison High Register

Bits 15:0 – SEC[15:0] 1588 Timer Second Comparison Value

Value is compared to the top 16 bits (most significant 16 bits [47:32] of seconds value) of the TSU timer count value.

SAM E70/S70/V70/V71 Family GMAC - Ethernet MAC

38.8.69 GMAC 1024 to 1518 Byte Frames Received Register

	Name: Offset: Reset: Property:	GMAC_TBFR1 0x17C 0x00000000 -	518					
Bit	31	30	29	28	27	26	25	24
				NFRX[[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NFRX[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NFRX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – NFRX[31:0] 1024 to 1518 Byte Frames Received without Error

This bit field counts the number of 1024 to 1518 byte frames successfully received without error, i.e., no underrun and not too many retries.

USB High-Speed Interface (USBHS)

Value	Description
0	No channel register is loaded after the end of the channel transfer.
1	The channel controller loads the next descriptor after the end of the current transfer, i.e.,
	when the USBHS_DEVDMASTATUS.CHANN_ENB bit is reset.

Bit 0 – CHANN_ENB Channel Enable Command

Value	Description
0	The DMA channel is disabled at end of transfer and no transfer occurs upon request. This bit is also cleared by hardware when the channel source bus is disabled at end of buffer.
	If the LDNXT_DSC bit has been cleared by descriptor loading, the firmware must set the corresponding CHANN_ENB bit to start the described transfer, if needed.
	If the LDNXT_DSC bit is cleared, the channel is frozen and the channel registers may then be read and/or written reliably as soon as both USBHS_DEVDMASTATUS.CHANN_ENB and CHANN_ACT flags read as 0.
	If a channel request is currently serviced when this bit is cleared, the DMA FIFO buffer is drained until it is empty, then the USBHS_DEVDMASTATUS.CHANN_ENB bit is cleared.
	If the LDNXT_DSC bit is set at or after this bit clearing, then the currently loaded descriptor is skipped (no data transfer occurs) and the next descriptor is immediately loaded.
1	The USBHS_DEVDMASTATUS.CHANN_ENB bit is set, thus enabling the DMA channel data transfer. Then, any pending request starts the transfer. This may be used to start or resume any requested transfer.

USB High-Speed Interface (USBHS)

Bit 5 – END_BF_ST End of Channel Buffer Status

Valid until the CHANN_ENB flag is cleared at the end of the next buffer transfer.

Value	Description
0	Cleared automatically when read by software.
1	Set by hardware when the BUFF_COUNT count-down reaches zero.

Bit 4 – END_TR_ST End of Channel Transfer Status

Valid until the CHANN_ENB flag is cleared at the end of the next buffer transfer.

Value	Description
0	Cleared automatically when read by software.
1	Set by hardware when the last packet transfer is complete, if the USBHS device has ended
	the transfer.

Bit 1 – CHANN_ACT Channel Active Status

When a packet transfer is ended, this bit is automatically reset.

When a packet transfer cannot be completed due to an END_BF_ST, this flag stays set during the next channel descriptor load (if any) and potentially until completion of a USBHS packet transfer, if allowed by the new descriptor.

Value	Description
0	The DMA channel is no longer trying to source the packet data.
1	The DMA channel is currently trying to source packet data, i.e., selected as the highest-
	priority requesting channel.

Bit 0 – CHANN_ENB Channel Enable Status

When any transfer is ended either due to an elapsed byte count or to completion of a USBHS deviceinitiated transfer, this bit is automatically reset.

This bit is normally set or cleared by writing into the USBHS_DEVDMACONTROLx.CHANN_ENB bit field either by software or descriptor loading.

If a channel request is currently serviced when the USBHS_DEVDMACONTROLx.CHANN_ENB bit is cleared, the DMA FIFO buffer is drained until it is empty, then this status bit is cleared.

Value	Description
0	If cleared, the DMA channel no longer transfers data, and may load the next descriptor if the
	USBHS_DEVDMACONTROLx.LDNXT_DSC bit is set.
1	If set, the DMA channel is currently enabled and transfers data upon request.

Quad Serial Peripheral Interface (QSPI)

Two-wire Interface (TWIHS)

Value	Description
0	No filtering applied on TWIHS inputs.
1	TWIHS input filtering is active (only in Standard and Fast modes)

Media Local Bus (MLB)

