

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Due du et Cheture	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q20a-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bus Matrix (MATRIX)

Offset	Name	Bit Pos.							
		15:8			SYSIO12				
		23:16			CAN1DM	IABA[7:0]			
		31:24			CAN1DM	ABA[15:8]			
		7:0							
0.0440		15:8							
0x0118	CCFG_PCCR	23:16	I2SC1CC	I2SC0CC	TC0CC				
		31:24							
		7:0					EFCCKG	BRIDCKG	MATCKG
0.0110		15:8							
0x011C	CCFG_DYNCKG	23:16							
		31:24							
0x0120 0x0123	Reserved								
		7:0			SDRAMEN	SMC_NFCS3	SMC_NFCS2	SMC_NFCS1	SMC_NFCS0
0.0101		15:8							
0X0124	CCFG_SMUNFUS	23:16							
		31:24							
0x0128 0x01E3	Reserved								
		7:0							WPEN
0-01E4		15:8			WPKE	EY[7:0]			
0X01E4		23:16			WPKE	Y[15:8]			
		31:24			WPKE'	Y[23:16]			
		7:0							WPVS
0,0159		15:8			WPVS	RC[7:0]			
UXUIEO		23:16			WPVSF	RC[15:8]			
		31:24							

19.4.4 Bus Matrix Priority Registers B For Slaves

Name:	MATRIX_PRBSx
Offset:	0x84 + x*0x08 [x=08]
Reset:	0x00000222
Property:	Read/Write

This register can only be written if the WPE bit is cleared in the Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access		•						•
Reset								
Bit	23	22	21	20	19	18	17	16
							M12P	'R[1:0]
Access							R/W	R/W
Reset							0	0
Bit	15	14	13	12	11	10	9	8
			M11PR[1:0]				M10P	'R[1:0]
Access		•	R/W	R/W			R/W	R/W
Reset			0	0			1	0
Bit	7	6	5	4	3	2	1	0
			M9PR[1:0]				M8PI	R[1:0]
Access			R/W	R/W			R/W	R/W
Reset			1	0			1	0

Bits 0:1, 4:5, 8:9, 12:13, 16:17 – MxPR Master 8 Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.

Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See "Arbitration Priority Scheme" for details.

22.4.3.8 Unique Identifier Area

Each device is programmed with a 128-bit unique identifier area .

See "Flash Memory Areas".

The sequence to read the unique identifier area is the following:

- 1. Execute the 'Start Read Unique Identifier' command by writing EEFC_FCR.FCMD with the STUI command. Field EEFC_FCR.FARG is meaningless.
- 2. Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is located in the first 128 bits of the Flash memory mapping. The 'Start Read Unique Identifier' command reuses some addresses of the memory plane for code, but the unique identifier area is physically different from the memory plane for code.
- 3. To stop reading the unique identifier area, execute the 'Stop Read Unique Identifier' command by writing EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.
- 4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: During the sequence, the software cannot be fetched from the Flash.

22.4.3.9 User Signature Area

Each product contains a user signature area of 512 bytes. It can be used for storage. Read, write and erase of this area is allowed.

See "Flash Memory Areas".

The sequence to read the user signature area is the following:

- 1. Execute the 'Start Read User Signature' command by writing EEFC_FCR.FCMD with the STUS command. Field EEFC_FCR.FARG is meaningless.
- 2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located in the first 512 bytes of the Flash memory mapping. The 'Start Read User Signature' command reuses some addresses of the memory plane but the user signature area is physically different from the memory plane
- 3. To stop reading the user signature area, execute the 'Stop Read User Signature' command by writing EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.
- 4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: During the sequence, the software cannot be fetched from the Flash or from the second plane in case of dual plane.

One error can be detected in EEFC_FSR after this sequence:

• Command Error: A bad keyword has been written in EEFC_FCR.

The sequence to write the user signature area is the following:

- 1. Write the full page, at any page address, within the internal memory area address space.
- 2. Execute the 'Write User Signature' command by writing EEFC_FCR.FCMD with the WUS command. Field EEFC_FCR.FARG is meaningless.

Static Memory Controller (SMC)

35.16.1.3 SMC Cycle Register

 Name:
 SMC_CYCLE[0..3]

 Offset:
 0x00

 Reset:
 0

 Property:
 R/W

This register can only be written if the WPEN bit is cleared in the "SMC Write Protection Mode Register" .

