

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q19a-cfnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

23.5.1 Supply Controller Control Register

Bits 31:24 - KEY[7:0] Password

Value	Name	Description
0xA5	PASSWD	Writing any other value in this field aborts the write operation.

Bit 3 – XTALSEL Crystal Oscillator Select

Note: This bit is located in the VDDIO domain.

Value	Description
0	(NO_EFFECT): No effect.
1	(CRYSTAL_SEL): If KEY is correct, XTALSEL switches the slow clock on the 32.768 kHz
	crystal oscillator output.

Bit 2 – VROFF Voltage Regulator Off

Note: This bit is located in the VDDIO domain.

Value	Description
0	(NO_EFFECT): No effect.
1	(STOP_VREG): If KEY is correct, VROFF asserts the vddcore_nreset and stops the voltage regulator.

SAM E70/S70/V70/V71 Family

Real-time Timer (RTT)

Power Management Controller (PMC)

31.20.27 PMC Oscillator Calibration Register

Name:	PMC_OCR
Offset:	0x0110
Reset:	0x00404040
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
ſ								
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	SEL12				CAL12[6:0]			
Access		•						
Reset	0	1	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
ſ	SEL8				CAL8[6:0]			
Access								
Reset	0	1	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ	SEL4	CAL4[6:0]						
Access		•						
Reset	0	1	0	0	0	0	0	0

Bit 23 – SEL12 Selection of Main RC Oscillator Calibration Bits for 12 MHz

Value	Description
0	Factory-determined value stored in Flash memory.
1	Value written by user in CAL12 field of this register.

Bits 22:16 – CAL12[6:0] Main RC Oscillator Calibration Bits for 12 MHz Calibration bits applied to the RC Oscillator when SEL12 is set.

Bit 15 – SEL8 Selection of Main RC Oscillator Calibration Bits for 8 MHz

Value	Description
0	Factory-determined value stored in Flash memory.
1	Value written by user in CAL8 field of this register.

Bits 14:8 – CAL8[6:0] Main RC Oscillator Calibration Bits for 8 MHz Calibration bits applied to the RC Oscillator when SEL8 is set.

Bit 7 – SEL4 Selection of Main RC Oscillator Calibration Bits for 4 MHz

34.7.10 SDRAMC Configuration Register 1

	Name: Offset: Reset: Property:	SDRAMC_CF 0x28 0x00000002 Read/Write	R1					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								UNAL
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
						TMRI	D[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	1	0

Bit 8 – UNAL Support Unaligned Access

This mode is enabled with masters which have an AXI interface.

Value	Name	Description
0	UNSUPPORTED	Unaligned access is not supported.
1	SUPPORTED	Unaligned access is supported.

Bits 3:0 – TMRD[3:0] Load Mode Register Command to Active or Refresh Command Reset value is 2 cycles.

This field defines the delay between a "Load Mode Register" command and an active or refresh command in number of cycles. Number of cycles is between 0 and 15.

SAM E70/S70/V70/V71 Family

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS		
0.0040		15:8										
0x031C	XDMAC_CIS11	23:16										
		31:24										
		7:0				SA	[7:0]					
0x0320		15:8		SA[15:8]								
	XDMAC_CSA11	23:16				SA[2	3:16]					
		31:24		SA[31:24]								
		7:0				DA	[7:0]					
		15:8				DA[15:8]					
0x0324	XDMAC_CDA11	23:16				DA[2	3:16]					
		31:24				DA[3	1:24]					
		7:0			NDA	[5:0]	-			NDAIF		
		15:8				NDA	[13:6]					
0x0328	XDMAC_CNDA11	23:16				NDA	21:14]					
		31:24				NDA	29:221					
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE		
		15:8										
0x032C	XDMAC_CNDC11	23.16										
		31.24										
		7.0				LIBI E	N[7·0]					
		15.8					N[15:8]					
0x0330	XDMAC_CUBC11	23.16										
		20.10				ODLLI	125.10j					
		7:0				BIE	1[7:0]					
		15.9	RI EN[11:8]									
0x0334	XDMAC_CBC11	23.16						DLLI	4[11.0]			
		23.10										
		7:0	MEMOET	SW/DEO		DOVINO		MDOI	75(4,0)	тург		
		15.0	IVIEIVISE I	SWREQ	OIE.	DSTINC	TL I[1.0]	IVID 312		TTPE		
0x0338	XDMAC_CC11	15:8				DVVID		4[4.0]	CSIZE[2:0]	[4.0]		
		23:10	WRIP	RDIP	INITD							
		31.24										
		7:0				3D3_N						
0x033C	XDMAC_CDS_MSP	15:8					SP[15:8]					
		23:10					00[45:0]					
		31:24				DDS_M	SP[15:8]					
		7:0				SUB	5[7:0]					
0x0340	XDMAC_CSUS11	15:8				SUBS	5[15:8]					
		23:16				SUBS	[23:16]					
		31:24										
		7:0				DUB	S[7:0]					
0x0344	XDMAC_CDUS11	15:8				DUBS	5[15:8]					
		23:16				DUBS	[23:16]					
		31:24										
0x0348	Reserved											

