

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q20a-cn

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Enhanced Embedded Flash Controller (EEFC)

22.5.1 EEFC Flash Mode Register

Name:	EEFC_FMR
Offset:	0x00
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the "EEFC Write Protection Mode Register".

Bit	31	30	29	28	27	26	25	24
						CLOE		
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
								SCOD
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						FWS	6[3:0]	
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								FRDY
Access								

Reset

Bit 26 – CLOE Code Loop Optimization Enable

No Flash read should be done during change of this field.

Value	Description
0	The opcode loop optimization is disabled.
1	The opcode loop optimization is enabled.

Bit 16 – SCOD Sequential Code Optimization Disable

No Flash read should be done during change of this field.

Value	Description
0	The sequential code optimization is enabled.
1	The sequential code optimization is disabled.

Bits 11:8 - FWS[3:0] Flash Wait State

This field defines the number of wait states for read and write operations:

FWS = Number of cycles for Read/Write operations - 1

Bit 0 – FRDY Flash Ready Interrupt Enable

25. Reinforced Safety Watchdog Timer (RSWDT)

25.1 Description

The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if the software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the WDT. Its clock source is automatically selected from either the Slow RC oscillator clock, or from the Main RC oscillator divided clock to get an equivalent Slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz crystal oscillator) fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the monitoring. Thus, there is no lack of safety regardless of the external operating conditions. The RSWDT shares the same features as the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug mode or Idle mode.

25.2 Embedded Characteristics

- Automatically Selected Reliable RSWDT Clock Source (independent of WDT clock source)
- 12-bit Key-protected Programmable Counter
- Provides Reset or Interrupt Signals to the System
- Counter may be Stopped While Processor is in Debug State or Idle Mode

Parallel Input/Output Controller (PIO)

32.6.1.7 PIO Input Filter Enable Register

Name:	PIO_IFER
Offset:	0x0020
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Γ	P23	P22	P21	P20	P19	P18	P17	P16
Access				1	L		I	
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access		ł	1	1	1		1	·1
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access		1	1	1	1		1	I]
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Input Filter Enable

Value	Description
0	No effect.
1	Enables the input glitch filter on the I/O line.

invalidated as soon as the transfer address fails to lie in the selected NCSx address space. For details on these waveforms, refer to 35. Static Memory Controller (SMC).

NAND Flash Signals

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits A22 and A21 of the EBI address bus. The command, address or data words on the data bus of the NAND Flash device are distinguished by using their address within the NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not selected, preventing the device from returning to standby mode.

33.5.4 Implementation Examples

The following hardware configurations are given for illustration only. The user should refer to the memory manufacturer web site to check current device availability.

33.5.4.1 16-bit SDRAM on NCS1

Figure 33-2. Hardware Configuration

Software Configuration

The following configuration has to be performed:

- Enable the SDRAM support by setting the bit SDRAMEN field in the CCFG_SMCNFCS Register in the Bus Matrix.
- Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 16 bits.

