

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q20a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1.2 144-ball LFBGA/TFBGA Package Outline Figure 6-2. Orientation of the 144-ball LFBGA/TFBGA Package

6.1.3 144-ball UFBGA Package Outline Figure 6-3. Orientation of the 144-ball UFBGA Package

6.2 144-lead Package Pinout

Table 6-1. 144-lead Package Pinout

LQFP Pin	LFBGA/ TFBGA Ball	UFBGA Ball	Power Rail	I/O Type	Primary		Alternate		PIO Peripher al A		PIO Peripher al B		PIO Peripher al C		PIO Peripher al D		Reset State
					Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, PU, PD, HiZ, ST
102	C11	E11	VDDIO	GPIO_A D	PA0	I/O	WKUP0(1)	1	PWMC0_ PWMH0	0	TIOA0	I/O	A17/BA1	0	I2SC0_M CK	0	PIO, I, PU, ST
99	D12	F11	VDDIO	GPIO_A D	PA1	I/O	WKUP1(1)	1	PWMC0_ PWML0	0	TIOB0	I/O	A18	0	I2SC0_C K	I/O	PIO, I, PU, ST
93	E12	G12	VDDIO	GPIO	PA2	I/O	WKUP2(1)	1	PWMC0_ PWMH1	0	-	-	DATRG	1	-	-	PIO, I, PU, ST
91	F12	G11	VDDIO	GPIO_A D	PA3	I/O	PIODC0(2)	1	TWD0	I/O	LONCOL 1	1	PCK2	0	-	-	PIO, I, PU, ST