38.8.50 GMAC Greater Than 1518 Byte Frames Transmitted Register

Name:	GMAC_GTBFT1518
Offset:	0x130
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
				NFTX	[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NFTX	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NFTX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				NFT	K [7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – NFTX[31:0] Greater than 1518 Byte Frames Transmitted without Error This register counts the number of 1518 or above byte frames successfully transmitted without error i.e., no underrun and not too many retries.

38.8.65 GMAC 65 to 127 Byte Frames Received Register

Name:	GMAC_TBFR127
Offset:	0x16C
Reset:	0x0000000
Property:	-

Bit	31	30	29	28	27	26	25	24
[NFRX	[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NFRX	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NFRX	([15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				NFR	X[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - NFRX[31:0] 65 to 127 Byte Frames Received without Error

This bit field counts the number of 65 to 127 byte frames successfully received without error. Excludes pause frames, and is only incremented if the frame is successfully filtered and copied to memory.

USB High-Speed Interface (USBHS)

- the receive and transmit bank FIFO counters,
- all registers of this endpoint (USBHS_DEVEPTCFGx, USBHS_DEVEPTISRx, the Endpoint x Control (USBHS_DEVEPTIMRx) register), except its configuration (USBHS_DEVEPTCFGx.ALLOC, USBHS_DEVEPTCFGx.EPBK, USBHS_DEVEPTCFGx.EPSIZE, USBHS_DEVEPTCFGx.EPDIR, USBHS_DEVEPTCFGx.EPTYPE) and the Data Toggle Sequence (USBHS_DEVEPTISRx.DTSEQ) field. Note: The interrupt sources located in USBHS_DEVEPTISRx are not cleared when a USB bus reset has been received.

The endpoint configuration remains active and the endpoint is still enabled.

The endpoint reset may be associated with a clear of the data toggle sequence as an answer to the CLEAR_FEATURE USB request. This can be achieved by writing a one to the Reset Data Toggle Set bit (RSTDTS) in the Device Endpoint x Control Set register (this sets the Reset Data Toggle bit USBHS_DEVEPTIMRx.RSTDT).

In the end, the user has to write a zero to the USBHS_DEVEPT.EPRSTx bit to complete the reset operation and to start using the FIFO.

39.5.2.5 Endpoint Activation

The endpoint is maintained inactive and reset (see "Endpoint Reset" for more information) as long as it is disabled (USBHS_DEVEPT.EPENx = 0). USBHS_DEVEPTISRx.DTSEQ is also reset.

The algorithm represented in the following figure must be followed to activate an endpoint.

Figure 39-8. Endpoint Activation Algorithm

As long as the endpoint is not correctly configured (USBHS_HSTPIPISRx.CFGOK = 0), the controller does not acknowledge the packets sent by the host to this endpoint.

The USBHS_HSTPIPISRx.CFGOK bit is set provided that the configured size and number of banks are correct as compared to the endpoint maximal allowed values (see the Description of USB Pipes/ Endpoints table) and to the maximal FIFO size (i.e., the DPRAM size).

See "DPRAM Management" for additional information.

39.5.2.6 Address Setup

The USB device address is set up according to the USB protocol.

• After all kinds of resets, the USB device address is 0.

