

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q19a-cnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.1.	Embedded Characteristics	
12.2.	Real-time Event Mapping	66
12 Sve	com Controllor	70
13. Sys		
13.1.	System Controller and Peripherals Mapping	
13.2.	Power-on-Reset, Brownout and Supply Monitor	70
10.0.		
14. Peri	pherals	72
14.1.	Peripheral Identifiers	
14.2.	Peripheral Signal Multiplexing on I/O Lines	75
15 ARM	/ Cortex-M7 (ARM)	76
15.1	ARM Cortex-M7 Configuration	76
10.1.		
16. Deb	ug and Test Features	77
16.1.	Description	
16.2.	Embedded Characteristics	77
16.3.	Associated Documents	77
16.4.	Debug and Test Block Diagram	
16.5.	Debug and Test Pin Description	
10.0. 16.7	Application Examples	
10.7.		
17. SAN	1-BA Boot Program	85
17.1.	Description	85
17.2.	Embedded Characteristics	
17.3.	Hardware and Software Constraints	
17.4.	Flow Diagram	
17.5.		
17.0.	SAM-BA MOMOI	
18. Fas	Flash Programming Interface (FFPI)	91
18.1.	Description	
18.2.	Embedded Characteristics	91
18.3.	Parallel Fast Flash Programming	91
19. Bus	Matrix (MATRIX)	
19.1	Description	100
19.2.	Embedded Characteristics	
19.3.	Functional Description	
19.4.	Register Summary	
20 USE	3 Transmitter Macrocell Interface (UTMI)	132
20. USE	B Transmitter Macrocell Interface (UTMI)	
20. USE 20.1. 20.2	B Transmitter Macrocell Interface (UTMI) Description	
20. USE 20.1. 20.2. 20.3	B Transmitter Macrocell Interface (UTMI) Description Embedded Characteristics Register Summary	

5. Automotive Quality Grade

The SAM V70 and SAM V71 devices have been developed and manufactured according to the most stringent requirements of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive characterization (temperature and voltage).

The quality and reliability of the SAM V70 and SAM V71 has been verified during regular product qualification as per AEC-Q100 grade 2 (-40° C to $+105^{\circ}$ C).

Table 5-1. Temperature Grade Identification for Automotive Products

Temperature (°C)	Temperature Identifier	Comments
–40°C to +105°C	В	AEC-Q100 Grade 2

25.3 Block Diagram

Figure 25-1. Reinforced Safety Watchdog Timer Block Diagram

25.4 Functional Description

The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The Main RC oscillator divided clock is selected if the Main RC oscillator is already enabled by the application (CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the Slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the slow clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR). The RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with a typical slow clock of 32.768 kHz).

After a processor reset, the value of RSWDT_MR.WDV is 0xFFF, corresponding to the maximum value of the counter with the external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a default watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be programmed during a period of time of three slow clock periods following the RSWDT_CR write access. Programming a new value in the RSWDT_MR automatically initiates a restart instruction.

© 2018 Microchip Technology Inc.

SAM E70/S70/V70/V71 Family

Power Management Controller (PMC)

31.20.30 PMC SleepWalking Disable Register 0

Name:PMC_SLPWK_DR0Offset:0x0118Property:Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
ſ	PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
Access								
Reset								
	00			00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
	PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
Access		•	•					
Reset								
D :4	45	4.4	40	10	44	10	0	0
BIL	15	14	13	12	11	10	9	8
	PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
5.	PID7	3	<u> </u>	•	J	-	•	
, l								
Access								

Reset

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx Peripheral x SleepWalking Disable

Not all PIDs can be configured with asynchronous partial wake-up.

Only the following PIDs can be configured with asynchronous partial wake-up: UARTx and TWIHSx.

Value	Description
0	No effect.
1	The asynchronous partial wakeup (SleepWalking) function of the corresponding peripheral is disabled.
	Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers".

Power Management Controller (PMC)

31.20.34 PMC SleepWalking Activity Status Register 0

Name:	PMC_SLPWK_ASR0
Offset:	0x0120
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
Access		•	•	•		•		
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PID7							
A								

Access

Reset

0

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx Peripheral x Activity Status

Only the following PIDs can be configured with asynchronous partial wake-up: UARTx and TWIHSx. All other PIDs are always read at '0'.