Package and Pinout

LQFP Pin	QFN Pin (11)	Power Rail	I/O Type	Primary		Alternate		PIO Periph	eral A	PIO Periph	eral B	PIO Periph	eral CDir	PIO Periph	eral DDir	Reset State
				Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, PU, PD, HiZ, ST
55	55	VDDIO	GPIO	PD3	I/O	-	-	GTX1	0	PWMC1_ PWMH1	0	UTXD4	0	RI0	1	PIO, I, PU, ST
54	54	VDDIO	GPIO_CL K	PD4	I/O	-	-	GRXDV	1	PWMC1_ PWML2	0	TRACED0	0	-	-	PIO, I, PU, ST
53	53	VDDIO	GPIO_CL K	PD5	I/O	-	-	GRX0	1	PWMC1_ PWMH2	0	TRACED1	0	-	-	PIO, I, PU, ST
51	51	VDDIO	GPIO_CL K	PD6	I/O	-	-	GRX1	1	PWMC1_ PWML3	0	TRACED2	0	-	-	PIO, I, PU, ST
50	50	VDDIO	GPIO_CL K	PD7	I/O	-	-	GRXER	1	PWMC1_ PWMH3	0	TRACED3	0	-	-	PIO, I, PU, ST
49	49	VDDIO	GPIO_CL K	PD8	I/O	-	-	GMDC	0	PWMC0_ PWMFI1	1	-	-	TRACECL K	0	PIO, I, PU, ST
48	48	VDDIO	GPIO_CL K	PD9	I/O	-	-	GMDIO	I/O	PWMC0_ PWMFI2	1	AFE1_AD TRG	1	-	-	PIO, I, PU, ST
44	44	VDDIO	GPIO_ML B	PD10	I/O	-	-	GCRS	1	PWMC0_ PWML0	0	TD	0	MLBSIG	I/O -	PIO, I, PD, ST
43	43	VDDIO	GPIO_AD	PD11	I/O	-	-	GRX2	1	PWMC0_ PWMH0	0	GTSUCO MP	0	ISI_D5	1	PIO, I, PU, ST
41	41	VDDIO	GPIO_AD	PD12	I/O	-	-	GRX3	1	CANTX1	0	SPI0_NP CS2	0	ISI_D6	1	PIO, I, PU, ST
26	26	VDDIO	GPIO_AD	PD21	I/O	-	-	PWMC0_ PWMH1	0	SPI0_MO SI	I/O	TIOA11	I/O	ISI_D1	I	PIO, I, PU, ST
25	25	VDDIO	GPIO_AD	PD22	I/O	-	-	PWMC0_ PWMH2	0	SPI0_SP CK	0	TIOB11	I/O	ISI_D0	1	PIO, I, PU, ST
22	22	VDDIO	GPIO_AD	PD24	I/O	-	-	PWMC0_ PWML0	0	RF	I/O	TCLK11	1	ISI_HSYN C	1	PIO, I, PU, ST
20	20	VDDIO	GPIO_AD	PD25	I/O	-	-	PWMC0_ PWML1	0	SPI0_NP CS1	I/O	URXD2	1	ISI_VSYN C	1	PIO, I, PU, ST
21	21	VDDIO	GPIO	PD26	I/O	-	-	PWMC0_ PWML2	0	TD	0	UTXD2	0	UTXD1	0	PIO, I, PU, ST
2	3	VDDIO	GPIO_AD	PD31	I/O	-	-	QIO3	I/O	UTXD3	0	PCK2	0	ISI_D11	I	PIO, I, PU, ST
3	4	VDDOUT	Power	VDDOUT	-	-	-	-	-	-	-	-	-	-	-	-
4	5	VDDIN	Power	VDDIN	-	-	-	-	-	-	-	-	-	-	-	-
5	6	VDDIO	Reference	VREFP	1	-	-	-	-	-	-	-	-	-	-	-
36	36	VDDIO	RST	NRST	I/O	-	-	-	-	-	-	-	-	-	-	PIO, I, PU
37	37	VDDIO	TEST	TST	1	-	-	-	-	-	-	-	-	-	-	I, PD
10, 42, 58	10,42,58	VDDIO	Power	VDDIO	-	-	-	-	-	-	-	-	-	-	-	-
45	45	VDDIO	TEST	JTAGSEL	1	-	-	-	-	-	-	-	-	-	-	I, PD
13, 24, 61	13,24,61	VDDCOR E	Power	VDDCOR E	-	-	-	-	-	-	-	-	-	-	-	-
52	52	VDDPLL	Power	VDDPLL	-	-	-	-	-	-	-	-	-	-	-	-
59	59	VDDUTMI I	USBHS	DM	I/O	-	-	-	-	-	-	-	-	-	-	-
60	60	VDDUTMI I	USBHS	DP	I/O	-	-	-	-	-	-	-	-	-	-	-
14, 31	14,31	GND	Ground	GND	-	-	-	-	-	-	-	-	-	-	-	-
6	-	GND	Ground	GND	-	-	-	-	-	-	-	-	-	-	-	-
64	1	VDDPLLU	Power	VDDPLLU	-	-	-	-	-	-	-	-	-	-	-	-
		SB		SB												
	62		VBG	VBG	1	-	-	-	-	-	-	-	-	-	-	-

Note:

1. To select this extra function, refer to the 32.5.14 Parallel Capture Mode section in the Parallel Input/Output Controller (PIO) chapter.

Event System

Function	Application	Description	Event Source	Event Destination
	General- purpose	Temperature sensor Low-speed measurement (see Notes 10, 11)	RTC RTCOUT0	AFEC0 and AFEC1
Conversion trigger	General- purpose	Trigger source selection in DACC	TC0 TIOA0, TIOA1, TIOA2	DACC
		(Digital-to-Analog Converter Controller) (see Note 13)	PIO DATRG	DACC
			PWM0 Event Line 0 and 1(14)	DACC
			PWM1 Event Line 0 and 1(14)	DACC
Image capture	Low-cost image sensor	Direct image transfer from sensor to system memory via DMA(15)	PIO PA3/4/5/9/10/11/12/13, PA22, PA14, PA21	DMA
Delay measurement	Motor control	Propagation delay of external components (IOs, power transistor bridge driver, etc.)	PWM0 Comparator Output OC0	TC0 TIOA0 and TIOB0
		See Notes 16, 17)	PWM0 Comparator Output OC1	TC0 TIOA1 and TIOB1
			PWM0 Comparator Output OC2	TC0 TIOA2 and TIOB2
			PWM1 Comparator Output OC0	TC1 TIOA3 and TIOB3
			PWM1 Comparator Output OC1	TC1 TIOA4 and TIOB4
			PWM1 Comparator Output OC2	TC1 TIOA5 and TIOB5
			PWM0 Comparator Output OC0	TC2 TIOA6 and TIOB6
			PWM0 Comparator Output OC1	TC2 TIOA7 and TIOB7

