

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status Active Core Processor ARM® Cortex®-M7 Core Size 32-Bit Single-Core Speed 300MHz Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT	
Core Processor ARM® Cortex®-M7 Core Size 32-Bit Single-Core Speed 300MHz Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT	
Core Size32-Bit Single-CoreSpeed300MHzConnectivityCANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDT	
Speed 300MHz Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT	
ConnectivityCANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDT	
Peripherals Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT	
Number of I/O 114	
Program Memory Size 2MB (2M x 8)	
Program Memory Type FLASH	
EEPROM Size -	
RAM Size 384K x 8	
Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V	
Data ConvertersA/D 24x12b; D/A 2x12b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 105°C (TA)	
Mounting Type Surface Mount	
Package / Case 144-LFBGA	
Supplier Device Package 144-LFBGA (10x10)	
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsame70q21a-cnt	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Enhanced Embedded Flash Controller (EEFC)

Value	Description
0	Flash ready does not generate an interrupt.
1	Flash ready (to accept a new command) generates an interrupt.

Image Sensor Interface (ISI)

Bit 17 – CXFR_DONE Codec DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 16 – PXFR_DONE Preview DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 10 – VSYNC Vertical Synchronization Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 2 – SRST Software Reset Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 1 – DIS_DONE Disable Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.							
		23:16	PEPNUM[3:0]			JM[3:0]			
		31:24	INTER			Q[7:0]			
0x050C		7:0	PSIZE[2:0]		PBK[1:0]		ALLOC		
	USBHS_HSTPIPCF	15:8	PTYPE[1:0]			AUTOSW	PTOK	EN[1:0]	
	G3 (HSBOHSCP)	23:16			PINGEN	PEPNUM[3:0]			
		31:24	BINTERVAL[7:0]						
		7:0	PSIZE[2:0]		PBK	[1:0]	ALLOC		
0×0510	USBHS_HSTPIPCF	15:8	PTYPE[1:0]		E[1:0]		AUTOSW	PTOK	EN[1:0]
0x0510	G4	23:16				PEPNUM[3:0]			
		31:24	INTFRQ[7:0]						
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0×0510	USBHS_HSTPIPCF	15:8		PTYP	E[1:0]		AUTOSW	PTOKI	EN[1:0]
0.0310	G4 (HSBOHSCP)	23:16			PINGEN		PEPN	JM[3:0]	
		31:24			BINTER	VAL[7:0]			
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x0514	USBHS_HSTPIPCF	15:8		PTYP	E[1:0]		AUTOSW	PTOK	EN[1:0]
0,0014	G5	23:16					PEPN	JM[3:0]	
		31:24			INTFR	Q[7:0]		-	
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x0514	USBHS_HSTPIPCF	15:8	PTYPE[1:0]			AUTOSW	PTOK	EN[1:0]	
0,0014	G5 (HSBOHSCP)	23:16			PINGEN		PEPN	JM[3:0]	
		31:24	 -		BINTER	VAL[7:0]			
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x0518	USBHS_HSTPIPCF	15:8	PTYPE[1:0]			AUTOSW PTOKEN[1:0]		EN[1:0]	
	G6	23:16					PEPN	JM[3:0]	
		31:24	INTFRQ[7:0]						
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x0518	USBHS_HSTPIPCF	15:8		PTYP	E[1:0]		AUTOSW	PTOK	EN[1:0]
	G6 (HSBOHSCP)	23:16			PINGEN		PEPN	JM[3:0]	
		31:24	 1		BINTER	VAL[7:0]		1	
	USBHS_HSTPIPCF G7	7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x051C		15:8		PTYP	E[1:0]		AUTOSW	PTOKI	EN[1:0]
		23:16					PEPN	JM[3:0]	
		31:24	1		INTFR	:Q[7:0]			
		7:0		PSIZE[2:0]		PBK	[1:0]	ALLOC	
0x051C		15:8		PTYP	E[1:0]		AUTOSW	PIOK	EN[1:0]
	G7 (HSBOHSCP)	23:16			PINGEN	(4) (7) (3)	PEPN	JM[3:0]	
		31:24			BINTER	VAL[/:U]	[4.0]	411.00	
		7:0		PSIZE[2:0]	F(4.0)	РВК	[1:0]	ALLOC	
0x0520		15:8		PTYP	E[1:0]		AUTOSW	PIOK	EN[1:0]
	G8	23:16				0[7:0]	PEPN	มพีเจ:0]	
		31:24			INTER		[4.0]	411.00	
		1:0		PSIZE[2:0]	F[4:0]	PBK		ALLOC	
0x0520	USBHS_HSTPIPCF	15:8		PTYP			AUTOSW	PTOK	EN[1:0]
		23:16			PINGEN		PEPN	UM[3:0]	
		31:24			BINTER	VAL[7:0]			