USB High-Speed Interface (USBHS)

39.6.8 Device Global Interrupt Set Register

Name:USBHS_DEVIFROffset:0x000CProperty:Write-only

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Sets the corresponding bit in USBHS_DEVISR.

Bit	31	30	29	28	27	26	25	24
	DMA_6	DMA_5	DMA_4	DMA_3	DMA_2	DMA_1	DMA_0	
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
D:4	7	0	-		0	0	4	0
Bit	1	6	5	4	3	2	1	0
		UPRSMS	EORSMS	WAKEUPS	EORSTS	SOFS	MSOFS	SUSPS
Access								

Reset

Bits 25, 26, 27, 28, 29, 30, 31 – DMA_ DMA Channel x Interrupt Set

Bit 6 – UPRSMS Upstream Resume Interrupt Set

Bit 5 - EORSMS End of Resume Interrupt Set

Bit 4 – WAKEUPS Wakeup Interrupt Set

Bit 3 - EORSTS End of Reset Interrupt Set

Bit 2 – SOFS Start of Frame Interrupt Set

Bit 1 – MSOFS Micro Start of Frame Interrupt Set

Bit 0 - SUSPS Suspend Interrupt Set

- 5. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCND set to BOOTREQ, TRDIR set to READ and TRCMD set to "start data transfer".
- 6. DMA controller copies the boot partition to the memory.
- 7. When DMA transfer is completed, host processor shall terminate the boot stream by writing the HSMCI_CMDR with SPCMD field set to BOOTEND.

40.12 HSMCI Transfer Done Timings

40.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

40.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in the following figure.

Figure 40-11. XFRDONE During a Read Access

40.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in the following figure.

43.7.5 **TWIHS Clock Waveform Generator Register**

Name:	TWIHS_CWGR
Offset:	0x10
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the TWIHS Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
ſ					HOLI	D[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
							CKDIV[2:0]	
Access					-	R/W	R/W	R/W
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				CHDI	V[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[CLDI	V[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

TWIHS_CWGR is used in Master mode only.

Bits 29:24 - HOLD[5:0] TWD Hold Time Versus TWCK Falling

If High-speed mode is selected TWD is internally modified on the TWCK falling edge to meet the I2C specified maximum hold time, else if High-speed mode is not configured TWD is kept unchanged after TWCK falling edge for a period of (HOLD + 3) × $t_{peripheral clock}$.

Bits 18:16 - CKDIV[2:0] Clock Divider

The CKDIV is used to increase both SCL high and low periods.

Bits 15:8 - CHDIV[7:0] Clock High Divider The SCL high period is defined as follows:

 $t_{\text{high}} = ((\text{CHDIV} \times 2^{\text{CKDIV}}) + 3) \times t_{\text{peripheral clock}}$

Bits 7:0 - CLDIV[7:0] Clock Low Divider The SCL low period is defined as follows:

 $t_{low} = ((CLDIV \times 2^{CKDIV}) + 3) \times t_{peripheral clock}$

Synchronous Serial Controller (SSC)

Bits 19:16 – FSLEN[3:0] Receive Frame Sync Length

This field defines the number of bits sampled and stored in the Receive Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also determines the length of the sampled data to be compared to the Compare 0 or Compare 1 register.

This field is used with FSLEN_EXT to determine the pulse length of the Receive Frame Sync signal.

Pulse length is equal to FSLEN + (FSLEN_EXT × 16) + 1 Receive Clock periods.

Bits 11:8 – DATNB[3:0] Data Number per Frame

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

Bit 7 - MSBF Most Significant Bit First

Value	Description
0	The lowest significant bit of the data register is sampled first in the bit stream.
1	The most significant bit of the data register is sampled first in the bit stream.

Bit 5 – LOOP Loop Mode

Value	Description
0	Normal operating mode.
1	RD is driven by TD, RF is driven by TF and TK drives RK.

Bits 4:0 – DATLEN[4:0] Data Length

Value	Description
0	Forbidden value (1-bit data length not supported).
Any	The bit stream contains DATLEN + 1 data bits.
other	
value	

SAM E70/S70/V70/V71 Family

Universal Synchronous Asynchronous Receiver Transc...