Fast Flash Programming Interface (FFPI)

MODE[3:0]	Symbol	Data
0100	ADDR3	Address Register MSBs
0101	DATA	Data Register
Default	IDLE	No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command register.

Table 18-3. Command Bit Co

DATA[15:0]	Symbol	Command Executed
0x0011	READ	Read Flash
0x0012	WP	Write Page Flash
0x0022	WPL	Write Page and Lock Flash
0x0032	EWP	Erase Page and Write Page
0x0042	EWPL	Erase Page and Write Page then Lock
0x0013	EA	Erase All
0x0014	SLB	Set Lock Bit
0x0024	CLB	Clear Lock Bit
0x0015	GLB	Get Lock Bit
0x0034	SGPB	Set General Purpose NVM bit
0x0044	CGPB	Clear General Purpose NVM bit
0x0025	GGPB	Get General Purpose NVM bit
0x0054	SSE	Set Security Bit
0x0035	GSE	Get Security Bit
0x001F	WRAM	Write Memory
0x001E	GVE	Get Version

18.3.3 Entering Parallel Programming Mode

The following algorithm puts the device in Parallel Programming mode:

- 1. Apply the supplies as described in table Signal Description List.
- 2. If an external clock is available, apply it to XIN within the VDDCORE POR reset time-out period, as defined in the section "Electrical Characteristics".
- 3. Wait for the end of this reset period.
- 4. Start a read or write handshaking.

18.3.4 Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is completed once the NCMD signal is high and RDY is high.

18.3.4.1 Write Handshaking

For details on the write handshaking sequence, refer to the following figure and table.

Figure 18-2. Parallel Programming Timing, Write Sequence

Table 18-4. Write Handshake

Step	Programmer Action	Device Action	Data I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latches MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

18.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to the following figure and table.

Figure 18-3. Parallel Programming Timing, Read Sequence

	Name: Offset: Reset: Property:	XDMAC_GIM 0x14 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	IM7	IM6	IM5	IM4	IM3	IM2	IM1	IM0
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

36.9.6 XDMAC Global Interrupt Mask Register

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 – IM XDMAC Channel x Interrupt Mask

Value	Description
0	This bit indicates that the channel x interrupt source is masked. The interrupt line is not
	raised.
1	This bit indicates that the channel x interrupt source is unmasked.

Bit 2 – DIM End of Disable Interrupt Mask Bit

Value	Description
0	End of disable interrupt is masked.
1	End of disable interrupt is activated.

Bit 1 – LIM End of Linked List Interrupt Mask Bit

Value	Description
0	End of linked list interrupt is masked.
1	End of linked list interrupt is activated.

Bit 0 - BIM End of Block Interrupt Mask Bit

Value	Description
0	Block interrupt is masked.
1	Block interrupt is activated.

- Bit 22 PDRQFR PDelay Request Frame Received
- Bit 21 SFT PTP Sync Frame Transmitted
- **Bit 20 DRQFT** PTP Delay Request Frame Transmitted
- Bit 19 SFR PTP Sync Frame Received
- Bit 18 DRQFR PTP Delay Request Frame Received
- Bit 15 EXINT External Interrupt
- **Bit 14 PFTR** Pause Frame Transmitted
- Bit 13 PTZ Pause Time Zero
- Bit 12 PFNZ Pause Frame with Non-zero Pause Quantum Received
- Bit 11 HRESP HRESP Not OK
- Bit 10 ROVR Receive Overrun
- Bit 7 TCOMP Transmit Complete
- Bit 6 TFC Transmit Frame Corruption Due to AHB Error
- Bit 5 RLEX Retry Limit Exceeded or Late Collision
- Bit 4 TUR Transmit Underrun
- Bit 3 TXUBR TX Used Bit Read
- Bit 2 RXUBR RX Used Bit Read
- Bit 1 RCOMP Receive Complete
- Bit 0 MFS Management Frame Sent