The SDRAM initialization sequence is described in 34.5.1 SDRAM Device Initialization.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.									
		15:8				NDA[13:6]				
		23:16				NDA[2	21:14]				
		31:24				NDA[2	29:22]				
		7:0		NDVIEW[1:0] NDDUP NDSUP ND							
		15:8									
0x02EC	XDMAC_CNDC10	23:16									
		31:24									
		7:0				UBLE	N[7:0]				
		15:8				UBLEN	N[15:8]				
0x02F0	XDMAC_CUBC10	23:16				UBLEN	[23:16]				
		31:24									
		7:0				BLEN	N[7:0]				
		15:8						BLEN	I[11:8]		
0x02F4	XDMAC_CBC10	23:16									
		31:24									
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE	
		15:8		DIF	SIF	DWIDT	[H[1:0]		CSIZE[2:0]		
0x02F8	XDMAC_CC10	23:16	WRIP	RDIP	INITD		DAM	I[1:0]	SAM	[1:0]	
	31:24					PERID[6:0]					
		7:0				SDS_M	SP[7:0]				
0x02FC	XDMAC_CDS_MSP	15:8	SDS_MSP[15:8]								
	10	23:16		DDS MSP[7:0]							
		31:24				DDS_M	SP[15:8]				
		7:0				SUBS	S[7:0]				
		15:8				SUBS	[15:8]				
0x0300	XDMAC_CSUS10	23:16				SUBS	[23:16]				
		31:24									
		7:0				DUBS	S[7:0]				
0.0004		15:8				DUBS	[15:8]				
0x0304	XDMAC_CDUS10	23:16				DUBS	[23:16]				
		31:24									
0x0308											
	Reserved										
0x030F											
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE	
0x0310		15:8									
0,0010		23:16									
		31:24									
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID	
0x0314		15:8									
0,0014		23:16									
		31:24									
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM	
0x0318	XDMAC CIM11	15:8									
0,0010		23:16									
		31:24									

The GMAC supports both hardware controlled pause of the transmitter, upon reception of a pause frame, and hardware generated pause frame transmission.

38.6.16.1 802.3 Pause Frame Reception

Bit 13 of the Network Configuration register is the pause enable control for reception. If this bit is set, transmission will pause if a non zero pause quantum frame is received.

If a valid pause frame is received then the Pause Time register is updated with the new frame's pause time, regardless of whether a previous pause frame is active or not. An interrupt (either bit 12 or bit 13 of the Interrupt Status register) is triggered when a pause frame is received, but only if the interrupt has been enabled (bit 12 and bit 13 of the Interrupt Mask register). Pause frames received with non zero quantum are indicated through the interrupt bit 12 of the Interrupt Status register. Pause frames received with zero quantum are indicated on bit 13 of the Interrupt Status register.

Once the Pause Time register is loaded and the frame currently being transmitted has been sent, no new frames are transmitted until the pause time reaches zero. The loading of a new pause time, and hence the pausing of transmission, only occurs when the GMAC is configured for full duplex operation. If the GMAC is configured for half duplex there will be no transmission pause, but the pause frame received interrupt will still be triggered. A valid pause frame is defined as having a destination address that matches either the address stored in Specific Address register 1 or if it matches the reserved address of 0x0180C2000001. It must also have the MAC control frame type ID of 0x8808 and have the pause opcode of 0x0001.

Pause frames that have frame check sequence (FCS) or other errors will be treated as invalid and will be discarded. 802.3 Pause frames that are received after Priority-based Flow Control (PFC) has been negotiated will also be discarded. Valid pause frames received will increment the pause frames received statistic register.

The pause time register decrements every 512 bit times once transmission has stopped. For test purposes, the retry test bit can be set (bit 12 in the Network Configuration register) which causes the Pause Time register to decrement every GTXCK cycle once transmission has stopped.

The interrupt (bit 13 in the Interrupt Status register) is asserted whenever the Pause Time register decrements to zero (assuming it has been enabled by bit 13 in the Interrupt Mask register). This interrupt is also set when a zero quantum pause frame is received.

38.6.16.2 802.3 Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit pause frame bits of the Network Control register. If either bit 11 or bit 12 of the Network Control register is written with logic 1, an 802.3 pause frame will be transmitted, providing full duplex is selected in the Network Configuration register and the transmit block is enabled in the Network Control register.

Pause frame transmission will happen immediately if transmit is inactive or if transmit is active between the current frame and the next frame due to be transmitted.

