

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q20a-cnt

Email: info@E-XFL.COM

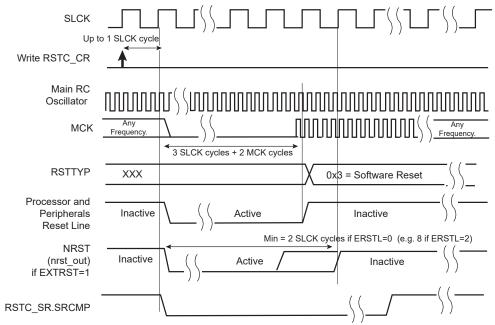
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit 1 – SMC_NFCS1 SMC NAND Flash Chip Select 1 Assignment

 $\widehat{\mathbf{M}}$ WARNING This bit must not be used if SDRAMEN is set.

Valu	le Description
0	NCS1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1).
1	NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1).

Bit 0 - SMC_NFCS0 SMC NAND Flash Chip Select 0 Assignment


Value	Description
0	NCS0 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS0).
1	NCS0 is assigned to a NAND Flash (NANDOE and NANWE used for NCS0).

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to '1', the nrst_out signal is asserted depending on the configuration of RSTC_MR.ERSTL. However, the resulting falling edge on NRST does not lead to a user reset.

If and only if the RSTC_CR.PROCRST is written to '1', the RSTC reports the software status in field RSTC_SR.RSTTYP. Other software resets are not reported in RSTTYP.

As soon as a software operation is detected, RSTC_SR.SRCMP is written to '1'. SRCMP is cleared at the end of the software reset. No other software reset can be performed while SRCMP is written to '1', and writing any value in the RSTC_CR has no effect.

Figure 26-5. Software Reset Timing Diagram

26.4.3.5 User Reset

A user reset is generated when a low level is detected on the NRST pin and RSTC_MR.URSTEN is at '1'. The NRST input signal is resynchronized with SLCK to ensure proper behavior of the system. Thus, the NRST pin must be asserted for at least 1 SLCK clock cycle to ensure execution of a user reset.

The user reset is triggered 2 SLCK cycles after a low level is detected on NRST. The processor reset and the peripheral reset are asserted.

The user reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor startup. The processor clock is reenabled as soon as NRST is confirmed high.

When the processor reset signal is released, RSTC_SR.RSTTYP is loaded with the value '4', indicating a user reset.

The NRST manager guarantees that the NRST line is asserted for External Reset Length SLCK cycles, as configured in RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is driven low externally, the internal reset lines remain asserted until NRST actually rises.

Parallel Input/Output Controller (PIO)

	Name: Offset: Reset: Property:	PIO_SCDR 0x008C 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	0
DIL	15	14	13	12		13:8]	9	8
Access					טוען	13.0]		
Reset			0	0	0	0	0	0
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	_				[7:0]		· · · · · · · · · · · · · · · · · · ·	-
Access	<u> </u>							
Reset		0	0	0	0	0	0	0

32.6.1.29 PIO Slow Clock Divider Debouncing Register

Bits 13:0 – DIV[13:0] Slow Clock Divider Selection for Debouncing $t_{div slck} = ((DIV + 1) \times 2) \times t_{slck}$

Parallel Input/Output Controller (PIO)

32.6.1.40 PIO Level Select Register

	Name: Offset: Property:	PIO_LSR 0x00C4 Write-only						
Bit		30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access					•			
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access	<u>L</u>	1	1	1	1	1	1	I]
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Level Interrupt Selection

Value	Description
0	No effect.
1	The interrupt source is a level-detection event.

Static Memory Controller (SMC)

35.16.1.2 SMC Pulse Register

 Name:
 SMC_PULSE[0..3]

 Offset:
 0x00

 Reset:
 0

 Property:
 R/W

This register can only be written if the WPEN bit is cleared in the "SMC Write Protection Mode Register" .

