

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q20a-cfn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DMA Controller (XDMAC)

Offset	Name	Bit Pos.											
		23:16				SA[2	3:16]						
		31:24				SA[3	1:24]						
		7:0				DA[7:0]						
		15:8				DA[15:8]						
0x03E4	XDMAC_CDA14	23:16				DA[2	3:16]						
				DA[31:24]									
		7:0	7:0 NDA[5:0] NDAIF										
		15:8				NDA	[13:6]						
0x03E8	0x03E8 XDMAC_CNDA14	23:16		NDA[21:14]									
				NDA[29:22]									
		7:0				NDVIE	- W[1:0]	NDDUP	NDSUP	NDE			
		15:8						-	-				
0x03EC	XDMAC_CNDC14	23.16											
		31.24											
		7:0				UBI F	N[7·0]						
		15.8					N[15·8]						
0x03F0	XDMAC_CUBC14	23.16					1[23.16]						
		31.24				OBEEN	[20.10]						
		7:0				BLEN	J[7·0]						
		15.8				DEEI	•[7.0]	BI EN	1[11.8]				
0x03F4	XDMAC_CBC14	23.16						DEEN	i[11.0]				
		23.10											
		7:0	MEMSET	SWREO		DSVNC		MBSIZ	7E[1:0]	TVDE			
		15.8	MENIOLI	DIE	SIE		ГН[1·0]						
0x03F8	XDMAC_CC14	23.16	WRIP	RUIP		DWID		1[1.0]	SAM	[1.0]			
		31.24	WIXI		INTE			1[1:0]	0/ (1)	[1.0]			
		7:0				SDS M							
	YDMAC CDS MSP	15.8				M 202	SD[15:8]						
0x03FC	11	22:16				M. 200							
		23.10											
		7:0					3F[13.0]						
		15.0				SUD3	5[7:0]						
0x0400	XDMAC_CSUS14	10.0				0000	[10.0]						
		23.10				3063	[23.10]						
		7:0					2[7:0]						
		15.0					5[7.0]						
0x0404	XDMAC_CDUS14	10.0					[15.0]						
		23.10				DOBS	[23:10]						
0~0400		31.24											
0x0408	Record												
 0x040F	Reserved												
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE			
		15:8											
0x0410	XDMAC_CIE15	23:16											
		31:24											
0x0414	XDMAC_CID15	7:0		ROID	WBEID	RBEID	FID	DID	LID	BID			

GMAC - Ethernet MAC

Frame Segment	Value
Control (Octet 74)	00
Other stuff (Octets 75–168)	-

Table 38-7. Example of Delay Request Frame in 1588 Version 1 Format

Frame Segment	Value
Preamble/SFD	55555555555555555555555555555555555555
DA (Octets 0–5)	-
SA (Octets 6–11)	
Type (Octets 12–13)	0800
IP stuff (Octets 14–22)	
UDP (Octet 23)	11
IP stuff (Octets 24–29)	
IP DA (Octets 30–32)	E00001
IP DA (Octet 33)	81 or 82 or 83 or 84
Source IP port (Octets 34–35)	-
Dest IP port (Octets 36–37)	013F
Other stuff (Octets 38–42)	-
Version PTP (Octet 43)	01
Other stuff (Octets 44–73)	-
Control (Octet 74)	01
Other stuff (Octets 75–168)	—

For 1588 version 1 messages, sync and delay request frames are indicated by the GMAC if the frame type field indicates TCP/IP, UDP protocol is indicated, the destination IP address is 224.0.1.129/130/131 or 132, the destination UDP port is 319 and the control field is correct.

The control field is 0x00 for sync frames and 0x01 for delay request frames.

For 1588 version 2 messages, the type of frame is determined by looking at the message type field in the first byte of the PTP frame. Whether a frame is version 1 or version 2 can be determined by looking at the version PTP field in the second byte of both version 1 and version 2 PTP frames.

In version 2 messages sync frames have a message type value of 0x0, delay_req have 0x1, Pdelay_Req have 0x2 and Pdelay_Resp have 0x3.