GMAC - Ethernet MAC

Value	Description
0	Wake on LAN magic packet Event disabled
1	Wake on LAN magic packet Event enabled

Bits 15:0 – IP[15:0] ARP Request IP Address

Wake on LAN ARP request IP address. Written to define the 16 least significant bits of the target IP address that is matched to generate a Wake on LAN event.

Value	Description
0x0000	No Event generated, even if matched by the received frame.
0x0001-	Wake on LAN Event generated for matching LSB of the target IP address.
OxFFFF	

Serial Peripheral Interface (SPI)

41.8.6 SPI Interrupt Enable Register

Name:SPI_IEROffset:0x14Reset:-Property:Write-only

This register can only be written if the WPITEN bit is cleared in the SPI Write Protection Mode Register. The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit 10 – UNDES Underrun Error Interrupt Enable

Bit 9 - TXEMPTY Transmission Registers Empty Enable

Bit 8 – NSSR NSS Rising Interrupt Enable

Bit 3 – OVRES Overrun Error Interrupt Enable

Bit 2 – MODF Mode Fault Error Interrupt Enable

Bit 1 – TDRE SPI Transmit Data Register Empty Interrupt Enable

Bit 0 – RDRF Receive Data Register Full Interrupt Enable

© 2018 Microchip Technology Inc.

Serial Peripheral Interface (SPI)

41.8.7 SPI Interrupt Disable Register

Name:SPI_IDROffset:0x18Reset:-Property:Write-only

This register can only be written if the WPITEN bit is cleared in the SPI Write Protection Mode Register. The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

Bit 10 – UNDES Underrun Error Interrupt Disable

Bit 9 – TXEMPTY Transmission Registers Empty Disable

Bit 8 – NSSR NSS Rising Interrupt Disable

Bit 3 – OVRES Overrun Error Interrupt Disable

Bit 2 – MODF Mode Fault Error Interrupt Disable

Bit 1 – TDRE SPI Transmit Data Register Empty Interrupt Disable

Bit 0 – RDRF Receive Data Register Full Interrupt Disable

Quad Serial Peripheral Interface (QSPI)

Value	Name	Description
0	SINGLE_BIT_SPI	Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Single- bit SPI
1	DUAL_OUTPUT	Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Dual SPI
2	QUAD_OUTPUT	Instruction: Single-bit SPI / Address-Option: Single-bit SPI / Data: Quad SPI
3	DUAL_IO	Instruction: Single-bit SPI / Address-Option: Dual SPI / Data: Dual SPI
4	QUAD_IO	Instruction: Single-bit SPI / Address-Option: Quad SPI / Data: Quad SPI
5	DUAL_CMD	Instruction: Dual SPI / Address-Option: Dual SPI / Data: Dual SPI
6	QUAD CMD	Instruction: Quad SPI / Address-Option: Quad SPI / Data: Quad SPI

Figure 47-9. Character Transmission

47.5.3.3 Transmitter Control

When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in UART_SR. The transmission starts when the programmer writes in the UART_THR, and after the written character is transferred from UART_THR to the internal shift register. The TXRDY bit remains high until a second character is written in UART_THR. As soon as the first character is completed, the last character written in UART_THR is transferred into the internal shift register and TXRDY rises again, showing that the holding register is empty.

When both the internal shift register and UART_THR are empty, i.e., all the characters written in UART_THR have been processed, the TXEMPTY bit rises after the last stop bit has been completed.

47.5.4 DMA Support

Both the receiver and the transmitter of the UART are connected to a DMA Controller (DMAC) channel.

The DMA Controller channels are programmed via registers that are mapped within the DMAC user interface.