Bit	31	30	29	28	27	26	25	24
[NRD_CYCLE[8:
								8]
Access								
Reset								0
Bit	23	22	21	20	19	18	17	16
[NRD_C	/CLE[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[NWE_CYCLE[8
								:8]
Access				•		•	•	
Reset								0
Bit	7	6	5	4	3	2	1	0
[NWE_C	YCLE[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 24:16 - NRD_CYCLE[8:0] Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

Bits 8:0 – NWE_CYCLE[8:0] Total Write Cycle Length

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

Image Sensor Interface (ISI)

Bit 24 – P_OVR Preview Datapath Overflow (cleared on read)

Value	Description
0	No overflow
1	An overrun condition has occurred in input FIFO on the preview path. The overrun happens
	when the FIFO is full and an attempt is made to write a new sample to the FIFO since the
	last read of ISI_SR.

Bit 19 – SIP Synchronization in Progress

When the status of the preview or codec DMA channel is modified, a minimum amount of time is required to perform the clock domain synchronization.

Value	Description
0	The clock domain synchronization process is terminated.
1	This bit is set when the clock domain synchronization operation occurs. No modification of
	the channel status is allowed when this bit is set, to guarantee data integrity.

Bit 17 - CXFR_DONE Codec DMA Transfer has Terminated (cleared on read)

Value	Description
0	Codec transfer done not detected.
1	Codec transfer done detected. When set, this bit indicates that the data transfer on the codec channel has completed since the last read of ISI_SR.

Bit 16 - PXFR_DONE Preview DMA Transfer has Terminated (cleared on read)

Value	Description
0	Preview transfer done not detected.
1	Preview transfer done detected. When set, this bit indicates that the data transfer on the preview channel has completed since the last read of ISI_SR.

Bit 10 - VSYNC Vertical Synchronization (cleared on read)

Value	Description
0	Indicates that the vertical synchronization has not been detected since the last read of the
	ISI_SR.
1	Indicates that a vertical synchronization has been detected since the last read of the ISI_SR.

Bit 8 – CDC_PND Pending Codec Request

Value	Description
0	Indicates that no codec request is pending
1	Indicates that the request has been taken into account but cannot be serviced within the
	current frame. The operation is postponed to the next frame.

Bit 2 – SRST Module Software Reset Request has Terminated (cleared on read)

Value	Description
0	Indicates that the request is not completed (if a request was issued).
1	Software reset request has completed. This flag is reset after a read operation.

Bit 1 – DIS_DONE Module Disable Request has Terminated (cleared on read)

GMAC - Ethernet MAC

Offset	Name	Bit Pos.										
		7:0	IP[7:0]									
		15:8		IP[15:8]								
0xB8	GMAC_WOL	23:16				-	MTI	SA1	ARP	MAG		
		31:24										
		7:0		FL[7:0]								
		15:8	FL[15:8]									
0xBC	GMAC_IPGS	23:16										
		31:24										
		7:0				VLAN T	(PE[7:0]					
		15:8				VLAN TY	PE[15:8]					
0xC0	GMAC_SVLAN	23.16					. =[]					
		31.24	ESVI AN									
		7.0	2012/11			PEV	7.01					
		15.9					7·01					
0xC4	GMAC_TPFCP	22.16				FQ	<i>r</i> .oj					
		23.10										
		31.24					0[7:0]					
		7:0				ADDF	([7:0]	7:0]				
0xC8	GMAC_SAMB1	15:8		ADDR[15:8]								
		23:16				ADDR	23:16]					
		31:24				ADDR	31:24]					
		7:0				ADDF	R[7:0]					
0xCC	GMAC SAMT1	15:8	ADDR[15:8]									
	_	23:16										
		31:24										
0xD0												
	Reserved											
0xDB												
		7:0	NANOSEC[7:0]									
0xDC	GMAC NSC	15:8				NANOSE	EC[15:8]					
	_	23:16					NANOSE	EC[21:16]				
		31:24										
		7:0				SEC	[7:0]					
0xE0	GMAC SCI	15:8				SEC[15:8]					
		23:16				SEC[2	3:16]					
		31:24				SEC[3	31:24]					
		7:0				SEC	[7:0]					
	GMAC SCH	15:8				SEC[15:8]					
UXL4		23:16										
		31:24										
		7:0				RUD	[7:0]					
0.50		15:8				RUD[15:8]					
UXEQ	GIVIAC_EFTSH	23:16										
		31:24										
		7:0				RUD	[7:0]					
0xEC	GMAC_EFRSH	15:8				RUD[15:8]					
		23:16										

Bits 15:0 - DATA[15:0] PHY Data

For a write operation, this field is written with the data to be written to the PHY.