Table 38-8	. Example of	Sync Frame ir	1588 Version	ו 2 (UDP/IPv4)) Format
------------	--------------	---------------	--------------	----------------	----------

Frame Segment	Value
Preamble/SFD	55555555555555555555555555555555555555
DA (Octets 0–5)	-

GMAC - Ethernet MAC

Offset	Name	Bit Pos.										
		7:0				IP[7	':0]					
		15:8				IP[1	5:8]					
0xB8	GMAC_WOL	23:16				-	MTI	SA1	ARP	MAG		
		31:24										
		7:0				FL[7	7:0]					
	15:8	FL[15:8]										
0xBC	GMAC_IPGS	23:16					,					
		31:24										
		7:0				VLAN T	PE[7:0]					
0xC0 GMAC_SVL		15:8				VLAN TY	PE[15:8]					
	GMAC_SVLAN	23.16					. =[]					
		31.24	ESVI AN									
		7.0	2012/11			PEV	7.01					
		15.9					7·01					
0xC4	GMAC_TPFCP	22.16				FQ	<i>r</i> .oj					
		23.10										
		31.24					0[7:0]					
		7:0				ADDF	([7:0]					
0xC8	GMAC_SAMB1	15:8		ADDK[15:8]								
		23:16				ADDR	23:16]					
		31:24		ADDR[31:24]								
		7:0		ADDR[7:0]								
0xCC	GMAC SAMT1	15:8	ADDR[15:8]									
		23:16										
		31:24										
0xD0												
	Reserved											
0xDB												
		7:0				NANOS	EC[7:0]					
0xDC	GMAC NSC	15:8	NANOSEC[15:8]									
	_	23:16					NANOSE	EC[21:16]				
		31:24										
		7:0				SEC	[7:0]					
0xE0	GMAC SCI	15:8		SEC[15:8]								
		23:16		SEC[23:16]								
		31:24				SEC[3	31:24]					
		7:0				SEC	[7:0]					
	GMAC SCH	15:8				SEC[15:8]					
UXL4		23:16										
		31:24										
		7:0				RUD	[7:0]					
0.50		15:8				RUD[15:8]					
UXEQ	GIVIAC_EFTSH	23:16										
		31:24										
		7:0				RUD	[7:0]					
0xEC	GMAC_EFRSH	15:8				RUD[15:8]					
		23:16										

Name: GMAC NCR Offset: 0x000 Reset: 0x00000000 Read/Write Property: Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 16 18 17 FNP TXPBPF ENPBPR R/W Access R/W R/W Reset 0 0 0 Bit 15 12 10 9 8 14 13 11 SRTSM TXZQPF TXPF THALT TSTART ΒP R/W R/W R/W R/W R/W R/W Access Reset 0 0 0 0 0 0 Bit 7 6 5 4 3 2 0 1 WESTAT INCSTAT CLRSTAT MPE TXEN RXEN LBL R/W R/W R/W R/W R/W R/W R/W Access

38.8.1 GMAC Network Control Register

Bit 18 - FNP Flush Next Packet

0

0

Reset

Writing a '1' to this bit will flush the next packet from the external RX DPRAM. Flushing the next packet will only take effect if the DMA is not currently writing a packet already stored in the DPRAM to memory.

0

0

0

Bit 17 – TXPBPF Transmit PFC Priority-based Pause Frame Takes the values stored in the Transmit PFC Pause Register.

Bit 16 – ENPBPR Enable PFC Priority-based Pause Reception

0

Writing a '1' to this bit enables PFC Priority Based Pause Reception capabilities, enabling PFC negotiation and recognition of priority-based pause frames.

0

Value	Description
0	Normal operation
1	PFC Priority-based Pause frames are recognized.

Bit 15 - SRTSM Store Receive Time Stamp to Memory

Writing a '1' to this bit causes the CRC of every received frame to be replaced with the value of the nanoseconds field of the 1588 timer that was captured as the receive frame passed the message time stamp point.

Note that bit RFCS in register GMAC_NCFGR may not be set to 1 when the timer should be captured.

	Offset: Reset: Property:	0x010 0x00020004 Read/Write						
Bit	31	30	29	28	27	26	25	24
								DDRP
Access								
Reset								0
Bit	23	22	21	20	19	18	17	16
				DRB	S[7:0]			
Access								
Reset	0	0	0	0	0	0	1	0
Bit	15	14	13	12	11	10	9	8
					TXCOEN	TXPBMS	RXBN	1S[1:0]
Access								
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ESPA	ESMA				FBLDO[4:0]		
Access								
Reset	0	0		0	0	1	0	0

38.8.5 GMAC DMA Configuration Register

Name:

GMAC_DCFGR

Bit 24 - DDRP DMA Discard Receive Packets

A write to this bit is ignored if the DMA is not configured in the packet buffer full store and forward mode.

Value	Description
0	Received packets are stored in the SRAM based packet buffer until next AHB buffer
	resource becomes available.
1	Receive packets from the receiver packet buffer memory are automatically discarded when
	no AHB resource is available.