Bit	31	30	29	28	27	26	25	24
				NC	S_RD_PULSE[6	5:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
					NRD_PULSE[6:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			NCS_WR_PULSE[6:0]					
Access								
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		NWE_PULSE[6:0]						
Access								
Reset		0	0	0	0	0	0	0

Bits 30:24 – NCS_RD_PULSE[6:0] NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In Page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

Bits 22:16 - NRD_PULSE[6:0] NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In Page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

Bits 14:8 – NCS_WR_PULSE[6:0] NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles

USB High-Speed Interface (USBHS)

Bit 0 - RXINIC Received IN Data Interrupt Clear

Two-wire Interface (TWIHS)

43.7.6 TWIHS Status Register

Name:	TWIHS_SR
Offset:	0x20
Reset:	0x03000009
Property:	Read-only

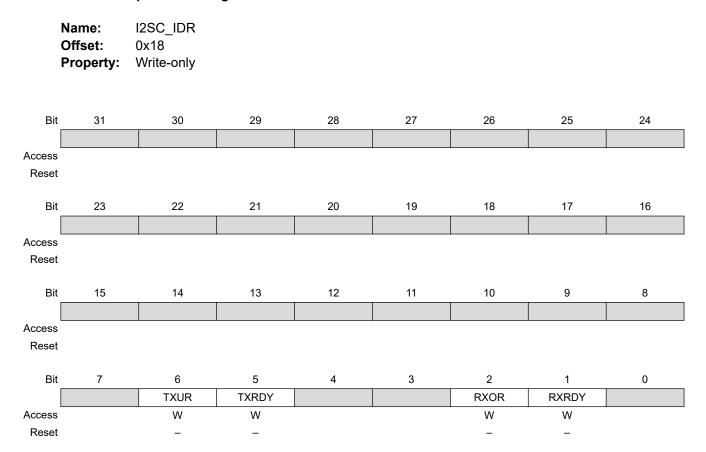
Bit	31	30	29	28	27	26	25	24
							SDA	SCL
Access							R	R
Reset							1	1
Bit	23	22	21	20	19	18	17	16
			SMBHHM	SMBDAM	PECERR	TOUT		MCACK
Access			R	R	R	R		R
Reset			0	0	0	0		0
Bit	15	14	13	12	11	10	9	8
					EOSACC	SCLWS	ARBLST	NACK
Access					R	R	R	R
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	UNRE	OVRE	GACC	SVACC	SVREAD	TXRDY	RXRDY	TXCOMP
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	1	0	0	1

Bit 25 – SDA SDA Line Value

V	alue	Description
0		SDA line sampled value is '0'.
1		SDA line sampled value is '1'.

Bit 24 - SCL SCL Line Value

Value	Description
0	SCL line sampled value is '0'.
1	SCL line sampled value is '1.'


Bit 21 – SMBHHM SMBus Host Header Address Match (cleared on read)

Value	Description
0	No SMBus Host Header Address received since the last read of TWIHS_SR.
1	An SMBus Host Header Address was received since the last read of TWIHS_SR.

Bit 20 - SMBDAM SMBus Default Address Match (cleared on read)

Value	Description
0	No SMBus Default Address received since the last read of TWIHS_SR.
1	An SMBus Default Address was received since the last read of TWIHS_SR.

Inter-IC Sound Controller (I2SC)

45.8.7 I2SC Interrupt Disable Register

Bit 6 – TXUR Transmit Underflow Interrupt Disable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit clears the corresponding bit in I2SC_IMR.

Bit 5 – TXRDY Transmit Ready Interrupt Disable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit clears the corresponding bit in I2SC_IMR.

Bit 2 – RXOR Receiver Overrun Interrupt Disable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit clears the corresponding bit in I2SC_IMR.

Bit 1 – RXRDY Receiver Ready Interrupt Disable

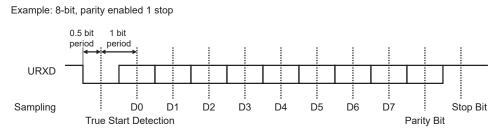
Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit clears the corresponding bit in I2SC_IMR.