46.6.3.6 Synchronous Receiver

In Synchronous mode (US_MR.SYNC = 1), the receiver samples the RXD signal on each rising edge of the baud rate clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode operations provide a high-speed transfer capability.

Configuration fields and bits are the same as in Asynchronous mode.

The following figure illustrates a character reception in Synchronous mode.

Figure 46-19. Synchronous Mode Character Reception

46.6.3.7 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding register (US_RHR) and US_CSR.RXRDY rises. If a character is completed while RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing a '1' to US_CR.RSTSTA.

- An output override block that can force the two complementary outputs to a programmed value (OOOHx/OOOLx).
- An asynchronous fault protection mechanism that has the highest priority to override the two complementary outputs (PWMHx/PWMLx) in case of fault detection (outputs forced to '0', '1' or Hi-Z).

51.6.2.2 Comparator

The comparator continuously compares its counter value with the channel period defined by CPRD in the PWM Channel Period Register (PWM_CPRDx) and the duty-cycle defined by CDTY in the PWM Channel Duty Cycle Register (PWM_CDTYx) to generate an output signal OCx accordingly.

The different properties of the waveform of the output OCx are:

- the clock selection. The channel counter is clocked by one of the clocks provided by the clock generator described in the previous section. This channel parameter is defined in the CPRE field of the PWM Channel Mode Register (PWM_CMRx). This field is reset at '0'.
- the waveform period. This channel parameter is defined in the CPRD field of the PWM_CPRDx register.

If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be calculated:

By using the PWM peripheral clock divided by a given prescaler value "X" (where $X = 2^{PREA}$ is 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula is:

 $(X \times CPRD)$

 $f_{
m peripheral\ clock}$

By using the PWM peripheral clock divided by a given prescaler value "X" (see above) and by either the DIVA or the DIVB divider. The formula becomes, respectively:

 $\frac{(X \times \text{CPRD} \times \text{DIVA})}{f_{\text{peripheral clock}}} \text{ or } \frac{(X \times \text{CPRD} \times \text{DIVB})}{f_{\text{peripheral clock}}}$

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be calculated:

By using the PWM peripheral clock divided by a given prescaler value "X" (where $X = 2^{PREA}$ is 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula is:

 $\frac{(2 \times X \times \text{CPRD})}{f_{\text{peripheral clock}}}$

By using the PWM peripheral clock divided by a given prescaler value "X" (see above) and by either the DIVA or the DIVB divider. The formula becomes, respectively:

 $\frac{(2 \times X \times \text{CPRD} \times \text{DIVA})}{f_{\text{peripheral clock}}} \text{ or }$

 $(2 \times X \times CPRD \times DIVB)$

 $f_{
m peripheral}$ clock

the waveform duty-cycle. This channel parameter is defined in the CDTY field of the PWM_CDTYx register.

Pulse Width Modulation Controller (PWM)

51.7.15 PWM Interrupt Disable Register 2

Name:PWM_IDR2Offset:0x38Reset:-Property:Write-only

This register can only be written if bits WPSWS1 and WPHWS1 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
[
Access							•	
Reset								
D :4	00	00	04	20	40	40	47	40
BIL	23	22	21	20	19	18	17	10
	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-
Rit	15	11	13	12	11	10	0	8
	15	14	15	12	11	10	5	0
	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-
Bit	7	6	5	4	3	2	1	0
					UNRE			WRDY
Access					W			W
Reset					_			_

Bits 16, 17, 18, 19, 20, 21, 22, 23 – CMPUx Comparison x Update Interrupt Disable

Bits 8, 9, 10, 11, 12, 13, 14, 15 - CMPMx Comparison x Match Interrupt Disable

Bit 3 – UNRE Synchronous Channels Update Underrun Error Interrupt Disable

Bit 0 – WRDY Write Ready for Synchronous Channels Update Interrupt Disable

Integrity Check Monitor (ICM)

An interrupt is generated if the bit RHC[i] is written to 1 in the ICM_IER (if RHC[i] is set in ICM_RCTRL of region i) or if the bit REC[i] is written to 1 in the ICM_IER (if REC[i] is set in ICM_RCTRL of region i).

55.5.4.2 Processing Period

The SHA engine processing period can be configured.