Bits 23:16 - DRBS[7:0] DMA Receive Buffer Size

These bits defined by these bits determines the size of buffer to use in main AHB system memory when writing received data.

The value is defined in multiples of 64 bytes. For example:

- 0x02: 128 bytes
- 0x18: 1536 bytes (1 × max length frame/buffer)
- 0xA0: 10240 bytes (1 × 10K jumbo frame/buffer)

AWARNING Do not write 0x00 to this bit field.

38.8.108 GMAC Screening Type 1 Register x Priority Queue

Name:	GMAC_ST1RPQx
Offset:	0x0500 + x*0x04 [x=03]
Reset:	0x0000000
Property:	Read/Write

Screening type 1 registers are used to allocate up to 6 priority queues to received frames based on certain IP or UDP fields of incoming frames.

Bit	31	30	29	28	27	26	25	24
			UDPE	DSTCE		UDPM	[15:12]	
Access		•	•					
Reset			0	0	0	0	0	0
	00	00	01	20	40	40	47	40
BIL	23	22	21	20	19	18	17	10
				UDPM	l[11:4]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		UDPI	M[3:0]		DSTCM[7:4]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		DSTC	M[3:0]		QNB[2:0]			
Access				·		•		
Reset	0	0	0	0		0	0	0

Bit 29 – UDPE UDP Port Match Enable

When this bit is written to '1', the UDP Destination Port of the received UDP frame is matched against the value stored in the bit field UDPM.

Bit 28 – DSTCE Differentiated Services or Traffic Class Match Enable

When this bit is written to '1', the DS (differentiated services) field of the received IPv4 header or TC field (traffic class) of IPv6 headers are matched against the value stored in bit field DSTCM.

Bits 27:12 – UDPM[15:0] UDP Port Match

When UDP port match enable is set (UDPME=1), the UDP Destination Port of the received UDP frame is matched against this bit field.

Bits 11:4 – DSTCM[7:0] Differentiated Services or Traffic Class Match

When DS/TC match enable is set (DSTCE), the DS (differentiated services) field of the received IPv4 header or TC field (traffic class) of IPv6 headers are matched against this bit field.

Bits 2:0 - QNB[2:0] Queue Number

If a match is successful, then the queue value programmed in this bit field is allocated to the frame.

© 2018 Microchip Technology Inc.

USB High-Speed Interface (USBHS)

Value	Description
0	No channel register is loaded after the end of the channel transfer.
1	The channel controller loads the next descriptor after the end of the current transfer, i.e.,
	when the USBHS_HSTDMASTATUS.CHANN_ENB bit is reset.

Bit 0 – CHANN_ENB Channel Enable Command

If the LDNXT_DSC bit has been cleared by descriptor loading, the firmware has to set the corresponding CHANN_ENB bit to start the described transfer, if needed.

If the LDNXT_DSC bit is cleared, the channel is frozen and the channel registers may then be read and/or written reliably as soon as both the USBHS_HSTDMASTATUS.CHANN_ENB and the CHANN_ACT flags read as 0.

If a channel request is currently serviced when this bit is cleared, the DMA FIFO buffer is drained until it is empty, then the USBHS_HSTDMASTATUS.CHANN_ENB bit is cleared.

If the LDNXT_DSC bit is set or after it has been cleared, the currently loaded descriptor is skipped (no data transfer occurs) and the next descriptor is immediately loaded.

Value	Description
0	The DMA channel is disabled and no transfer occurs upon request. This bit is also cleared
	by hardware when the channel source bus is disabled at the end of the buffer.
1	The USBHS_HSTDMASTATUS.CHANN_ENB bit is set, enabling DMA channel data
	transfer. Then, any pending request starts the transfer. This may be used to start or resume
	any requested transfer.

Serial Peripheral Interface (SPI)

Value	Description
0	SPI is in Slave mode
1	SPI is in Master mode

Two-wire Interface (TWIHS)

Figure 43-23. TWIHS Read Operation with Multiple Data Bytes with or without Internal Address

Universal Synchronous Asynchronous Receiver Transc...

▲ WARNING When the value of US_BRGR.FP is greater than '0', the SCK (oversampling clock) generates non-constant duty cycles. The SCK high duration is increased by "selected clock" period from time to time. The duty cycle depends on the value of USART_BRGR.CD.

46.6.1.3 Baud Rate in Synchronous Mode or SPI Mode

If the USART is programmed to operate in Synchronous mode, the selected clock is divided by the value of US_BRGR.CD.