47.5.5 Comparison Function on Received Character

When a comparison is performed on a received character, the result of the comparison is reported on the CMP flag in UART_SR when UART_RHR is loaded with the new received character. The CMP flag is cleared by writing a one to the RSTSTA bit in UART_CR.

UART_CMPR (see UART Comparison Register) can be programmed to provide different comparison methods. These are listed below:

- If VAL1 equals VAL2, then the comparison is performed on a single value and the flag is set to 1 if the received character equals VAL1.
- If VAL1 is strictly lower than VAL2, then any value between VAL1 and VAL2 sets the CMP flag.

48.7.3 MediaLB Channel Status1 Register

Name:	MLB_MS1
Offset:	0x014
Reset:	0x00000000
Property:	Read/Write

Each bit can be cleared by writing a 0.

Bit	31	30	29	28	27	26	25	24			
	MCS: MediaLB Channel Status [63[31:24]										
Access											
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
			MCS	S: MediaLB Chai	nnel Status [63[2	3:16]					
Access											
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
			MC	S: MediaLB Cha	nnel Status [63[1	5:8]					
Access											
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
			MC	CS: MediaLB Cha	annel Status [63[7:0]					
Access											
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 – MCS: MediaLB Channel Status [63[31:0] 32] (cleared by writing a 0)

Indicates the channel status for MediaLB channels 63 to 32. Channel status bits are set by hardware and cleared by software. Status is only set if the appropriate bits in the MLB_MIEN register are set.

49.5.7.3 Tx Buffer Element

The Tx Buffers section can be configured to hold dedicated Tx Buffers as well as a Tx FIFO / Tx Queue. In case that the Tx Buffers section is shared by dedicated Tx buffers and a Tx FIFO / Tx Queue, the dedicated Tx Buffers start at the beginning of the Tx Buffers section followed by the buffers assigned to the Tx FIFO or Tx Queue. The Tx Handler distinguishes between dedicated Tx Buffers and Tx FIFO / Tx Queue by evaluating the Tx Buffer configuration TXBC.TFQS and TXBC.NDTB. The element size can be configured for storage of CAN FD messages with up to 64 bytes data field via register TXESC.

Table 49-8.	Тх	Buffer	Element

	31			24	23				16	15 8	7 0	
Т0	ESI	XTD	RTR	ID[2	8:0]]						
T1	MM[7	7:0]			EFC	FC reserved FDF BRS DLC[3:0]				reserved		
T2	DB3[7:0]				DB2[7:0]					DB1[7:0]	DB0[7:0]	
Т3	3 DB7[7:0]				DB6[7:0]				DB5[7:0]	DB4[7:0]		
Tn	Tn DBm[7:0]			DBm-1[7:0]				DBm-2[7:0]	DBm-3[7:0]			

• T0 Bit 30 ESI: Error State Indicator

T0 Bit 31 ESI: Error State Indicator

0: ESI bit in CAN FD format depends only on error passive flag

1: ESI bit in CAN FD format transmitted recessive

Note: The ESI bit of the transmit buffer is or'ed with the error passive flag to decide the value of the ESI bit in the transmitted FD frame. As required by the CAN FD protocol specification, an error active node may optionally transmit the ESI bit recessive, but an error passive node will always transmit the ESI bit recessive. This feature can be used in gateway applications when a message from an error passive node is routed to another CAN network.

• T0 Bit 30 XTD: Extended Identifier

0: 11-bit standard identifier.

1: 29-bit extended identifier.

• T0 Bit 29 RTR: Remote Transmission Request

0: Transmit data frame.

1: Transmit remote frame.

Note: When RTR = 1, the MCAN transmits a remote frame according to ISO11898-1, even if MCAN_CCCR.FDOE enables the transmission in CAN FD format.

• T0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier has to be written to ID[28:18].

• T1 Bits 31:24 MM[7:0]: Message Marker

Written by processor during Tx Buffer configuration. Copied into Tx Event FIFO element for identification of Tx message status.