The short processing period allows to allocate bandwidth to the SHA module whereas the long processing period allocates more bandwidth on the system bus to other applications.

In SHA mode, the shortest processing period is 85 clock cycles + 2 clock cycles for start command synchronization. The longest period is 209 clock cycles + 2 clock cycles.

In SHA256 and SHA224 modes, the shortest processing period is 72 clock cycles + 2 clock cycles for start command synchronization. The longest period is 194 clock cycles + 2 clock cycles.

55.5.5 ICM Automatic Monitoring Mode

ICM_CFG.ASCD is used to activate the ICM Automatic Monitoring mode. When ICM_CFG.ASCD is set and bits CDWBN and EOM in ICM.RCFG equal 0, the ICM performs the following actions:

- 1. The ICM passes through the Main List once to calculate the message digest of the monitored area.
- 2. When WRAP = 1 in ICM_RCFG, the ICM begins monitoring. CDWBN in ICM_RCFG is now automatically set and EOM is cleared. These bits have no effect during the monitoring period that ends when EOM is set.

Transfer ⁻	Туре	Main	ICM_RC	FG		ICM_RNEXT	Comments
		List	CDWBN	WRAP	EOM	NEXT	
Single Region	Contiguous list of blocks Digest written to memory Monitoring disabled	1 item	0	0	1	0	The Main List contains only one descriptor. The Secondary List is empty for that descriptor. The digest is computed and saved to memory.
	Non-contiguous list of blocks Digest written to memory Monitoring disabled	1 item	0	0	1	Secondary List address of the current region identifier	The Main List contains only one descriptor. The Secondary List describes the layout of the non- contiguous region.
	Contiguous list of blocks Digest comparison	1 item	1	1	0	0	When the hash computation is terminated, the

55.5.6 Programming the ICM

Table 55-7. Region Attributes

55.6 Register Summary

Offset	Name	Bit Pos.								
		7:0		BBC	C[3:0]			SLBDIS	EOMDIS	WBDIS
0×00		15:8		UALGO[2:0]		UIHASH			DUALBUFF	ASCD
0,000		23:16								
		31:24								
		7:0		REHA	SH[3:0]			SWRST	DISABLE	ENABLE
0×04		15:8		RME	N[3:0]			RMDI	S[3:0]	
0704		23:16								
		31:24								
		7:0								ENABLE
0x08		15:8		RMD	IS[3:0]			RAWRM	1DIS[3:0]	
0,000		23:16								
		31:24								
0x0C										
	Reserved									
0x0F										
		7:0		RDN	M[3:0]			RHC	[3:0]	
0x10		15:8		RWO	C[3:0]		RBE[3:0]			
0.00		23:16	RSU[3:0]				REC[3:0]			
		31:24								URAD
		7:0		RDN	M[3:0]		RHC[3:0]			
0x14	ICM_IDR	15:8	RWC[3:0]					RBE	[3:0]	
		23:16	RSU[3:0]				REC	[3:0]		
		31:24								URAD
	7:0		RDM[3:0]					RHC	2[3:0]	
0.410		15:8	RWC[3:0]					RBE	[3:0]	
UXIO		23:16		RSL	J[3:0]		REC[3:0]			
		31:24								URAD
		7:0		RDN	// [3:0]	1		RHC	2[3:0]	
0.40		15:8		RW	C[3:0]			RBE	[3:0]	
UXIC	ICM_ISR	23:16		RSI	J[3:0]			REC	[3:0]	
		31:24								URAD
		7:0							URAT[2:0]	
0.00		15:8								
0x20	ICM_UASR	23:16								
		31:24								
0x24										
	Reserved									
0x2F										
		7:0	DAS	A[1:0]						
0x20	ICM DSOD	15:8				DAS	A[9:2]			
0x30		23:16				DASA	[17:10]			
		31:24				DASA	[25:18]			
0x34	ICM_HASH	7:0	HASA[0:0]							

Advanced Encryption Standard (AES)

57.4.4.3.6 Processing a Single GF128 Multiplication

The AES can also be used to process a single multiplication in the Galois field on 128 bits (GF_{128}) using a single $GHASH_H$ with custom *H* value (see the figure above).