Baud Rate = $\frac{\text{Selected Clock}}{\text{CD}}$

In Synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock frequency must be at least 3 times lower than the system clock. In Master mode, Synchronous mode (USCLKS = 0 or 1, CLKO set to 1), the receive part limits the SCK maximum frequency to Selected Clock/3 in USART mode, or Selected Clock/6 in SPI mode.

When either the external clock SCK or the internal clock divided (peripheral clock/DIV) is selected, the value of CD must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. When the peripheral clock is selected, the baud rate generator ensures a 50:50 duty cycle on the SCK pin, even if the value of CD is odd.

46.6.1.4 Baud Rate in ISO 7816 Mode

The ISO7816 specification defines the bit rate with the following formula:

$$B = \frac{\mathrm{Di}}{\mathrm{Fi}} \times f$$

where:

- B is the bit rate
- Di is the bit-rate adjustment factor
- Fi is the clock frequency division factor
- f is the ISO7816 clock frequency (Hz)

SAM E70/S70/V70/V71 Family Universal Synchronous Asynchronous Receiver Transc...

46.7.3 USART Mode Register

Name:	US_MR
Offset:	0x0004
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register. For SPI configuration, see "USART Mode Register (SPI_MODE)".

Bit	31	30	29	28	27	26	25	24
	ONEBIT	MODSYNC	MAN	FILTER		MA	X_ITERATION[2	2:0]
Access		•				•		
Reset	0	0	0	0		0	0	0
Bit	23	22	21	20	19	18	17	16
	INVDATA	VAR_SYNC	DSNACK	INACK	OVER	CLKO	MODE9	MSBF
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CHMO	CHMODE[1:0] NE		DP[1:0]	PAR[2:0]			SYNC
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CHRL[1:0]		USCLKS[1:0]		USART_MODE[3:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bit 31 - ONEBIT Start Frame Delimiter Selector

Value	Description
0	Start frame delimiter is COMMAND or DATA SYNC.
1	Start frame delimiter is one bit.

Bit 30 – MODSYNC Manchester Synchronization Mode

Value	Description
0	The Manchester start bit is a 0 to 1 transition
1	The Manchester start bit is a 1 to 0 transition.

Bit 29 - MAN Manchester Encoder/Decoder Enable

Value	Description
0	Manchester encoder/decoder are disabled.
1	Manchester encoder/decoder are enabled.

Bit 28 - FILTER Receive Line Filter

Universal Synchronous Asynchronous Receiver Transc...

46.7.10 USART Interrupt Disable Register (SPI_MODE)

Name:US_IDR (SPI_MODE)Offset:0x000CProperty:Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					NSSE			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						UNRE	TXEMPTY	
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
			OVRE				TXRDY	RXRDY
Access								

Reset

Bit 19 – NSSE NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Disable

Bit 10 – UNRE SPI Underrun Error Interrupt Disable

Bit 9 – TXEMPTY TXEMPTY Interrupt Disable

Bit 5 – OVRE Overrun Error Interrupt Disable

Bit 1 – TXRDY TXRDY Interrupt Disable

Bit 0 – RXRDY RXRDY Interrupt Disable

Universal Asynchronous Receiver Transmitter (UART)

Related Links

31. Power Management Controller (PMC)

47.5.7 Register Write Protection

To prevent any single software error from corrupting UART behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the UART Write Protection Mode Register (UART_WPMR).

The following registers can be write-protected:

- UART Mode Register
- UART Baud Rate Generator Register
- UART Comparison Register

47.5.8 Test Modes

The UART supports three test modes. These modes of operation are programmed by using the CHMODE field in UART_MR.

The Automatic Echo mode allows a bit-by-bit retransmission. When a bit is received on the URXD line, it is sent to the UTXD line. The transmitter operates normally, but has no effect on the UTXD line.

The Local Loopback mode allows the transmitted characters to be received. UTXD and URXD pins are not used and the output of the transmitter is internally connected to the input of the receiver. The URXD pin level has no effect and the UTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the URXD pin to the UTXD line. The transmitter and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.

© 2018 Microchip Technology Inc.

Controller Area Network (MCAN)

49.6.32 MCAN Receive FIFO 1 Status

Name:	MCAN_RXF18			
Offset:	0xB4			
Reset:	0x00000000			
Property:	Read-only			

Bit	31	30	29	28	27	26	25	24
	DMS	S[1:0]					RF1L	F1F
Access	R	R					R	R
Reset	0	0					0	0
Bit	23	22	21	20	19	18	17	16
					F1PI	I[5:0]		
Access			R	R	R	R	R	R
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	F1GI[5:0]							
Access			R	R	R	R	R	R
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			F1FL[6:0]					
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0

Bits 31:30 - DMS[1:0] Debug Message Status

Value	Name	Description
0	IDLE	Idle state, wait for reception of debug messages, DMA request is cleared.
1	MSG_A	Debug message A received.
2	MSG_AB	Debug messages A, B received.
3	MSG_ABC	Debug messages A, B, C received, DMA request is set.