The bank is really killed: USBHS DEVEPTISRx.NBUSYBK is decremented.

The bank is not cleared but sent (IN transfer): USBHS_DEVEPTISRx.NBUSYBK is decremented.

The bank is not cleared because it was empty.

The user should wait for this bit to be cleared before trying to kill another packet.

This kill request is refused if at the same time an IN token is coming and the last bank is the current one being sent on the USB line. If at least two banks are ready to be sent, there is no problem to kill a packet even if an IN token is coming. Indeed, in this case, the current bank is sent (IN transfer) while the last bank is killed.

Bit 12 – NBUSYBKE Number of Busy Banks Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.NBUSYBKEC = 0. This disables the Number of Busy
	Banks interrupt (USBHS_DEVEPTISRx.NBUSYBK).
1	Set when the USBHS_DEVEPTIERx.NBUSYBKES = 1. This enables the Number of Busy
	Banks interrupt (USBHS_DEVEPTISRx.NBUSYBK).

Bit 7 – SHORTPACKETE Short Packet Interrupt

If this bit is set for non-control IN endpoints, a short packet transmission is guaranteed upon ending a DMA transfer, thus signaling an end of isochronous frame or a bulk or interrupt end of transfer, provided that the End of DMA Buffer Output Enable (END_B_EN) bit and the Automatic Switch (AUTOSW) = 1.

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.SHORTPACKETEC = 1. This disables the Short
	Packet interrupt (USBHS_DEVEPTISRx.SHORTPACKET).
1	Set when USBHS_DEVEPTIERx.SHORTPACKETES = 1. This enables the Short Packet
	interrupt (USBHS_DEVEPTISRx.SHORTPACKET).

Bit 6 – STALLEDE STALLed Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.STALLEDEC = 1. This disables the STALLed interrupt
	(USBHS_DEVEPTISRx.STALLEDI).
1	Set when USBHS_DEVEPTIERx.STALLEDES = 1. This enables the STALLed interrupt
	(USBHS_DEVEPTISRx.STALLEDI).

Bit 5 – OVERFE Overflow Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.OVERFEC = 1. This disables the Overflow interrupt
	(USBHS_DEVEPTISRx.OVERFI).
1	Set when USBHS_DEVEPTIERx.OVERFES = 1. This enables the Overflow interrupt
	(USBHS_DEVEPTISRx.OVERFI).

Bit 4 - NAKINE NAKed IN Interrupt

USB High-Speed Interface (USBHS)

- Bit 7 SHORTPACKETEC Shortpacket Interrupt Clear
- Bit 6 CRCERREC CRC Error Interrupt Clear
- Bit 5 OVERFEC Overflow Interrupt Clear
- Bit 4 HBISOFLUSHEC High Bandwidth Isochronous IN Flush Interrupt Clear
- Bit 3 HBISOINERREC High Bandwidth Isochronous IN Error Interrupt Clear
- Bit 2 UNDERFEC Underflow Interrupt Clear
- Bit 1 RXOUTEC Received OUT Data Interrupt Clear
- Bit 0 TXINEC Transmitted IN Interrupt Clear

USB High-Speed Interface (USBHS)

Bit 5 - HSOFI Host Start of Frame Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.HSOFIC = 1.
1	Set when a SOF is issued by the host controller. This triggers a USB interrupt when HSOFE
	= 1. When using the host controller in Low-speed mode, this bit is also set when a keep-alive
	is sent.