After a read operation, this field contains the data read from the PHY.

USB High-Speed Interface (USBHS)

Bit 14 – FRZCLK Freeze USB Clock

This bit can be written even if USBE = 0. Disabling the USBHS (by writing a zero to the USBE bit) does not reset this bit, but it freezes the clock inputs whatever its value.

Value	Description
0	The clock inputs are enabled.
1	The clock inputs are disabled (the resume detection is still active). This reduces the power
	consumption. Unless explicitly stated, all registers then become read-only.

Bit 8 – VBUSHWC VBUS Hardware Control

Must be set to '1'.

Value	Description
0	The hardware control over the VBOF output pin is enabled. The USBHS resets the VBOF
	output pin when a VBUS problem occurs.
1	The hardware control over the VBOF output pin is disabled.
0	The hardware control over the PIO line is enabled. The USBHS resets the PIO output pin
	when a VBUS problem occurs.
1	The hardware control over the PIO line is disabled.

Bit 4 – RDERRE Remote Device Connection Error Interrupt Enable

Value	Description
0	The Remote Device Connection Error Interrupt (USBHS_SR.RDERRI) is disabled.
1	The Remote Device Connection Error Interrupt (USBHS_SR.RDERRI) is enabled.

USB High-Speed Interface (USBHS)

Bit 1 – RXOUTIC Received OUT Data Interrupt Clear

Bit 0 – TXINIC Transmitted IN Data Interrupt Clear

USB High-Speed Interface (USBHS)

39.6.63 Host Pipe x IN Request Register

Name:	USBHS_HSTPIPINRQx
Offset:	0x0650 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access			1					
Reset								
Bit	15	14	13	12	11	10	9	8
								INMODE
Access								
Reset								0
Bit	7	6	5	4	3	2	1	0
				INRO	Q[7:0]			
Access	L							

Bit 8 - INMODE IN Request Mode

Value	Description
0	Performs a pre-defined number of IN requests. This number is the INRQ field.
1	Enables the USBHS to perform infinite IN requests when the pipe is not frozen.

Bits 7:0 - INRQ[7:0] IN Request Number before Freeze

This field contains the number of IN transactions before the USBHS freezes the pipe. The USBHS performs (INRQ+1) IN requests before freezing the pipe. This counter is automatically decreased by 1 each time an IN request has been successfully performed.

This register has no effect when INMODE = 1.

40.5 Pin Name List

Table 40-1. I/O Lines Description for 4-bit Configuration

Pin Name ⁽¹⁾	Pin Description	Type <u>(2)</u>	Comments
MCCDA	Command/response	I/O/PP/OD	CMD of an MMC or SDCard/SDIO
MCCK	Clock	I/O	CLK of an MMC or SD Card/SDIO
MCDA0-MCDA3	Data 03 of Slot A	I/O/PP	DAT[03] of an MMC DAT[03] of an SD Card/SDIO

Notes: 1. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA, MCDAy to HSMCIx_DAy.

2. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

40.6 **Product Dependencies**

40.6.1 I/O Lines

The pins used for interfacing the High Speed MultiMedia Cards or SD Cards are multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the peripheral functions to HSMCI pins.

40.6.2 Power Management

The HSMCI is clocked through the Power Management Controller (PMC), so the programmer must first configure the PMC to enable the HSMCI clock.

40.6.3 Interrupt Sources

The HSMCI has an interrupt line connected to the interrupt controller.

Handling the HSMCI interrupt requires programming the interrupt controller before configuring the HSMCI.

40.7 Bus Topology

Figure 40-3. High Speed MultiMedia Memory Card Bus Topology

The High Speed MultiMedia Card communication is based on a 13-pin serial bus interface. It has three communication lines and four supply lines.

Serial Peripheral Interface (SPI)

41.8.9 SPI Chip Select Register

Name:	SPI_CSRx
Offset:	0x30 + x*0x04 [x=03]
Reset:	0
Property:	R/W

This register can only be written if the WPEN bit is cleared in the SPI Write Protection Mode Register.

SPI_CSRx must be written even if the user wants to use the default reset values. The BITS field is not updated with the translated value unless the register is written.