Bit 25 – RF1L Receive FIFO 1 Message Lost

This bit is a copy of interrupt flag IR.RF1L. When IR.RF1L is reset, this bit is also reset.

Overwriting the oldest message when MCAN_RXF1C.F1OM = '1' will not set this flag.

Value	Description
0	No Receive FIFO 1 message lost.
1	Receive FIFO 1 message lost, also set after write attempt to Receive FIFO 1 of size zero.

Bit 24 - F1F Receive FIFO 1 Full

Value	Description
0	Receive FIFO 1 not full.
1	Receive FIFO 1 full.

50.7.3 TC Channel Mode Register: Waveform Mode

Name:	TC_CMRx
Offset:	0x04 + x*0x40 [x=02]
Reset:	0x0000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Γ	BSWTRG[1:0]		BEEVT[1:0]		BCPC[1:0]		BCPB[1:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	ASWTI	RG[1:0]	AEEV	′T[1:0]	ACP	C[1:0]	ACP	A[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	WAVE WAVSE		WAVSEL[1:0] ENETRG		EEVT[1:0]		EEVTEDG[1:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CPCDIS	CPCSTOP	BURST[1:0]		CLKI	TCCLKS[2:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:30 – BSWTRG[1:0] Software Trigger Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

Bits 29:28 - BEEVT[1:0] External Event Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

Bits 27:26 - BCPC[1:0] RC Compare Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set

Pulse Width Modulation Controller (PWM)

Figure 51-11. PWM Push-Pull Waveforms: Left-Aligned Mode

Pulse Width Modulation Controller (PWM)

51.7.9 PWM Sync Channels Mode Register

Name:	PWM_SCM
Offset:	0x20
Reset:	0x00000000
Property:	Read/Write

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
Access			•	•				
Reset								
Bit	23	22	21	20	19	18	17	16
Dir	20	PTRCS[2:0]		PTRM			UPD	M[1:0]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					SYNC3	SYNC2	SYNC1	SYNC0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 23:21 – PTRCS[2:0] DMA Controller Transfer Request Comparison Selection Selection of the comparison used to set the flag WRDY and the corresponding DMA Controller transfer request.

Bit 20 – PTRM DMA Controller Transfer Re
--

UPDM	PTRM	WRDY Flag and DMA Controller Transfer Request
0	x	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are never set to '1'.
1	x	The WRDY flag in PWM Interrupt Status Register 2 is set to '1' as soon as the update period is elapsed, the DMA Controller transfer request is never set to '1'.
2	0	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are set to '1' as soon as the update period is elapsed.
	1	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are set to '1' as soon as the selected comparison matches.

Bits 17:16 – UPDM[1:0] Synchronous Channels Update Mode

51.7.45 PWM Channel Counter Register

Name:	PWM_CCNTx
Offset:	0x0214 + x*0x20 [x=03]
Reset:	0x0000000
Property:	Read-only

Only the first 16 bits (channel counter size) are significant.

Bit	31	30	29	28	27	26	25	24	
ſ									
Access									
Reset									
Dit	00	00	04	00	40	40	47	40	
BIT	23	22	21	20	19	18	17	16	
CNT[23:16]									
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
Γ	CNT[15:8]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
Γ	CNT[7:0]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 23:0 – CNT[23:0] Channel Counter Register

Channel counter value. This register is reset when:

• the channel is enabled (writing CHIDx in the PWM_ENA register).

• the channel counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is leftaligned.

Analog Comparator Controller (ACC)

Offset	Name	Bit Pos.				
		23:16				
		31:24				

Advanced Encryption Standard (AES)

57.5.3 AES Interrupt Enable Register

Name:AES_IEROffset:0x10Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
								TAGRDY
Access								W
Reset								-
Bit	15	14	13	12	11	10	9	8
								URAD
Access								W
Reset								-
Bit	7	6	5	4	3	2	1	0
								DATRDY
Access								W
Reset								_

Bit 16 – TAGRDY GCM Tag Ready Interrupt Enable

Bit 8 – URAD Unspecified Register Access Detection Interrupt Enable

Bit 0 – DATRDY Data Ready Interrupt Enable