Transmitted pause frames comprise the following:

- A destination address of 01-80-C2-00-00-01
- A source address taken from Specific Address register 1
- A type ID of 88-08 (MAC control frame)
- A pause opcode of 00-01
- A pause quantum register
- Fill of 00 to take the frame to minimum frame length
- Valid FCS

38.8.7 GMAC Receive Buffer Queue Base Address Register

Name:	GMAC_RBQB
Offset:	0x018
Reset:	0x00000000
Property:	Read/Write

This register holds the start address of the receive buffer queue (receive buffers descriptor list). The receive buffer queue base address must be initialized before receive is enabled through bit 2 of the Network Control Register. Once reception is enabled, any write to the Receive Buffer Queue Base Address Register is ignored. Reading this register returns the location of the descriptor currently being accessed. This value increments as buffers are used. Software should not use this register for determining where to remove received frames from the queue as it constantly changes as new frames are received. Software should instead work its way through the buffer descriptor queue checking the "used" bits.

In terms of AMBA AHB operation, the descriptors are read from memory using a single 32-bit AHB access. The descriptors should be aligned at 32-bit boundaries and the descriptors are written to using two individual non sequential accesses.

Bit	31	30	29	28	27	26	25	24
Γ				ADDR	[29:22]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Γ				ADDR	[21:14]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDF	R[13:6]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ			ADDI	٦[5:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		

Bits 31:2 – ADDR[29:0] Receive Buffer Queue Base Address Written with the address of the start of the receive queue.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.									
		7:0	SHORTPACK	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	тхоиті	RXINI	
0x0544	USBHS_HSTPIPIS	15.8									
0,0044	R5 (INTPIPES)	23.16					CEGOK	DIGE	α[1.0] R\//Δ[]		
		31.24			,1[0.0]		PBYCT[10:4]				
		01.24	SHORTPACK								
	USBHS HSTPIPIS	7:0	ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	TXOUTI	RXINI	
0x0544	R5 (ISOPIPES)	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
		23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	TXOUTI	RXINI	
0x0548	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	Ко	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυΤΙ	RXINI	
0x0548	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R6 (INTPIPES)	23:16	PBYCT[3:0]				CFGOK		RWALL		
		31:24					PBYCT[10:4]				
	USBHS_HSTPIPIS R6 (ISOPIPES)	7:0	SHORTPACK ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυΤΙ	RXINI	
0x0548		15:8	CURRBK[1:0] NBUSYBK[1:0]					DTSEQ[1:0]			
		23:16	PBYCT[3:0]				CFGOK		RWALL		
		31:24									
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	ΤΧΟυΤΙ	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSEQ[1:0]		
	R/	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	TXOUTI	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURRI	CURRBK[1:0] NBUSYBK[1:0]		BK[1:0]			DTSE	Q[1:0]	
	R7 (INTPIPES)	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυτι	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURRI	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R7 (ISOPIPES)	23:16		PBYC	T[3:0]	-		CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	ΤΧΟυΤΙ	RXINI	
0x0550	USBHS_HSTPIPIS	15:8	CURRI	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R8	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
L											

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x057C	USBHS_HSTPIPIC	15:8								
	R7 (INTPIPES)	23:16								
		31:24								
		7:0	SHORTPACK ETIC	CRCERRIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x057C	USBHS_HSTPIPIC	15:8								
	R7 (ISOPIPES)	23:16								
		31:24								
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC		TXSTPIC	TXOUTIC	RXINIC
0x0580		15:8								
	KO	23:16								
		31:24								
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x0580		15:8								
	R8 (INTPIPES)	23:16								
		31:24								
		7:0	SHORTPACK ETIC	CRCERRIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x0580		15:8								
	R8 (ISOPIPES)	23:16								
		31:24								
	USBHS HSTPIPIC	7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC		TXSTPIC	TXOUTIC	RXINIC
0x0584	R9	15:8								
	13	23:16								
		31:24								
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x0584	R9 (INTPIPES)	15:8								
		23:16								
		31:24								
		7:0	SHORTPACK ETIC	CRCERRIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
0x0584	R9 (ISOPIPES)	15:8								
		23:16								
		31:24								
0x0588										
 0x058F	Reserved									
0x0590	USBHS_HSTPIPIF	7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	TXSTPIS	TXOUTIS	RXINIS
	Rx	15:8				NBUSYBKS				
		23:16								

USB High-Speed Interface (USBHS)

39.6.31 Host General Control Register

Reset

	Name: Offset: Reset: Property:	USBHS_HST 0x0400 0x00000000 Read/Write	CTRL					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
			SPDCC	NF[1:0]		RESUME	RESET	SOFE
Access		-						J
Reset			0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
Access			1	1				

Bits 13:12 - SPDCONF[1:0] Mode Configuration

This field contains the host speed capability:.