Value	Description
0	The peripheral x is not currently active. The asynchronous partial wake-up (SleepWalking)
	function can be activated.
1	The peripheral x is currently active. The asynchronous partial wake-up (SleepWalking)
	function must not be activated.
	Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers".

34.6.6 Scrambling/Unscrambling Function

The external data bus can be scrambled in order to prevent intellectual property data located in off-chip memories from being easily recovered by analyzing data at the package pin level of either microcontroller or memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling/unscrambling function can be enabled or disabled by configuring the SDR_SE bit in the OCMS register (SDRAMC_OCMS). This bit cannot be reconfigured as long as the external memory device is powered.

The scrambling method depends on two user-configurable key registers, SDRAMC_OCMS_KEY1 and SDRAMC_OCMS_KEY2 plus a random value depending on device processing characteristics. These key registers are only accessible in Write mode.

The scrambling user key or the seed for key generation must be securely stored in a reliable nonvolatile memory in order to recover data from the off-chip memory. Any data scrambled with a given key cannot be recovered if the key is lost.

When multiple chip selects are handled, it is possible to configure the scrambling function per chip select using the OCMS field in the SDRAMC_OCMS registers.

Name: XDMAC CNDC Offset: 0x6C + n*0x40 [n=0..23] Reset: 0x00000000 **Property:** Read/Write 24 Bit 31 30 29 28 27 26 25 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset 12 15 8 Bit 14 13 11 10 9 Access Reset 7 Bit 6 5 4 3 2 1 0 NDVIEW[1:0] NDDUP NDSUP NDE R/W R/W R/W R/W R/W Access 0 0 Reset 0 0 0

36.9.25 XDMAC Channel x Next Descriptor Control Register [x = 0..23]

Bits 4:3 – NDVIEW[1:0] Channel x Next Descriptor View

Value	Name	Description
0	NDV0	Next Descriptor View 0
1	NDV1	Next Descriptor View 1
2	NDV2	Next Descriptor View 2
3	NDV3	Next Descriptor View 3

Bit 2 – NDDUP Channel x Next Descriptor Destination Update

0 (DST_PARAMS_UNCHANGED): Destination parameters remain unchanged.

1 (DST_PARAMS_UPDATED): Destination parameters are updated when the descriptor is retrieved.

Bit 1 – NDSUP Channel x Next Descriptor Source Update

0 (SRC_PARAMS_UNCHANGED): Source parameters remain unchanged.

1 (SRC_PARAMS_UPDATED): Source parameters are updated when the descriptor is retrieved.

Bit 0 – NDE Channel x Next Descriptor Enable

0 (DSCR_FETCH_DIS): Descriptor fetch is disabled.

1 (DSCR_FETCH_EN): Descriptor fetch is enabled.

Image Sensor Interface (ISI)

Bit 17 – CXFR_DONE Codec DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 16 – PXFR_DONE Preview DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 10 – VSYNC Vertical Synchronization Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 2 – SRST Software Reset Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 1 – DIS_DONE Disable Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Image Sensor Interface (ISI)

Name: Offset: Reset: Property:		ISI_DMA_CHI 0x3C - Write-only	DR					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Dit	45		10	10	44	10	0	0
Bit	15	14	13	12	11	10	9	8
A								
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							C_CH_DIS	P_CH_DIS
Access							W	W
Reset							_	_

Bit 1 – C_CH_DIS Codec Channel Disable Request

37.6.16 DMA Channel Disable Register

Value	Description
0	No effect.
1	Disables the channel. Poll C_CH_S in DMA_CHSR to verify that the codec channel status has been successfully modified

Bit 0 – P_CH_DIS Preview Channel Disable Request

Value	Description
0	No effect.
1	Disables the channel. Poll P_CH_S in DMA_CHSR to verify that the preview channel status has been successfully modified.

© 2018 Microchip Technology Inc.

SAM E70/S70/V70/V71 Family GMAC - Ethernet MAC

38.8.48 GMAC 512 to 1023 Byte Frames Transmitted Register

Name:	GMAC_TBFT1023
Offset:	0x128
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24		
[NFTX[31:24]									
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				NFTX	[23:16]					
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				NFTX	([15:8]					
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				NFT	X[7:0]					
Access	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 – NFTX[31:0] 512 to 1023 Byte Frames Transmitted without Error

This register counts the number of 512 to 1023 byte frames successfully transmitted without error, i.e., no underrun and not too many retries.