Pulse Width Modulation Controller (PWM)

Offset	Name	Bit Pos.											
		7:0	CDTYUPD[7:0]										
0.0040	PWM_CDTYUPD2	15:8				CDTYU	PD[15:8]						
0x0248		23:16				CDTYUP	D[23:16]						
		31:24											
		7:0		CPRD[7:0]									
0x0240		15:8				CPRD	[15:8]						
0x024C	PWW_CPRD2	23:16		CPRD[23:16]									
		31:24											
		7:0				CPRDU	PD[7:0]						
0x0250		15:8				CPRDU	PD[15:8]						
0x0250	PWW_CPRDUPD2	23:16				CPRDUF	PD[23:16]						
		31:24											
		7:0	CNT[7:0]										
0x0254	DWM CONTO	15:8				CNT[15:8]						
0x0254	FWW_CCN12	23:16				CNT[2	23:16]						
		31:24											
		7:0				DTH	[7:0]	:					
0x0258		15:8				DTH[15:8]						
0x0256	PVVIVI_D12	23:16				DTL	[7:0]						
		31:24		DTL[15:8]									
		7:0				DTHUF	PD[7:0]						
0x0250		15:8				DTHUP	D[15:8]						
0x0250		23:16		DTLUPD[7:0]									
		31:24		DTLUPD[15:8]									
		7:0						CPR	E[3:0]				
0x0260		15:8			TCTS	DPOLI	UPDS	CES	CPOL	CALG			
070200		23:16					PPM	DTLI	DTHI	DTE			
		31:24											
		7:0				CDTY	/[7:0]						
0x0264	PWM_CDTY3	15:8		CDTY[15:8]									
0.0201		23:16		1	1	CDTY	23:16]						
		31:24											
		7:0				CDTYU	PD[7:0]						
0x0268	PWM CDTYUPD3	15:8				CDTYU	PD[15:8]						
		23:16		1		CDTYUP	D[23:16]						
		31:24											
		7:0				CPRI	D[7:0]						
0x026C	PWM_CPRD3	15:8				CPRD	[15:8]						
0.0200		23:16		1	1	CPRD	[23:16]						
		31:24											
		7:0				CPRDU	PD[7:0]						
0x0270	PWM CPRDUPD3	15:8				CPRDU	PD[15:8]						
		23:16				CPRDUF	PD[23:16]						
		31:24											
0x0274	PWM CCNT3	7:0				CNT	[7:0]						
		15:8				CNT[15:8]						

51.7.35 PWM Write Protection Status Register

Name:	PWM_WPSR
Offset:	0xE8
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
[WPVSF	RC[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPVS	RC[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[WPHWS5	WPHWS4	WPHWS3	WPHWS2	WPHWS1	WPHWS0
Access		ŀ	R	R	R	R	R	R
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[WPVS		WPSWS5	WPSWS4	WPSWS3	WPSWS2	WPSWS1	WPSWS0
Access	R		R	R	R	R	R	R
Reset	0		0	0	0	0	0	0

Bits 31:16 - WPVSRC[15:0] Write Protect Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bits 8, 9, 10, 11, 12, 13 - WPHWSx Write Protect HW Status

Value	Description
0	The HW write protection x of the register group x is disabled.
1	The HW write protection x of the register group x is enabled.

Bit 7 – WPVS Write Protect Violation Status

Value	Description
0	No write protection violation has occurred since the last read of PWM_WPSR.
1	At least one write protection violation has occurred since the last read of PWM_WPSR. If this
	violation is an unauthorized attempt to write a protected register, the associated violation is
	reported into field WPVSRC.

Bits 0, 1, 2, 3, 4, 5 - WPSWSx Write Protect SW Status

the corresponding analog output. The next data is converted only when the EOC of the previous data is set.

If the FIFO is emptied, no conversion occurs and the data is maintained at the output of the DAC.

53.6.4.3 Max Speed Mode

Max speed mode is enabled by setting DACC_TRIGR.TRGENx and DACC_MR.MAXSx.