Value	Name	Description
0	NORMAL	The host starts in Full-speed mode and performs a high-speed reset to
		switch to High-speed mode if the downstream peripheral is high-speed
		capable.
1	LOW_POWER	For a better consumption, if high speed is not needed.
2	HIGH_SPEED	Forced high speed.
3	FORCED_FS	The host remains in Full-speed mode whatever the peripheral speed
		capability.

Bit 10 - RESUME Send USB Resume

This bit is cleared when the USB Resume has been sent or when a USB reset is requested.

This bit should be written to one only when the start of frame generation is enabled (SOFE = 1).

Value	Description
0	No effect.
1	Generates a USB Resume on the USB bus.

High-Speed Multimedia Card Interface (HSMCI)

40.14.16 HSMCI DMA Configuration Register

Name:	HSMCI_DMA
Offset:	0x50
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								DMAEN
Access								
Reset								0
Bit	7	6	5	4	3	2	1	0
			CHKSIZE[2:0]					
Access								
Reset		0	0	0				

Bit 8 – DMAEN DMA Hardware Handshaking Enable

Value	Description
0	DMA interface is disabled.
1	DMA Interface is enabled. Note: To avoid unpredictable behavior, DMA hardware handshaking must be disabled when
	CPU transfers are performed.

Bits 324:4 – CHKSIZE[320:0] DMA Channel Read and Write Chunk Size

The CHKSIZE field indicates the number of data available when the DMA chunk transfer request is asserted.

Value	Name	Description
0	1	1 data available
1	2	2 data available
2	4	4 data available
3	8	8 data available
4	16	16 data available

Two-wire Interface (TWIHS)

Universal Synchronous Asynchronous Receiver Transc...

- Case 2: NACT = SUBSCRIBE, the USART receives the response
 - Wait until RXRDY in US_CSR rises.
 - Read RCHR in US_RHR.
 - If all the data have not been read, redo the two previous steps.
 - Wait until LINTC in US_CSR rises.
 - Check the LIN errors.
 - Case 3: NACT = IGNORE, the USART is not concerned by the response
 - Wait until LINTC in US_CSR rises.
 - Check the LIN errors.

Figure 46-48. Slave Node Configuration, NACT = PUBLISH

46.6.9.16 LIN Frame Handling with the DMAC

The USART can be used in association with the DMAC in order to transfer data directly into/from the onand off-chip memories without any processor intervention.

- Bit 5 OVRE Overrun Error Interrupt Enable
- **Bit 1 TXRDY** TXRDY Interrupt Enable
- Bit 0 RXRDY RXRDY Interrupt Enable

Media Local Bus (MLB)