- 4. Program the CAT for the inbound DMA
 - 4.1. For Tx channels (to MediaLB) HBI is the inbound DMA
 - 4.2. For Rx channels (from MediaLB) MediaLB is the inbound DMA
 - 4.3. Set the channel direction: RNW = 0
 - 4.4. Set the channel type: CT[2:0] = 010 (asynchronous), 001 (control), 011 (isochronous), or 000 (synchronous)
 - 4.5. Set the connection label: CL[5:0] = N
 - 4.6. If CT[2:0] = 000 (synchronous), set the mute bit (MT = 1)
 - 4.7. Set the channel enable: CE = 1
 - 4.8. Set all other bits of the CAT to '0'
- 5. Program the CAT for the outbound DMA
 - 5.1. For Tx channels (to MediaLB) MediaLB is the outbound DMA
 - 5.2. For Rx channels (from MediaLB) HBI is the outbound DMA
 - 5.3. Set the channel direction: RNW = 1
 - 5.4. Set the channel type: CT[2:0] = 010 (asynchronous), 001 (control), 011 (isochronous), or 000 (synchronous)
 - 5.5. Set the channel label: CL[5:0] = N
 - 5.6. If CT[2:0] = 000 (synchronous), set the mute bit (MT = 1)
 - 5.7. Set the channel enable: CE = 1
 - 5.8. Set all other bits of the CAT to '0'
- 6. Repeat steps 2–5 to initialize all logical channels

Program the AHB Block DMAs

The ADT resides in the external CTR and is programmed indirectly via APB reads and writes to the MIF.

- 1. Initialize all bits of the ADT to '0'
- 2. Select a logical channel: N = 0-63
- 3. Program the AHB block ping page for channel N
 - 3.1. Set the 32-bit base address (BA1)
 - 3.2. Set the 11-bit buffer depth (BD1): BD1 = buffer depth in bytes 1
 - 3.2.1. For synchronous channels: (BD1 + 1) = n x frames per sub-buffer (m) x bytesper-frame (bpf)
 - 3.2.2. For isochronous channels: (BD1 + 1) mod (BS + 1) = 0
 - 3.2.3. For asynchronous channels: $5 \le (BD1 + 1) \le 4096$ (max packet length)
 - 3.2.4. For control channels: $5 \le (BD1 + 1) \le 4096$ (max packet length)
 - 3.3. For asynchronous and control Tx channels set the packet start bit (PS1) iff the page contains the start of the packet
 - 3.4. Clear the page done bit (DNE1)
 - 3.5. Clear the error bit (ERR1)
 - 3.6. Set the page ready bit (RDY1)
- 4. Program the AHB block pong page for channel N
 - 4.1. Set the 32-bit base address (BA2)
 - 4.2. Set the 11-bit buffer depth (BD2): BD2 = buffer depth in bytes 1
 - 4.2.1. For synchronous channels: (BD2 +1) = n x frames per sub-buffer (m) x bytesper-frame (bpf)

Timer Counter (TC)

T1,T2,T3,T4 = System Bus load dependent (t_{min} = 8 Peripheral Clocks)

50.6.10 Trigger Conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.

The ABETRG bit in the TC_CMR selects TIOAx or TIOBx input signal as an external trigger or the trigger signal from the output comparator of the PWM module. The External Trigger Edge Selection parameter (ETRGEDG field in TC_CMR) defines the edge (rising, falling, or both) detected to generate an external trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

Pulse Width Modulation Controller (PWM)

Name: Offset: Reset: Property:		PWM_OS 0x48 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
								10
Bit	23	22	21	20	19	18	17	16
					OSL3	OSL2	OSL1	OSL0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					OSH3	OSH2	OSH1	OSH0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

51.7.19 PWM Output Selection Register

Bits 16, 17, 18, 19 - OSLx Output Selection for PWML output of the channel x

Value	Description
0	Dead-time generator output DTOLx selected as PWML output of channel x.
1	Output override value OOVLx selected as PWML output of channel x.

Bits 0, 1, 2, 3 – OSHx Output Selection for PWMH output of the channel x

Value	Description
0	Dead-time generator output DTOHx selected as PWMH output of channel x.
1	Output override value OOVHx selected as PWMH output of channel x.

51.7.34 PWM Write Protection Control Register

Name:	PWM_WPCR
Offset:	0xE4
Reset:	-
Property:	Write-only

See Register Write Protection for the list of registers that can be write-protected.

Bit	31	30	29	28	27	26	25	24
Γ				WPKEY	′[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Dit	15	1 4	10	10	11	10	0	0
ВІС	15	14	13	12	11	10	9	8
L				WPKE	Y[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_
Bit	7	6	5	4	3	2	1	0
	WPRG5	WPRG4	WPRG3	WPRG2	WPRG1	WPRG0	WPCN	/ID[1:0]
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	-	0	-

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x50574	PASSWD	Writing any other value in this field aborts the write operation of the WPCMD field.
D		Always reads as 0

Bits 2, 3, 4, 5, 6, 7 – WPRGx Write Protection Register Group x

Value	Description
0	The WPCMD command has no effect on the register group x.
1	The WPCMD command is applied to the register group x.

Bits 1:0 - WPCMD[1:0] Write Protection Command

This command is performed only if the WPKEY corresponds to 0x50574D ("PWM" in ASCII).

Pulse Width Modulation Controller (PWM)

51.7.49 PWM External Trigger Register

Name:	PWM_ETRGx
Offset:	0x042C + x*0x20 [x=01]
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
ſ	RFEN	TRGSRC	TRGFILT	TRGEDGE			TRGMC	DDE[1:0]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	23	22	21	20	19	18	17	16
				MAXCN	T[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	MAXCNT[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
ſ				MAXC	NT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - RFEN Recoverable Fault Enable

Value	Description
0	The TRGINx signal does not generate a recoverable fault.
1	The TRGINx signal generate a recoverable fault in place of the fault x input.