Bit	31	30	29	28	27	26	25	24
				DLYB	CT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Γ				DLYI	3S[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				SCE	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ		BITS	6[3:0]		CSAAT	CSNAAT	NCPHA	CPOL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:24 – DLYBCT[7:0] Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT = 0, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the character transfers.

Otherwise, the following equation determines the delay:

DLYBCT = Delay Between Consecutive Transfers × f_{peripheral clock} / 32

Bits 23:16 - DLYBS[7:0] Delay Before SPCK

This field defines the delay from NPCS falling edge (activation) to the first valid SPCK transition.

When DLYBS = 0, the delay is half the SPCK clock period.

Otherwise, the following equation determines the delay:

DLYBS = Delay Before SPCK × f_{peripheral clock}

Synchronous Serial Controller (SSC)

Value	Name	Description
0	CONTINUOUS	Continuous, as soon as the receiver is enabled, and immediately after the
		end of transfer of the previous data.
1	TRANSMIT	Transmit start
2	RF_LOW	Detection of a low level on RF signal
3	RF_HIGH	Detection of a high level on RF signal
4	RF_FALLING	Detection of a falling edge on RF signal
5	RF_RISING	Detection of a rising edge on RF signal
6	RF_LEVEL	Detection of any level change on RF signal
7	RF_EDGE	Detection of any edge on RF signal
8	CMP_0	Compare 0

Bits 11:8 – START[3:0] Receive Start Selection

Bits 7:6 – CKG[1:0] Receive Clock Gating Selection

Value	Name	Description
0	CONTINUOUS	None
1	EN_RF_LOW	Receive Clock enabled only if RF Low
2	EN_RF_HIGH	Receive Clock enabled only if RF High

Bit 5 – CKI Receive Clock Inversion

CKI affects only the Receive Clock and not the output clock signal.

Value	Description
0	The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge.
	The Frame Sync signal output is shifted out on Receive Clock rising edge.
1	The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge.
	The Frame Sync signal output is shifted out on Receive Clock falling edge.

Bits 4:2 – CKO[2:0] Receive Clock Output Mode Selection

Value	Name	Description
0	NONE	None, RK pin is an input
1	CONTINUOUS	Continuous Receive Clock, RK pin is an output
2	TRANSFER	Receive Clock only during data transfers, RK pin is an output

Bits 1:0 - CKS[1:0] Receive Clock Selection

Value	Name	Description
0	MCK	Divided Clock
1	ТК	TK Clock signal
2	RK	RK pin

47.4 **Product Dependencies**

47.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to enable I/O line operations of the UART.

47.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must first configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

In SleepWalking mode (asynchronous partial wake-up), the PMC must be configured to enable SleepWalking for the UART in the Sleepwalking Enable Register (PMC_SLPWK_ER). Depending on the instructions (requests) provided by the UART to the PMC, the system clock may or may not be automatically provided to the UART.

47.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling requires programming of the Interrupt Controller before configuring the UART.

47.5 Functional Description

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented features are compatible with those of a standard USART.

47.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the transmitter.

The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in the Baud Rate Generator register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART remains inactive. The maximum allowable baud rate is peripheral clock or PMC PCK (PCK) divided by 16. The minimum allowable baud rate is peripheral clock or PCK divided by (16 x 65536). The clock source driving the baud rate generator (peripheral clock or PCK) can be selected by writing the bit BRSRCCK in UART_MR.

If PCK is selected, the baud rate is independent of the processor/bus clock. Thus the processor clock can be changed while UART is enabled. The processor clock frequency changes must be performed only by programming the field PRES in PMC_MCKR (see "Power Management Controller (PMC)"). Other methods to modify the processor/bus clock frequency (PLL multiplier, etc.) are forbidden when UART is enabled.

The peripheral clock frequency must be at least three times higher than PCK.