Value (see Note)	Command	Description
52h	IsoSync2Bytes	Isochronous logical channel, two data bytes valid and start of a block. First byte transmitted/received is the MSB. Last two bytes in the physical channel are empty.
54h	IsoSync3Bytes	Isochronous logical channel, three data bytes valid and start of a block. First byte transmitted/received is the MSB. Last byte in physical channel is empty.
56h	IsoSync4Bytes	Isochronous logical channel, all four data bytes valid and start of a block. First byte transmitted/received is the MSB.
58hDEh	rsvd	Reserved
System Co	ommands (Controller sends	s in System Channel):
00h	NoData	The Controller has no System command to send out.
E0h	MOSTLock	The Controller issues a MOST Network lock command in the System Channel to notify Devices that the MOST Network is in lock.
E2h	MOSTUnlock	The Controller issues a MOST Network unlock command in the System Channel to notify Devices that the MOST Network is unlocked.
E4h	MLBScan	The Controller issues an MediaLB scan command in the System Channel and uses the MLBD line to indicate the DeviceAddress which is currently being scanned. All Devices supporting MLBScan must compare the received DeviceAddress against their internal DeviceAddress, and if a match occurs, a Device responds in the following System Channel with one of the System responses as specified in Table 48-6.
E6h	MLBSubCmd	The Controller outputs a sub-command in the System Channel. The sub- command is part of the data on the MLBD line.
E8hFCh	rsvd	Reserved
FEh	MLBReset	The Controller outputs a MediaLB reset on the System Channel MLBS line. If the first two-bytes are zero on the MLBD line, then the system reset is a broadcast system reset and every Device should reset its MediaLB interface. Otherwise, the MLBD line contains the DeviceAddress of the Device being asked to reset its own MediaLB interface.

Note: All odd values (LSB set) are reserved.

For synchronous logical channels, the NoData command indicates that the Tx Device assigned to that ChannelAddress has not setup the channel yet. For asynchronous and control logical channels, NoData is used during packet data transfer when there is no data available to transmit.

© 2018 Microchip Technology Inc.

RA Compare controls TIOAx, and RB Compare controls TIOBx. Each of these events can be programmed to set, clear or toggle the output as defined in the corresponding parameter in TC_CMR.

50.6.16 Quadrature Decoder

50.6.16.1 Description

The quadrature decoder (QDEC) is driven by TIOA0, TIOB0 and TIOB1 input pins and drives the timer counter of channel 0 and 1. Channel 2 can be used as a time base in case of speed measurement requirements (refer to Predefined Connection of the Quadrature Decoder with Timer Counters).

When writing a '0' to TC_BMR.QDEN, the QDEC is bypassed and the IO pins are directly routed to the timer counter function.

TIOA0 and TIOB0 are to be driven by the two dedicated quadrature signals from a rotary sensor mounted on the shaft of the off-chip motor.

A third signal from the rotary sensor can be processed through pin TIOB1 and is typically dedicated to be driven by an index signal if it is provided by the sensor. This signal is not required to decode the quadrature signals PHA, PHB.

TC_CMRx.TCCLKS must be configured to select XC0 input (i.e., 0x101). Field TC0XC0S has no effect as soon as the QDEC is enabled.

Either speed or position/revolution can be measured. Position channel 0 accumulates the edges of PHA, PHB input signals giving a high accuracy on motor position whereas channel 1 accumulates the index pulses of the sensor, therefore the number of rotations. Concatenation of both values provides a high level of precision on motion system position.

In Speed mode, position cannot be measured but revolution can be measured.

Inputs from the rotary sensor can be filtered prior to downstream processing. Accommodation of input polarity, phase definition and other factors are configurable.

Interruptions can be generated on different events.

A compare function (using TC_RC) is available on channel 0 (speed/position) or channel 1 (rotation) and can generate an interrupt by means of TC_SRx.CPCS.

Analog Front-End Controller (AFEC)

52.7.16 AFEC Channel Gain Register

Name:	AFEC_CGR
Offset:	0x54
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	GAIN	11[1:0]	GAIN	10[1:0]	GAIN	9[1:0]	GAIN	18[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	GAIN	7[1:0]	GAIN	6[1:0]	GAIN	5[1:0]	GAIN	I4[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GAIN	3[1:0]	GAIN	2[1:0]	GAIN	1[1:0]	GAIN	10[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0:1, 2:3, 4:5, 6:7, 8:9, 10:11, 12:13, 14:15, 16:17, 18:19, 20:21, 22:23 – GAINx Gain for Channel x Gain applied on input of Analog Front-End.

See section AFEC Channel Differential Register for a description of DIFFx.