The conversion rate is forced by the controller, which starts one conversion every 12 DAC clock periods. The controller does not wait for the EOC of the previous data to send a new data to the DAC and the DAC is always clocked.

If the FIFO is emptied, the controller send the last converted data to the DAC at a rate of 12 DAC clock periods.

The DACC_ACR.IBCTLCHx field must be configured for 1 MSps (see the section "Electrical Characteristics").

Figure 53-4. Conversion Sequence in Max Speed Mode

Electrical Characteristics for SAM ...

58.8.5 AFE Electrical Characteristics

Table 58-34. AFE INL and DNL, f_{AFE CLOCK} = < 20 MHz Maximum, IBCTL = 10

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
Differential Mode							
INL	Integral Non-Linearity	Gain = 1	-4	±0.7	4	LSB	
		Gain = 2		±1			
		Gain = 4		±1.2			
DNL	Differential Non-Linearity	-	-2	±0.6	2	LSB	
Single-Ended Mode							
		Gain = 1		±1			
INL	Integral Non-Linearity	Gain = 2	-6	±1.3	4	LSB	
		Gain = 4		±1.7			
DNL	Differential Non-Linearity	_	-2	±0.6	2	LSB	

Note: INL/DNL given inside the linear range of the AFE: 2% to 98% of VREFP.

Table 58-35. AFE INL and DNL, fAFE CLOCK = > 20 MHz to 40 MHz, IBCTL = 11

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
Differential Mode							
INL	Integral Non-Linearity	Gain = 1	-12	±2	12	LSB	
		Gain = 2		±2.1			
		Gain = 4		±2.5			
DNL	Differential Non-Linearity	_	-6	±2	6	LSB	
Single-Ended Mode							
	Integral Non-Linearity	Gain = 1	-12	±2	12	LSB	
INL		Gain = 2		±2.6			
		Gain = 4		±2.7			
DNL	Differential Non-Linearity	_	-6	±2	6	LSB	

Note: INL/DNL given inside the linear range of the AFE: 2% to 98% of VREFP.

Table 58-36. AFE Offset and Gain Error, V_{VREFP} = 1.7V to 3.3V

Symbol	Parameter	Conditions	Min	Typ(1)	Мах	Unit	
Differential Mode							
Eo	Differential Offset Error (see Note 1)	Gain=1	-20	_	35	LSB	
E _G	Differential Gain Error	Gain=1	-0.3	0	0.7	%	

Electrical Characteristics for SAM E70/S70

59.13.1.6.1 Maximum SPI Frequency

The following formulas give maximum SPI frequency in Master read and write modes and in Slave read and write modes.

 f_{SPCK} max = $\frac{1}{\text{SPI}_0(\text{or SPI}_3) + t_{\text{valid}}}$

t_{valid} is the slave time response to output data after detecting an SPCK edge.

For a nonvolatile memory with t_{valid} (or t_v) = 5 ns, $f_{SPCK}max$ = 57 MHz at V_{DDIO} = 3.3V.

$$f_{\text{SPCK}} \text{max} = \frac{1}{2x(SPI_{6max}(\text{or SPI}_{9max}) + t_{\text{setup}})}$$

t_{setup} is the setup time from the master before sampling data.

Master Write Mode

The SPI sends data to a slave device only, e.g. an LCD. The limit is given by SPI_2 (or SPI_5) timing. Since it gives a maximum frequency above the maximum pad speed (see I/O Characteristics), the max SPI frequency is the one from the pad.

Master Read Mode

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by setup and hold timings SPI_7/SPI_8 (or SPI_{10}/SPI_{11}). Since this gives a frequency well above the pad limit, the limit in slave read mode is given by SPCK pad.

Slave Write Mode

59.13.1.6.2 SPI Timings

Timings are given in the following domains:

- 1.8V domain: V_{DDIO} from 1.7V to 1.95V, maximum external capacitor = 20 pF
- 3.3V domain: V_{DDIO} from 2.85V to 3.6V, maximum external capacitor = 40 pF