LIN Mode

- Compliant with LIN 1.3 and LIN 2.0 SPECIFICATIONS
- Master or Slave
- Processing of Frames with Up to 256 Data Bytes
- Response Data Length can be Configurable or Defined Automatically by the Identifier
- Self-synchronization in Slave Node Configuration
- Automatic Processing and Verification of the "Synch Break" and the "Synch Field"
- "Synch Break" Detection Even When Partially Superimposed with a Data Byte
- Automatic Identifier Parity Calculation/Sending and Verification
- Parity Sending and Verification Can be Disabled
- Automatic Checksum Calculation/sending and Verification
- Checksum Sending and Verification Can be Disabled
- Support Both "Classic" and "Enhanced" Checksum Types
- Full LIN Error Checking and Reporting
- Frame Slot Mode: Master Allocates Slots to the Scheduled Frames Automatically
- Generation of the Wakeup Signal
- LON Mode
 - Compliant with CEA-709 Specification
 - Full-layer 2 Implementation
 - Differential Manchester Encoding/Decoding (CDP)
 - Preamble Generation Including Bit- and Byte-sync Fields
 - LON Timings Handling (beta1, beta2, IDT, etc.)
 - CRC Generation and Checking
 - Automated Random Number Generation
 - Backlog Calculation and Update
 - Collision Detection Support
 - Supports Both comm_type=1 and comm_type=2 Modes
 - Clock Drift Tolerance Up to 16%
 - Optimal for Node-to-Node Communication (no embedded digital line filter)
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo
- Supports Connection of:
 - Two DMA Controller Channels (DMAC)
- Offers Buffer Transfer without Processor Intervention
- Register Write Protection

Universal Synchronous Asynchronous Receiver Transc...

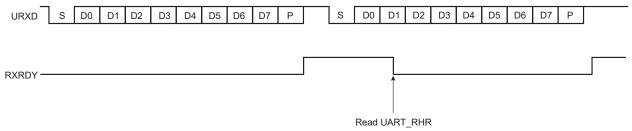
- 3. Write CD and FP in US_BRGR to configure the baud rate.
- 4. Write COMMT, COLDET, TCOL, CDTAIL, RDMNBM and DMAM in US_LONMR to configure the LON operating mode.
- 5. Write BETA2, BETA1TX, BETA1RX, PCYCLE, PSNB, NPS, IDTTX and ITDRX respectively in US_FIDI, US_LONB1TX, US_LONB1RX, US_TTGR, US_LONPRIO, US_LONIDTTX and US_LONIDTRX to set the LON network configuration.
- 6. Write TX_PL in US_MAN to select the preamble pattern to use.
- 7. Write LONPL and LONDL in US_LONPR and US_LONDL to set the frame transfer.
- 8. Check that TXRDY in US_CSR is set to 1.
- 9. Write US_LONL2HDR register to send the header.
- 10. Wait until TXRDY in US_CSR rises.
- 11. Write TCHR in US_THR to send a byte.
- 12. If all the data have not been written, redo the two previous steps.
- 13. Wait until LTXD in US_CSR rises.
- 14. Check the LON errors.


Figure 46-61. Tx Frame

	-	Random Delay	Preamble	l2hdr	Data	1 Dat	a 2	Data N	-1 Data N	CRC	CRC	
TXRDY	\neg											J
RXRDY												
Write US_LONL2HDR							·					
Write US THR				t	t	t	t					
LTXD				Data 1	Data 2	Data 3	Data 4	Data N				