GAINx	Gain Applied				
	DIFFx = 0	DIFFx = 1			
0	1	1			
1	2	2			
2	4	4			
3	4	4			

Analog Comparator Controller (ACC)

54.6.2 Analog Settings

The user can select the input hysteresis and configure two different options, characterized as follows:

- High-speed: shortest propagation delay/highest current consumption
- Low-power: longest propagation delay/lowest current consumption

Refer to ACC Analog Control Register.

54.6.3 Output Masking Period

As soon as the analog comparator settings change, the output is invalid for a duration depending on ISEL current.

A masking period is automatically triggered as soon as a write access is performed on the ACC_MR or ACC Analog Control Register (ACC_ACR) (regardless of the register data content).

When ISEL = 0, the mask period is $8 \times t_{peripheral clock}$.

When ISEL = 1, the mask period is $128 \times t_{peripheral clock}$.

The masking period is reported by reading a negative value (bit 31 set) on the ACC Interrupt Status Register (ACC_ISR).

54.6.4 Fault Mode

In Fault mode, a comparison match event is communicated by the ACC fault output which is directly and internally connected to a PWM fault input.

The source of the fault output can be configured as either a combinational value derived from the analog comparator output or as the peripheral clock resynchronized value. Refer to Analog Comparator Controller Block Diagram.

54.6.5 Register Write Protection

To prevent any single software error from corrupting ACC behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the ACC Write Protection Mode Register (ACC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the ACC Write Protection Status Register (ACC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the ACC_WPSR register.

The following registers can be write-protected:

- ACC Mode Register
- ACC Analog Control Register

Advanced Encryption Standard (AES)

Offset	Name	Bit Pos.	
0x8C	AES_TAGR1	7:0	TAG[7:0]
		15:8	TAG[15:8]
		23:16	TAG[23:16]
		31:24	TAG[31:24]
0x90	AES_TAGR2	7:0	TAG[7:0]
		15:8	TAG[15:8]
		23:16	TAG[23:16]
		31:24	TAG[31:24]
0x94	AES_TAGR3	7:0	TAG[7:0]
		15:8	TAG[15:8]
		23:16	TAG[23:16]
		31:24	TAG[31:24]
	AES_CTRR	7:0	CTR[7:0]
0.00		15:8	CTR[15:8]
0x98		23:16	CTR[23:16]
		31:24	CTR[31:24]
	AES_GCMHR0	7:0	H[7:0]
0x9C		15:8	H[15:8]
		23:16	H[23:16]
		31:24	H[31:24]
	AES_GCMHR1	7:0	H[7:0]
0xA0		15:8	H[15:8]
		23:16	H[23:16]
		31:24	H[31:24]
0xA4	AES_GCMHR2	7:0	H[7:0]
		15:8	H[15:8]
		23:16	H[23:16]
		31:24	H[31:24]
0xA8	AES_GCMHR3	7:0	H[7:0]
		15:8	H[15:8]
		23:16	H[23:16]
		31:24	H[31:24]

Electrical Characteristics for SAM ...

Symbol		VDDIO Supply		
	Parameter	Min	Max	
SMC ₂₂	Data Out Valid before NCS High	NCS_WR_PULSE × t _{CPMCK} - 3.9	-	ns
SMC ₂₃	NCS Pulse Width	NCS_WR_PULSE × t _{CPMCK} - 0.2	-	ns
SMC ₂₄	A0–A22 valid before NCS low	NCS_WR_SETUP × t _{CPMCK} - 4.6	-	ns
SMC ₂₅	NWE low before NCS high	(NCS_WR_SETUP - NWE_SETUP + NCS pulse) × t_{CPMCK} - 4.6	_	ns
SMC ₂₆	NCS High to Data Out, A0–A25, change	NCS_WR_HOLD × t _{CPMCK} - 3.4	_	ns
SMC ₂₇	NCS High to NWE Inactive	(NCS_WR_HOLD - NWE_HOLD) × t_{CPMCK} - 2.4	_	ns

Table 58-65. SMC Write NCS Controlled (WRITE_MODE = 0)