38.8.72 GMAC Oversized Frames Received Register

Bits 9:0 - OFRX[9:0] Oversized Frames Received

This pit field counts the number of frames received exceeding 1518 Bytes in length (1536 Bytes if GMAC_NCFGR.MAXFS is written to '1') but do not have either a CRC error, an alignment error, nor a receive symbol error.

38.8.86 GMAC 1588 Timer Nanoseconds Register

GMAC_TN

Name:

Offset: Reset: Property:		0x1D4 0x00000000 -							
Bit	31	30	29	28	27	26	25	24	
					TNS[29:24]]
Access			R/W	R/W	R/W	R/W	R/W	R/W	1
Reset			0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				TNS[2	23:16]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				TNS	[15:8]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				TNS	[7:0]]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	0	

Bits 29:0 - TNS[29:0] Timer Count in Nanoseconds

This register is writable. It can also be adjusted by writes to the IEEE 1588 Timer Adjust Register. It increments by the value of the IEEE 1588 Timer Increment Register each clock cycle.

SAM E70/S70/V70/V71 Family

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		7:0	SHORTPACK	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
	USBHS HSTPIPID		ETIEC							
0x0644	R9 (INTPIPES)	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0644	R9 (ISOPIPES)	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
0x0648										
	Reserved									
0x064F										
		7:0				INRC	Q[7:0]			
0x0650	USBHS_HSTPIPIN	15:8								INMODE
	RQ0	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x0654	USBHS_HSTPIPIN RQ1	15:8								INMODE
		23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x0658	USBHS_HSTPIPIN	15:8								INMODE
	RQ2	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x065C	USBHS_HSTPIPIN	15:8								INMODE
	RQ3	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x0660	USBHS_HSTPIPIN	15:8								INMODE
	RQ4	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x0664	USBHS_HSTPIPIN	15:8								INMODE
	RQ5	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0x0668	USBHS_HSTPIPIN	15:8								INMODE
	RQ6	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
0x066C	USBHS_HSTPIPIN	15:8								INMODE
	RQ7	23:16								
		31:24								

SAM E70/S70/V70/V71 Family

USB High-Speed Interface (USBHS)

39.6.20 Device Endpoint Interrupt Set Register (Isochronous Endpoints)

USBHS_DEVEPTIFRx (ISOENPT)
0x0190 + x*0x04 [x=09]
0
Read/Write

This register view is relevant only if EPTYPE = 0x1 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Status Register (Isochronous Endpoints)".

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Sets the corresponding bit in USBHS_DEVEPTISRx, which may be useful for test or debug purposes.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				NBUSYBKS				
Access	•			•				
Reset				0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERRIS	OVERFIS	HBISOFLUSHI	HBISOINERRIS	UNDERFIS	RXOUTIS	TXINIS
	TS			s				
Access								
Reset	0	0	0	0	0	0	0	0

Bit 12 – NBUSYBKS Number of Busy Banks Interrupt Set

Bit 7 – SHORTPACKETS Short Packet Interrupt Set

Bit 6 - CRCERRIS CRC Error Interrupt Set

Bit 5 – OVERFIS Overflow Interrupt Set

- Bit 4 HBISOFLUSHIS High Bandwidth Isochronous IN Flush Interrupt Set
- Bit 3 HBISOINERRIS High Bandwidth Isochronous IN Underflow Error Interrupt Set

Bit 2 – UNDERFIS Underflow Interrupt Set

When QSPI_MR.CSMODE is configured to '0', the QCS does not rise in all cases between two transfers on the same peripheral. During a transfer on a Chip Select, the flag TDRE rises as soon as the content of the QSPI_TDR is transferred into the internal shifter. When this flag is detected, the QSPI_TDR can be reloaded. If this reload occurs before the end of the current transfer, the Chip Select is not deasserted between the two transfers. This might lead to difficulties for interfacing with some serial peripherals requiring the chip select to be deasserted after each transfer. To facilitate interfacing with such devices, the QSPI_MR may be configured with QSPI_MR.CSMODE at '2'.