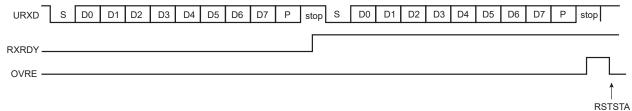
46.6.10.11.2 Receiving A Frame

- 1. Write TXEN and RXEN in US_CR to enable both the transmitter and the receiver.
- 2. Write USART_MODE in US_MR to select the LON mode configuration.
- 3. Write CD and FP in US_BRGR to configure the baud rate.
- 4. Write COMMT, COLDET, TCOL, CDTAIL, RDMNBM and DMAM in US_LONMR to configure the LON operating mode.
- 5. Write BETA2, BETA1TX, BETA1RX, PCYCLE, PSNB, NPS, IDTTX and ITDRX respectively in US_FIDI, US_LONB1TX, US_LONB1RX, US_TTGR, US_LONPRIO, US_LONIDTTX and US_LONIDTRX to set the LON network configuration.
- 6. Write RXIDLEV and RX_PL in US_MAN to indicate the receiver line value and select the preamble pattern to use.
- 7. Wait until RXRDY in US_CSR rises.
- 8. Read RCHR in US_RHR.
- 9. If all the data and the two CRC bytes have not been read, redo the two previous steps.
- 10. Wait until LRXD in US_CSR rises.
- 11. Check the LON errors.
- 12.


Figure 47-4. Character Reception

47.5.2.3 Receiver Ready

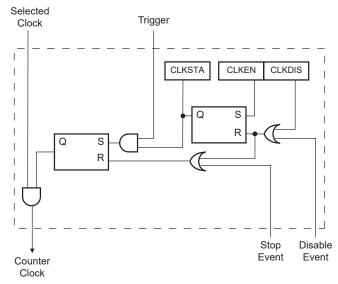
When a complete character is received, it is transferred to the Receive Holding Register (UART_RHR) and the RXRDY status bit in the Status Register (UART_SR) is set. The bit RXRDY is automatically cleared when UART_RHR is read.


Figure 47-5. Receiver Ready

47.5.2.4 Receiver Overrun

The OVRE status bit in UART_SR is set if UART_RHR has not been read by the software (or the DMA Controller) since the last transfer, the RXRDY bit is still set and a new character is received. OVRE is cleared when the software writes a 1 to the bit RSTSTA (Reset Status) in UART_CR.

Figure 47-6. Receiver Overrun



47.5.2.5 Parity Error

Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with the field PAR in the Mode Register (UART_MR). It then compares the result with the received parity bit. If different, the parity error bit PARE in UART_SR is set at the same time RXRDY is set. The parity bit is cleared when UART_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status command is written, the PARE bit remains at 1.

- The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the Channel Control register (TC_CCR). In Capture mode it can be disabled by an RB load event if TC_CMRx.LDBDIS is set to '1'. In Waveform mode, it can be disabled by an RC Compare event if TC_CMRx.CPCDIS is set to '1'. When disabled, the start or the stop actions have no effect: only a CLKEN command in the TC_CCR can reenable the clock. When the clock is enabled, TC_SR.CLKSTA is set.
- The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts the clock. The clock can be stopped by an RB load event in Capture mode (TC_CMRx.LDBSTOP = 1) or an RC compare event in Waveform mode (TC_CMRx.CPCSTOP = 1). The start and the stop commands are effective only if the clock is enabled.

Figure 50-4. Clock Control

50.6.5 Operating Modes

Each channel can operate independently in two different modes:

- Capture mode provides measurement on signals.
- Waveform mode provides wave generation.

The TC operating mode is programmed with TC_CMRx.WAVE.

In Capture mode, TIOAx and TIOBx are configured as inputs.

In Waveform mode, TIOAx is always configured to be an output and TIOBx is an output if it is not selected to be the external trigger.

50.6.6 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a fourth external trigger is available to each mode.

Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This means that the counter value can be read differently from zero just after a trigger, especially when a low frequency signal is selected as the clock.

The following triggers are common to both modes:

• Software Trigger: Each channel has a software trigger, available by setting TC_CCR.SWTRG.