To run a GF₁₂₈ multiplication (A x B), the sequence is as follows:

1. Set AES_MR.OPMOD to GCM and AES_MR.GTAGEN to '0'.

- 1. Configure AES_AADLENR.AADLEN with 0x10 (16 bytes) and AES_CLENR.CLEN to '0'. This will allow running a single GHASH_H.
- 2. Fill AES_GCMHRx.H with B value.
- 3. Fill AES_IDATARx.IDATA with the A value according to the SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when a GHASHH computation is over (use interrupt if needed).
- 4. Read AES_GHASHRx.GHASH to obtain the result.

Note: AES_GHASHRx.GHASH can be initialized with a value C between step 3 and step 4 to run a ((A XOR C) x B) GF₁₂₈ multiplication.

57.4.5 Double Input Buffer

AES_IDATARx can be double-buffered to reduce the runtime of large files.

This mode allows a new message block to be written when the previous message block is being processed. This is only possible when DMA accesses are performed (AES_MR.SMOD = 2).

AES_MR.DUALBUFF must be set to '1' to access the double buffer.

57.4.6 Start Modes

AES_MR.SMOD allows selection of the encryption (or decryption) Start mode.

57.4.6.1 Manual Mode

The sequence of actions is as follows:

- 1. Write AES_MR with all required fields, including but not limited to SMOD and OPMOD.
- 2. Write the 128-bit/192-bit/256-bit AES key in AES_KEYWRx.
- 3. Write the initialization vector (or counter) in AES_IVRx. Note: AES_IVRx concerns all modes except ECB.
- 4. Set the bit DATRDY (Data Ready) in the AES Interrupt Enable register (AES_IER), depending on whether an interrupt is required or not at the end of processing.
- 5. Write the data to be encrypted/decrypted in the authorized AES_IDATARx (see the table below).
- 6. Set the START bit in the AES Control register (AES_CR) to begin the encryption or the decryption process.
- 7. When processing completes, the DATRDY flag in the AES Interrupt Status register (AES_ISR) is raised. If an interrupt has been enabled by setting AES_IER.DATRDY, the interrupt line of the AES is activated.
- 8. When software reads one of AES_ODATARx, AES_IER.DATRDY is automatically cleared.

Table 57-2. Authorized Input Data Registers

Operating Mode	Input Data Registers to Write			
ECB	All			
CBC	All			

Advanced Encryption Standard (AES)

57.5.4 AES Interrupt Disable Register

Name:AES_IDROffset:0x14Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24	
Access									
Reset									
Bit	23	22	21	20	19	18	17	16	
								TAGRDY	
Access								W	
Reset								_	
Bit	15	14	13	12	11	10	9	8	
								URAD	
Access								W	
Reset								_	
Bit	7	6	5	4	3	2	1	0	
								DATRDY	
Access								W	
Reset								_	

Bit 16 – TAGRDY GCM Tag Ready Interrupt Disable

Bit 8 – URAD Unspecified Register Access Detection Interrupt Disable

Bit 0 – DATRDY Data Ready Interrupt Disable

SAM E70/S70/V70/V71 Family

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	Allowable Voltage Ripple	rms value 10 kHz to 20 MHz	_	-	20	mv	
V _{DDPLL}	PLL A and Main Oscillator Supply	_	1.08	1.2	1.32	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	_	20	mV	
		rms value > 10 MHz	-	-	10		
V _{DDUTMIC}	DC Supply UDPHS and UHPHS UTMI+ Core	_	1.08	1.2	1.32	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	-	10	mV	
V _{DDUTMII}	DC Supply UDPHS and UHPHS UTMI+ Interface	_	3.0	3.3	3.6	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	-	-	20	mV	
V _{DDPLLUSB}	DC Supply UTMI PLL	-	3.0	3.3	3.6	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	-	_	10	mV	

Note:

1. V_{DDIO} voltage must be equal to V_{DDIN} voltage.

Table 59-4. DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low-level Input Voltage	GPIO_MLB	-0.3	-	0.7	V
		GPIO_AD, GPIO_CLK	-0.3	_	0.8	
		GPIO, CLOCK, RST, TEST	-0.3	_	$V_{DDIO} \ge 0.3$	