42.6.5 QSPI Serial Memory Mode

In Serial Memory mode, the QSPI acts as a serial Flash memory controller. The QSPI can be used to read data from the serial Flash memory allowing the CPU to execute code from it (XIP execute in place). The QSPI can also be used to control the serial Flash memory (Program, Erase, Lock, etc.) by sending specific commands. In this mode, the QSPI is compatible with single-bit SPI, Dual SPI and Quad SPI protocols.

To activate this mode, QSPI_MR.SMM must be written to '1'.

In Serial Memory mode, data is transferred only by writing or reading the QSPI memory space (0x80000000).

42.6.5.1 Instruction Frame

In order to control serial Flash memories, the QSPI is able to send instructions via the SPI bus (ex: READ, PROGRAM, ERASE, LOCK, etc.). Because the instruction set implemented in serial Flash memories is memory vendor-dependent, the QSPI includes a complete Instruction Frame register (QSPI_IFR), which makes it very flexible and compatible with all serial Flash memories.

An instruction frame includes:

- An instruction code (size: 8 bits). The instruction is optional in some cases (see section Continuous Read mode).
- An address (size: 24 bits or 32 bits). The address is optional but is required by instructions such as READ, PROGRAM, ERASE, LOCK. By default the address is 24 bits long, but it can be 32 bits long to support serial Flash memories larger than 128 Mbits (16 Mbytes).
- An option code (size: 1/2/4/8 bits). The option code is not required, but it is useful to activate the XIP mode or the Continuous Read mode (see section Continuous Read mode) for READ instructions, in some serial Flash memory devices. These modes improve the data read latency.
- Dummy cycles. Dummy cycles are optional but required by some READ instructions.
- Data bytes are optional. Data bytes are present for data transfer instructions such as READ or PROGRAM.

The instruction code, the address/option and the data can be sent with Single-bit SPI, Dual SPI or Quad SPI protocols.

SAM E70/S70/V70/V71 Family Universal Asynchronous Receiver Transmitter (UART)

47.6.10 UART Comparison Register

	Name: Offset: Reset: Property:	UART_CMPR 0x24 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VAL2	2[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		CMPPAR		CMPMODE				
Access		R/W		R/W				
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
				VAL1	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:16 - VAL2[7:0] Second Comparison Value for Received Character

Value	Description
0-255	The received character must be lower or equal to the value of VAL2 and higher or equal to
	VAL1 to set CMP flag in UART_SR. If asynchronous partial wake-up (SleepWalking) is
	enabled in PMC_SLPWK_ER, the UART requests a system wake-up if condition is met.

Bit 14 – CMPPAR Compare Parity

Value	Description
0	The parity is not checked and a bad parity cannot prevent from waking up the system.
1	The parity is checked and a matching condition on data can be cancelled by an error on parity bit, so no wake-up is performed.

Bit 12 – CMPMODE Comparison Mode

Value	Name	Description
0	FLAG_ONLY	Any character is received and comparison function drives CMP flag.
1	START_CONDITION	Comparison condition must be met to start reception.

Bits 7:0 - VAL1[7:0] First Comparison Value for Received Character

Devices. As Devices are found, the EHC then instructs the Controller to configure the found Device via the MLBSubCmd command.

The EHC determines which DeviceAddresses to scan for and, once a Device is found, which ChannelAddresses to assign. The EHC uses the pre-defined logical channels opened when MediaLB was started to transfer messages to the Controller. The EHC sends a message to the Controller to start scanning for a particular DeviceAddress. The Controller then sends the MLBScan command into the System Channel, and places the DeviceAddress into the first two bytes (most significant or first two transmitted) of the System Channel on MLBD.

An Rx Device with a matching DeviceAddress must send a status response of DevicePresent in the next System Channel if the ChannelAddresses are already assigned or fixed. If the ChannelAddresses have not been assigned, then the Rx Device must respond with DeviceServiceRequest.

If a Device is found, the Controller sends a message to the EHC indicating the Device's presence and whether the Device needs to be configured or not. For Devices that need to be configured (requesting service), the EHC must then send a message to the Controller defining which ChannelAddresses to send to the Device. The Controller then sends this information to all Devices using the MLBSubCmd command in the System Channel.