Pulse Width Modulation Controller (PWM)

055-11	News	D' D.								
Offset	Name	Bit Pos.								
		31:24							10.01	
		7:0		UPRC	NT[3:0]			UPR	[3:0]	
0x2C	PWM_SCUP	15:8								
		23:16 31:24								
		7:0						UPRU		
		15:8							D[3.0]	
0x30	PWM_SCUPUPD	23:16								
		31:24								
		7:0					UNRE			WRDY
		15:8	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
0x34	PWM_IER2	23:16	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
		31:24								
		7:0					UNRE			WRDY
		15:8	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
0x38	PWM_IDR2	23:16	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
		31:24								
		7:0					UNRE			WRDY
		15:8	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
0x3C	PWM_IMR2	23:16	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
		31:24								
		7:0					UNRE			WRDY
0x40	PWM_ISR2	15:8	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
0x40		23:16	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
		31:24								
		7:0					OOVH3	OOVH2	OOVH1	OOVH0
0x44	PWM_OOV	15:8								
0, TT		23:16					OOVL3	OOVL2	OOVL1	OOVL0
		31:24								
		7:0					OSH3	OSH2	OSH1	OSH0
0x48	PWM_OS	15:8								
	_	23:16					OSL3	OSL2	OSL1	OSL0
		31:24								
		7:0					OSSH3	OSSH2	OSSH1	OSSH0
0x4C	PWM_OSS	15:8					00010	00010	00014	
		23:16					OSSL3	OSSL2	OSSL1	OSSL0
		31:24					000110	000110	000114	000110
		7:0 15:8					OSCH3	OSCH2	OSCH1	OSCH0
0x50	PWM_OSC	23:16					OSCL3	OSCL2	OSCL1	OSCL0
		31:24					USULS	UGGLZ	USCLI	USULU
		7:0					OSSUPH3	OSSUPH2	OSSUPH1	OSSUPH0
		15:8					0000000			00001110
0x54	PWM_OSSUPD	23:16					OSSUPL3	OSSUPL2	OSSUPL1	OSSUPL0
		31:24							SECOLET	0000120
0x58	PWM_OSCUPD	7:0					OSCUPH3	OSCUPH2	OSCUPH1	OSCUPH0
5.00										

Pulse Width Modulation Controller (PWM)

	Name: Offset: Reset: Property:	PWM_SMMR 0xB0 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							DOWN1	DOWN0
Access								
Reset							0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							GCEN1	GCEN0
Access							R/W	R/W
Reset							0	0

51.7.32 PWM Stepper Motor Mode Register

Bits 16, 17 – DOWNx Down Count

Value	Description
0	Up counter.
1	Down counter.

Bits 0, 1 – GCENx Gray Count Enable

Value	Description
0	Disable gray count generation on PWML[2*x], PWMH[2*x], PWML[2*x +1], PWMH[2*x +1]
1	Enable gray count generation on PWML[2*x], PWMH[2*x], PWML[2*x +1], PWMH[2*x +1].

Integrity Check Monitor (ICM)

55.6.2 ICM Control Register

	Name: Offset: Reset: Property:	ICM_CTRL 0x04 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Dit	15		N[3:0]	12			S[3:0]	
A	W			W	W			W
Access		W	W			W	W	vv
Reset	0	0	0	_	0	0	0	-
Bit	7	6	5	4	3	2	1	0
			SH[3:0]		-	SWRST	DISABLE	ENABLE
Access	W	W	W	W		W	W	W
Reset		0	0	_		_	_	_

Bits 15:12 – RMEN[3:0] Region Monitoring Enable Monitoring is activated by default.

Value	Description
0	No effect
1	When bit RMEN[i] is set to one, the monitoring of region with identifier i is activated.

Bits 11:8 – RMDIS[3:0] Region Monitoring Disable

Value	Description
0	No effect
1	When bit RMDIS[i] is set to one, the monitoring of region with identifier i is disabled.

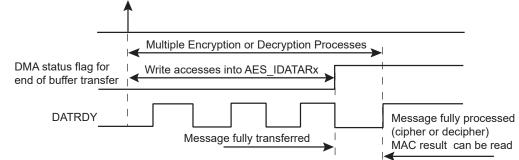
Bits 7:4 - REHASH[3:0] Recompute Internal Hash

Value	Description
0	No effect
1	When REHASH[i] is set to one, Region i digest is re-computed. This bit is only available when region monitoring is disabled.