Media Local Bus (MLB)

Field	No. of Bits	Description	Accessibility
		1 = Enabled	
LE	1	Endianess select: 0 = Big Endian 1 = Little Endian	r,w
PG	1	Page pointer. Software initializes to zero, hardware writes thereafter. 0 = Ping buffer 1 = Pong buffer	r,w,u ⁽¹⁾
RDY1	1	Buffer ready bit for ping buffer page: 0 = Not ready 1 = Ready	r,w
RDY2	1	Buffer ready bit for pong buffer page: 0 = Not ready 1 = Ready	r,w
DNE1	1	Buffer done bit for ping buffer page: 0 = Not done 1 = Done	r,u ⁽¹⁾ ,c0
DNE2	1	Buffer done bit for pong buffer page: 0 = Not done 1 = Done	r,u ⁽¹⁾ ,c0
ERR1	1	AHB error response detected for ping buffer page:0 = No error1 = Error	r,u ⁽¹⁾ ,c0 ⁽²⁾
ERR2	1	AHB error response detected for pong buffer page: 0 = No error 1 = Error	r,u ⁽¹⁾ ,c0 ⁽²⁾
PS1	1	Packet start bit for ping buffer page: 0 = No packet start 1 = Packet start Reserved for synchronous and isochronous channels.	r,w,u ⁽¹⁾ (both Tx and Rx)
PS2	1	Packet start bit for pong buffer page: 0 = No packet start 1 = Packet start	r,w,u ⁽¹⁾ (both Tx and Rx)

Analog Comparator Controller (ACC)

	Name:ACC_IMROffset:0x2CReset:0x00000000Property:Read-only							
Bit	31	30	20	28	27	26	25	24
Dit	51	30	23	20	21	20	23	24
Access Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset		-						
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								CE
Access								R
Reset								0
	Bit 0 – CE Comparison Edge							

 Value
 Description

 0
 The interrupt is disabled.

 1
 The interrupt is enabled.

54.7.5 ACC Interrupt Mask Register

57.3 **Product Dependencies**

57.3.1 Power Management

The AES is clocked through the Power Management Controller (PMC), so the programmer must first configure the PMC to enable the AES clock.

57.3.2 Interrupt Sources

The AES interface has an interrupt line connected to the Interrupt Controller.

Handling the AES interrupt requires programming the Interrupt Controller before configuring the AES.

57.4 Functional Description

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form called ciphertext. Decrypting the ciphertext converts the data back into its original form, called plaintext. The CIPHER bit in the AES Mode register (AES_MR) allows selection between the encryption and the decryption processes.

The AES is capable of using cryptographic keys of 128/192/256 bits to encrypt and decrypt data in blocks of 128 bits. This 128-bit/192-bit/256-bit key is defined in the user interface AES_KEYWRx register.

The input to the encryption processes of the CBC, CFB, and OFB modes includes, in addition to the plaintext, a 128-bit data block called the initialization vector (IV), which must be set in AES_IVRx. The initialization vector is used in an initial step in the encryption of a message and in the corresponding decryption of the message. AES_IVRx are also used by the CTR mode to set the counter value.

57.4.1 AES Register Endianness

In ARM processor-based products, the system bus and processors manipulate data in little-endian form. The AES interface requires little-endian format words. However, in accordance with the protocol of the FIPS 197 specification, data is collected, processed and stored by the AES algorithm in big-endian form.

The following example illustrates how to configure the AES:

If the first 64 bits of a message (according to FIPS 197, i.e., big-endian format) to be processed is 0xcafedeca_01234567, then AES_IDATAR0 and AES_IDATAR1 registers must be written with the following pattern:

- AES_IDATAR0 = 0xcadefeca
- AES_IDATAR1 = 0x67452301

57.4.2 Operating Modes

The AES supports the following modes of operation:

- ECB: Electronic Codebook
- CBC: Cipher Block Chaining
 - CBC-MAC: Useful for CMAC hardware acceleration
- OFB: Output Feedback
- CFB: Cipher Feedback

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	Allowable Voltage Ripple	rms value 10 kHz to 20 MHz	_	-	20	mv	
	PLL A and Main Oscillator Supply	_	1.08	1.2	1.32	V	
V _{DDPLL}	Allowable Voltage	rms value 10 kHz to 10 MHz	_	_	20	mV	
	Ripple	rms value > 10 MHz	-	-	10		
VDDUTMIC	DC Supply UDPHS and UHPHS UTMI+ Core	_	1.08	1.2	1.32	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	-	10	mV	
V _{DDUTMII}	DC Supply UDPHS and UHPHS UTMI+ Interface	_	3.0	3.3	3.6	V	
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	-	-	20	mV	
	DC Supply UTMI PLL	-	3.0	3.3	3.6	V	
V _{DDPLLUSB}	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	_	10	mV	

Note:

1. V_{DDIO} voltage must be equal to V_{DDIN} voltage.

Table 59-4. DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low-level Input Voltage	GPIO_MLB	-0.3	-	0.7	V
		GPIO_AD, GPIO_CLK	-0.3	_	0.8	
		GPIO, CLOCK, RST, TEST	-0.3	_	$V_{DDIO} \ge 0.3$	

where:

- Z_{IN} is input impedance in Single-ended or Differential mode
- C_{IN} = 2 to 8 pF ±20% depending on the gain value and mode (SE or DIFF); temperature dependency is negligible
- R_{ON} is typical 2 k Ω and 8 k Ω max (worst case process and high temperature)

The following formula is used to calculate input impedance:

$$Z_{\rm IN} = \frac{1}{f_S \times C_{\rm IN}}$$

where:

- f_S is the sampling frequency of the AFE channel
- Typ values are used to compute AFE input impedance $\rm Z_{IN}$

Table 59-37. Input Capacitance (CIN) Values

Gain Selection	Single-ended	Differential	Unit
1	2	2	pF
2	4	4	
4	8	8	

Table 59-38. Z_{IN} Input Impedance

f _S (MHz)	1	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.007813
C _{IN} = 2 pF								
Z_{IN} (M Ω)	0.5	1	2	4	8	16	32	64
$C_{IN} = 4 \text{ pF}$								
Z_{IN} (M Ω)	0.25	0.5	1	2	4	8	16	32
C _{IN} = 8 pF								
Z_{IN} (M Ω)	0.125	0.25	0.5	1	2	4	8	16

59.8.6.1 Track and Hold Time versus Source Output Impedance

The figure below shows a simplified acquisition path.

Figure 59-16. Simplified Acquisition Path

During the tracking phase, the AFE tracks the input signal during the tracking time shown below:

 $t_{TRACK} = n \times C_{IN} \times (R_{ON} + Z_{SOURCE})/1000$

- Tracking time expressed in ns and Z_{SOURCE} expressed in $\Omega.$

Schematic Checklist

Signal Name	Recommended Pin Connection	Description
		Pulled-up inputs (100 kOhm) to VDDIO at reset.
TIOBx	Application dependent.	TC Channel x I/O Line B Pulled-up inputs (100 kOhm) to VDDIO at reset.
Pulse Width Modulation	Controller	
PWMC0_PWMHx PWMC1_PWMHx	Application dependent.	Waveform Output High for Channel x Pulled-up inputs (100 kOhm) to VDDIO at reset.
PWMC0_PWMLx PWMC1_PWMLx	Application dependent.	Waveform Output Low for Channel x Pulled-up inputs (100 kOhm) to VDDIO at reset.
PWMC0_PWMFI0- PWMC0_PWMFI2 PWMC1_PWMFI0- PWMC1_PWMFI2	Application dependent.	Fault Inputs Pulled-up inputs (100 kOhm) to VDDIO at reset.
PWMC0_PWMEXTRG0 PWMC0_PWMEXTRG1 PWMC1_PWMEXTRG0 PWMC1_PWMEXTRG1	Application dependent.	External Trigger Inputs Pulled-up inputs (100 kOhm) to VDDIO at reset.
Serial Peripheral Interfac	e	
SPIx_MISO	Application dependent.	Master In Slave Out Pulled-up inputs (100 kOhm) to VDDIO at reset.
SPIx_MOSI	Application dependent.	Master Out Slave In Pulled-up inputs (100 kOhm) to VDDIO at reset.
SPIx_SPCK	Application dependent.	SPI Serial Clock Pulled-up inputs (100 kOhm) to VDDIO at reset.
SPIx_NPCS0	Application dependent. (Pullup at VDDIO)	SPI Peripheral Chip Select 0 Pulled-up inputs (100 kOhm) to VDDIO at reset.
SPIx_NPCS1- SPIx_NPCS3	Application dependent. (Pullup at VDDIO)	SPI Peripheral Chip Select Pulled-up inputs (100 kOhm) to VDDIO at reset.
Two-Wire Interface		
TWDx	Application dependent. (4.7kOhm Pulled-up on VDDIO)	TWIx Two-wire Serial Data Pulled-up inputs (100 kOhm) to VDDIO at reset.
ТWCКх	Application dependent. (4.7kOhm Pulled-up on VDDIO)	TWIx Two-wire Serial Clock Pulled-up inputs (100 kOhm) to VDDIO at reset.