Bit 30 – TRGSRC Trigger Source

Value	Description
0	The TRGINx signal is driven by the PWMEXTRGx input.
1	The TRGINx signal is driven by the Analog Comparator Controller.

Bit 29 – TRGFILT Filtered input

Value	Description
0	The external trigger input x is not filtered.
1	The external trigger input x is filtered.

Bit 28 – TRGEDGE Edge Selection

Value	Name	Description
0	FALLING_ZERO	TRGMODE = 1: TRGINx event detection on falling edge.

Electrical Characteristics for SAM E70/S70

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Max	Unit
SPI ₁₃	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns
		1.7V domain	0	_	ns
SPI ₁₄	NPCS setup to SPCK falling (slave)	3.3V domain	4.0	_	ns
		1.7V domain	4.1	_	ns
SPI ₁₅	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns
		1.7V domain	0	_	ns

Note that in SPI master mode, the device does not sample the data (MISO) on the opposite edge where the data clocks out (MOSI), but the same edge is used. See Figure 58-19 and Figure 58-20.

59.13.1.7 HSMCI Timings

The High-speed MultiMedia Card Interface (HSMCI) supports the MultiMedia Card (MMC) Specification V4.3, the SD Memory Card Specification V2.0, the SDIO V2.0 specification and CE-ATA V1.1.

59.13.1.8 SDRAM Timings

The SDRAM Controller satisfies the timings of standard SDR-133 and LP-SDR-133 modules. SDR-133 and LP-SDR-133 timings are specified by the JEDEC standard.

59.13.1.9 SMC Timings

Timings are given in the following domains:

- 1.8V domain: VDDIO from 1.7V to 1.95V, maximum external capacitor = 30 pF
- 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 50 pF

Timings are given assuming a capacitance load on data, control and address pads.

In the tables that follow, t_{CPMCK} is MCK period.

59.13.1.9.1 Read Timings

Table 59-58. SMC Read Signals - NRD Controlled (READ_MODE = 1)

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit	
	Parameter	Min		Мах			
NO HOL	D Settings (NRD	_HOLD = 0)					
SMC ₁	Data Setup before NRD High	17.2	14.3	-	-	ns	
SMC ₂	Data Hold after NRD High	0	0	-	-	ns	
HOLD Settings (NRD_HOLD ≠ 0)							
SMC ₃	Data Setup before NRD High	15.2	12.1	_	-	ns	

Electrical Characteristics for SAM E70/S70

Symbol	VDDIO Supply	1.7V Domain	3.3V Domain	Unit
	Parameter	М	in	
SMC ₁₁	Data Hold after NCS High	0	0	ns
HOLD or	NO HOLD Settings (NCS	_RD_HOLD ≠ 0, NCS_RD_HOL	.D = 0)	
SMC ₁₂	A0–A22 valid before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE) × t _{CPMCK} - 4.0	(NCS_RD_SETUP + NCS_RD_PULSE) × t _{CPMCK} - 3.9	ns
SMC ₁₃	NRD low before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 2.8	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 4.2	ns
SMC ₁₄	NCS Pulse Width	NCS_RD_PULSE length × t _{CPMCK} - 0.9	NCS_RD_PULSE length × t _{CPMCK} - 0.2	ns

59.13.1.9.3 Write Timings

Table 59-62. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit
	Parameter	Min		Max		
HOLD or	NO HOLD Setting	gs (NWE_HOLD ≠ 0, NV	VE_HOLD = 0)			
SMC ₁₅	Data Out Valid before NWE High	NWE_PULSE × t _{CPMCK} - 5.4	NWE_PULSE × t _{CPMCK} - 4.6	-	-	ns
SMC ₁₆	NWE Pulse Width	NWE_PULSE × t _{CPMCK} - 0.7	NWE_PULSE × t _{CPMCK} - 0.3	-	-	ns
SMC ₁₇	A0–A22 valid before NWE low	NWE_SETUP × t _{CPMCK} - 4.9	NWE_SETUP × t _{CPMCK} - 4.2	-	-	ns
SMC ₁₈	NCS low before NWE high	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 3.2	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 2.2	_	_	ns
HOLD S	ettings (NWE_HO	LD ≠ 0)				
SMC ₁₉	NWE High to Data OUT, NBS0/A0 NBS1, A1, A2– A25 change	NWE_HOLD × t _{CPMCK} - 4.6	NWE_HOLD × t _{CPMCK} - 3.9	_	_	ns
SMC ₂₀	NWE High to NCS Inactive ⁽¹⁾	(NWE_HOLD - NCS_WR_HOLD) × t _{CPMCK} - 3.9	(NWE_HOLD - NCS_WR_HOLD) × t _{CPMCK} - 3.6	-	-	ns