Bit 2 - SWRST Software Reset

57.4.3.2.2 If AES_MR.LOD = 1

This mode is optimized to process AES CBC-MAC operating mode.


The user must first wait for the DMA buffer transfer complete flag, then for the flag DATRDY to rise to ensure that the encryption/decryption is completed (see the figure below).

In this case, no receive buffers are required.

The output data are only available on AES_ODATARx.

Figure 57-4. DMA Transfer with AES_MR.LOD = 1

Enable DMA Channels associated with AES_IDATARx and AES_ODATARx registers

The table below summarizes the different cases.

Table 57-1. Last Output Data Mode Behavior versus Start Modes

Sequence	Manual and Auto M	odes	DMA Transfer		
	AES_MR.LOD = 0	AES_MR.LOD = 1	AES_MR.LOD = 0	AES_MR.LOD = 1	
DATRDY Flag Clearing Condition ⁽¹⁾	At least one AES_ODATAR must be read	At least one AES_IDATAR must be written	Not used	Managed by the DMA	
End of Encryption/ Decryption Notification	DATRDY	DATRDY	2 DMA Buffer transfer complete flags (channel m and channel n)	DMA buffer transfer complete flag, then AES DATRDY flag	
Encrypted/ Decrypted Data Result Location	In AES_ODATARx	In AES_ODATARx	At the address specified in the Channel Buffer Transfer Descriptor	In AES_ODATARx	

Note:

1. Depending on the mode, there are other ways of clearing the DATRDY flag. See AES Interrupt Status Register.

AWARNING In DMA mode, reading AES_ODATARx before the last data transfer may lead to unpredictable results.

57.5.13 AES GCM Intermediate Hash Word Register x

AES_GHASHRx

0x78 + x*0x04 [x=0..3]

Name:

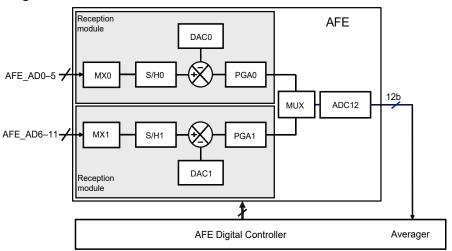
Offset:

	Reset: Property:	0x00000000 R/W						
Bit	31	30	29	28	27	26	25	24
				GHASH	I[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				GHASH	H[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				GHAS	H[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GHASH[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

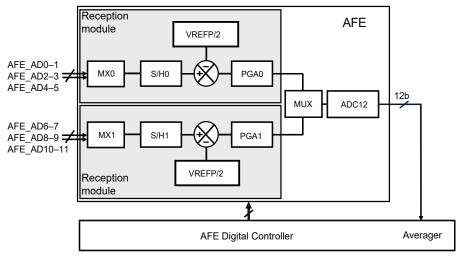
Bits 31:0 - GHASH[31:0] Intermediate GCM Hash Word x

The four 32-bit Intermediate Hash Word registers expose the intermediate GHASH value. May be read to save the current GHASH value so processing can later be resumed, presumably on a later message fragment. Whenever a new key is written to the AES Key Register two automatic actions are processed:

- GCM hash subkey generation
- AES_GHASHRx Clear


See Key Writing and Automatic Hash Subkey Calculation for details.

If an application software-specific hash initial value is needed for the GHASH, it must be written to AES_GHASHRx:


- after a write to the AES Key Register, if any,
- before starting the input data feed.

Electrical Characteristics for SAM ...