The MLBSubCmd command data field contains four bytes that are defined as follows:

Figure 48-3. Sub-Command scSetCA Quadlet

31 24	23 16	15 8	7 0
sub-command = scSetCA	DA [8:1]	CA [8:1]	Index

The scSetCA (01h) sub-command (under the MediaLB MLBSubCmd command) supports dynamic configuration of MediaLB ChannelAddresses. The bytes are defined as follows:

- scSetCA (01h) Sub-command to Set ChannelAddress. Indicates that the rest of the bytes are logical channel configuration information.
- DA[8:1] DeviceAddress bits 8 through 1, where all other bits are zero. Matches the DeviceAddress found during the MLBScan command.
- CA[8:1] ChannelAddress bits 8 through 1, where all other bits are zero. Assigned ChannelAddress associated with a specific Index (Device's logical channel) below.
- Index Indicates which logical channel within a Device to associate the ChannelAddress with. This
 index enables a Device to support multiple logical channels. Index 0 and 1 are reserved for control
 channels. Devices that do not support control channels will start at Index 2 (with Indices 0 and 1
 unused).

MediaLB Devices receiving this sub-command should check the DA[8:1] byte to determine whether this DeviceAddress matches its own. If the DeviceAddress matches, then the Device uses the ChannelAddress (CA[8:1] bits) for the logical channel associated with that Index. If a Device is reset or drops off MediaLB, it must reinitialize to its power-up state and discard any previously assigned ChannelAddresses.

MediaLB Device documentation must contain a table defining the relationship between the Index value, the particular logical channel associated with it, and the type and maximum bandwidth supported. In addition, the Device must indicate how many frames are needed to set the ChannelAddress once the scSetCA sub-command has been received. The EHC must use this data to determine the wait between setting Indices/Logical channels.

48.6.1.6 Data Structure for 3-pin MediaLB

The 3-pin MediaLB data structure consists of a ChannelAddress, a Tx command (Command), an Rx response (RxStatus), and four data bytes (Data).

Controller Area Network (MCAN)

- High Priority Message Status (MCAN_HPMS)
- Receive FIFO 0 Status (MCAN_RXF0S)
- Receive FIFO 1 Status (MCAN_RXF1S)
- Transmit FIFO/Queue Status (MCAN_TXFQS)
- Transmit Buffer Request Pending (MCAN_TXBRP)
- Transmit Buffer Transmission Occurred (MCAN_TXBTO)
- Transmit Buffer Cancellation Finished (MCAN_TXBCF)
- Transmit Event FIFO Status (MCAN_TXEFS)

The Timeout Counter value MCAN_TOCV.TOC is loaded with the value configured by MCAN_TOCC.TOP when MCAN_CCCR.CCE = '1'.

In addition, the state machines of the Tx Handler and Rx Handler are held in idle state while MCAN_CCCR.CCE = '1'.

The following registers are only writeable while MCAN_CCCR.CCE = '0'

- Transmit Buffer Add Request (MCAN_TXBAR)
- Transmit Buffer Cancellation Request (MCAN_TXBCR)

MCAN_CCCR.TEST and MCAN_CCCR.MON can only be set when MCAN_CCCR.INIT = '1' and MCAN_CCCR.CCE = '1'. Both bits may be cleared at any time. MCAN_CCCR.DAR can only be configured when MCAN_CCCR.INIT = '1' and MCAN_CCCR.CCE = '1'.

49.5.1.2 Normal Operation

Once the MCAN is initialized and MCAN_CCCR.INIT is cleared, the MCAN synchronizes itself to the CAN bus and is ready for communication.

After passing the acceptance filtering, received messages including Message ID and DLC are stored into a dedicated Rx Buffer or into Rx FIFO 0 or Rx FIFO 1.

For messages to be transmitted, dedicated Tx Buffers and/or a Tx FIFO or a Tx Queue can be initialized or updated. Automated transmission on reception of remote frames is not implemented.

49.5.1.3 CAN FD Operation

There are two variants in the CAN FD frame format, first the CAN FD frame without bit rate switching where the data field of a CAN frame may be longer than 8 bytes. The second variant is the CAN FD frame where control field, data field, and CRC field of a CAN frame are transmitted with a higher bit rate than the beginning and the end of the frame.

The previously reserved bit in CAN frames with 11-bit identifiers and the first previously reserved bit in CAN frames with 29-bit identifiers will now be decoded as FDF bit. FDF = recessive signifies a CAN FD frame, FDF = dominant signifies a Classic CAN frame. In a CAN FD frame, the two bits following FDF, res and BRS, decide whether the bit rate inside of this CAN FD frame is switched. A CAN FD bit rate switch is signified by res = dominant and BRS = recessive. The coding of res = recessive is reserved for future expansion of the protocol. In case the MCAN receives a frame with FDF = recessive and res = recessive, it will signal a Protocol Exception Event by setting bit MCAN_PSR.PXE. When Protocol Exception Handling is enabled (MCAN_CCCR.PXHD = 0), this causes the operation state to change from Receiver (MCAN_PSR.ACT = 2) to Integrating (MCAN_PSR.ACT = 00) at the next sample point. In case Protocol Exception Handling is disabled (MCAN_CCCR.PXHD = 1), the MCAN will treat a recessive res bit as an form error and will respond with an error frame.

CAN FD operation is enabled by programming CCCR.FDOE. In case CCCR.FDOE = '1', transmission and reception of CAN FD frames is enabled. Transmission and reception of Classic CAN frames is

© 2018 Microchip Technology Inc.

Pulse Width Modulation Controller (PWM)

Figure 51-35. Synchronized Update of Update Period Value of Synchronous Channels

51.6.6.5 Changing the Comparison Value and the Comparison Configuration

It is possible to change the comparison values and the comparison configurations while the channel 0 is enabled (see PWM Comparison Units).

To prevent unexpected comparison match, the user must use the PWM Comparison x Value Update Register (PWM_CMPVUPDx) and the PWM Comparison x Mode Update Register (PWM_CMPMUPDx) to change, respectively, the comparison values and the comparison configurations while the channel 0 is still enabled. These registers hold the new values until the end of the comparison update period (when CUPRCNT is equal to CUPR in PWM Comparison x Mode Register (PWM_CMPMx) and the end of the current PWM period, then update the values for the next period.

A CAUTION The write of the register PWM_CMPVUPDx must be followed by a write of the register PWM_CMPMUPDx.

Note: If the update registers PWM_CMPVUPDx and PWM_CMPMUPDx are written several times between two updates, only the last written value are taken into account.

Electrical Characteristics for SAM ...

- 2. In Sleep mode, the AFE core, the Sample and Hold and the internal reference operational amplifer are off.
- 3. In Fast Wake-up mode, only the AFE core is off.

58.8.1.2 ADC Bias Current

AFEC_ACR.IBCTL controls the ADC bias current, with the nominal setting IBCTL = 10.

IBCTL = 10 is the mandatory configuration suitable for a sampling frequency of up to 1 MHz. If the sampling frequency is below 500 kHz, IBCTL = 01 can also be used to reduce the current consumption.

If the sampling frequency is more than 1 MHz, then the setting must be IBCTL=11.

Note: The default value in the register is 01 and must be modified according to the defined sampling frequency.

58.8.2 External Reference Voltage

 V_{VREFP} is an external reference voltage applied on the pin VREFP. The quality of the reference voltage V_{VREFP} is critical to the performance of the AFE. A DC variation of the reference voltage V_{VREFP} is converted to a gain error by the AFE. The noise generated by V_{VREFP} is converted by the AFE to count noise.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{VREFP}	Voltage Range	Full operational	1.7	-	VDDIN	V
	RMS Noise (see Note 2)	Bandwidth up to 1.74MHz VREFP=1.7V	_	_	120	μV
R _{VREFP}	Input DC Impedance	AFE reference resistance bridge (see Note 1)	_	4.7	_	kOhm
Vin	Input Linear Range (see Note 3)	Operational Range	2	-	98	%VVREFP
I _{VREFP}	Current	V _{VREFP} = 3.3V	_	0.8	_	mA

Table 58-30. VREFP Electrical Characteristics

Note:

- 1. When the AFE is in Sleep mode, the VREFP impedance has a minimum of 10 MOhm.
- 2. Requested noise on VREFP.
- 3. Electrical parameters specified inside the operational range. Exceeding this range can introduce additional INL error up to +/- 5 LSB and temperature dependency up to +/-10 LSB.

58.8.3 AFE Timings

Table 58-31. AFE Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{AFE Clock}	Clock Frequency	-	4	20	40	MHz
t _{AFE Clock}	Clock Period	-	25	50	250	ns
f _S	Sampling Frequency (see Note 1)	_	_	_	1.74	MHz