Figure 58-11. Single-ended Mode AFE

Figure 58-12. Differential Mode AFE

58.8.1 AFE Power Supply

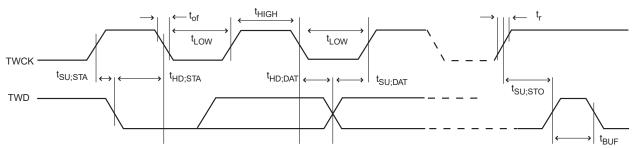
58.8.1.1 Power Supply Characteristics Table 58-29. Power Supply Characteristics

Symbol	Parameter	Conditions		Тур	Мах	Unit
I _{VDDIN}	Analog Current Consumption	Sleep mode (see Note 2)		2		μA
		Fast wake-up mode (see Note 3)		0.4		mA
		Normal mode, single sampling	_	3.4	-	mA
		Normal mode, dual sampling		4.2		mA
	Digital Current Consumption	Sleep mode (see Note 2)		1		
IVDDCORE	Digital Current Consumption	Normal mode	-	80	-	μA

Note:

1. Current consumption is measured with AFEC_ACR.IBCTL=10.

Electrical Characteristics for SAM ...


Symbol	Parameter	Condition	Min	Мах	Unit
C _i ⁽¹⁾	Capacitance for each I/O Pin	-	-	10	pF
f _{TWCK}	TWCK Clock Frequency	-	0	400	kHz
R _P	Value of Pull-up resistor	f _{TWCK} ≤ 100 kHz	(V _{DDIO} - 0.4V) ÷	1000ns ÷ C _b	Ω
		f _{TWCK} > 100 kHz	3mA	300ns ÷ C _b	
t _{LOW}	Low Period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(3)	-	μs
		f _{TWCK} > 100 kHz	(3)	-	μs
t _{HIGH}	High period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(4)	-	μs
		f _{TWCK} > 100 kHz	(4)	_ _	μs
t _{HD;STA}	Hold Time (repeated) START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	Condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{SU;STA}	Set-up time for a repeated START condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;DAT}	Data hold time			$3 \times t_{CPMCK}^{(5)}$	μs
		f _{TWCK} > 100 kHz	0	3 ×t _{CPMCK} ⁽⁵⁾	μs
t _{SU;DAT}	Data setup time	f _{TWCK} ≤ 100 kHz	t _{LOW -} 3 × t _{CPMCK} ⁽⁵⁾	-	ns
		f _{TWCK} > 100 kHz	t _{LOW -} 3 × t _{CPMCK} ⁽⁵⁾	-	ns
t _{SU;STO}	Setup time for STOP condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;STA}	Hold Time (repeated) START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	Condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs

Note:

- 1. Required only for $f_{TWCK} > 100 \text{ kHz}$.
- 2. C_b = capacitance of one bus line in pF. Per I²C standard, C_b max = 400pF.
- 3. The TWCK low period is defined as follows: $t_{LOW} = ((CLDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.
- 4. The TWCK high period is defined as follows: $t_{HIGH} = ((CHDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.
- 5. t_{CPMCK} = MCK bus period

Electrical Characteristics for SAM ...

Figure 58-29. Two-wire Serial Bus Timing

58.13.1.13 GMAC Characteristics

58.13.1.13.1 Timing Conditions

Table 58-69. Load Capacitance on Data, Clock Pads

Supply	CL		
	Max	Min	
3.3V	20 pF	0 pF	

58.13.1.13.2 Timing Constraints

The GMAC must be constrained so as to satisfy the timings of standards shown below and in 58.13.1.13.3 MII Mode, in MAX corner.

Table 58-70. GMAC Signals Relative to GMDC

Symbol	Parameter	Min	Max	Unit
GMAC ₁	Setup for GMDIO from GMDC rising	10	-	ns
GMAC ₂	Hold for GMDIO from GMDC rising		-	
GMAC ₃	GMDIO toggling from GMDC falling	0(1)	10 ⁽¹⁾	

Note: 1. For GMAC output signals, min and max access time are defined. The min access time is the time between the GMDC falling edge and the signal change. The max access timing is the time between the GMDC falling edge and the signal stabilizes. The figure below illustrates min and max accesses for GMAC₃.

Figure 58-30. Min and Max Access Time of GMAC Output Signals