Bit 4 – RXRSMI Upstream Resume Received Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.RXRSMIC = 1.
1	Set when an Upstream Resume has been received from the device.

Bit 3 – RSMEDI Downstream Resume Sent Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.RSMEDIC = 1.
1	Set when a Downstream Resume has been sent to the device.

Bit 2 - RSTI USB Reset Sent Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.RSTIC = 1.
1	Set when a USB Reset has been sent to the device.

Bit 1 – DDISCI Device Disconnection Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.DDISCIC = 1.
1	Set when the device has been removed from the USB bus.

Bit 0 – DCONNI Device Connection Interrupt

Value	Description
0	Cleared when USBHS_HSTICR.DCONNIC = 1.
1	Set when a new device has been connected to the USB bus.

USB High-Speed Interface (USBHS)

Value	Description
0	Cleared when USBHS_HSTPIPICR.TXOUTIC = 1.
1	Set when the current OUT bank is free and can be filled. This triggers an interrupt if
	USBHS_HSTPIPIMR.TXOUTE = 1.

Bit 0 – RXINI Received IN Data Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.RXINIC = 1.
1	Set when a new USB message is stored in the current bank of the pipe. This triggers an
	interrupt if the USBHS_HSTPIPIMR.RXINE bit = 1.

USB High-Speed Interface (USBHS)

39.6.61 Host Pipe x Enable Register (Interrupt Pipes)

Name:USBHS_HSTPIPIERx (INTPIPES)Offset:0x05F0 + x*0x04 [x=0..9]Reset:0Property:Read/Write

This register view is relevant only if PTYPE = 0x3 in "Host Pipe x Configuration Register".

For additional information, see "Host Pipe x Mask Register (Interrupt Pipes)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Sets the corresponding bit in USBHS_HSTPIPIMRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						RSTDTS	PFREEZES	PDISHDMAS
Access								
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
				NBUSYBKES				
Access								
Reset				0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	RXSTALLDES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
	TIES							
Access								
Reset	0	0	0	0	0	0	0	0

Bit 18 – RSTDTS Reset Data Toggle Enable

Bit 17 – PFREEZES Pipe Freeze Enable

Bit 16 – PDISHDMAS Pipe Interrupts Disable HDMA Request Enable

Bit 12 – NBUSYBKES Number of Busy Banks Enable

- Bit 7 SHORTPACKETIES Short Packet Interrupt Enable
- Bit 6 RXSTALLDES Received STALLed Interrupt Enable

Serial Peripheral Interface (SPI)

41.8.10 SPI Write Protection Mode Register

Name:	SPI_WPMR
Offset:	0xE4
Reset:	0x0
Property:	Read/Write

See section Register Write Protection for the list of registers that can be write-protected.

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	
				WPKI	EY[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						WPCREN	WPITEN	WPEN
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x53504	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
9		Always reads as 0.

Bit 2 – WPCREN Write Protection Control Register Enable

Value	Description
0	Disables the write protection on the Control register if WPKEY corresponds to 0x535049.
1	Enables the write protection on the Control register if WPKEY corresponds to 0x535049.

Bit 1 – WPITEN Write Protection Interrupt Enable

Value	Description
0	Disables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.
1	Enables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.

Bit 0 – WPEN Write Protection Enable

Quad Serial Peripheral Interface (QSPI)

44.8.3 Receive Operations

A receive frame is triggered by a start event and can be followed by synchronization data before data transmission.

The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). See Start.

The frame synchronization is configured by setting the Receive Frame Mode Register (SSC_RFMR). See Frame Synchronization.

The receiver uses a shift register clocked by the receive clock signal and the start mode selected in the SSC_RCMR. The data is transferred from the shift register depending on the data format selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the status flag RXRDY is set in the SSC_SR and the data can be read in the receiver holding register. If another transfer occurs before read of the Receive Holding Register (SSC_RHR), the status flag OVERUN is set in the SSC_SR and the receiver shift register is transferred in the SSC_RHR.

Figure 44-12. Receive Block Diagram

44.8.4 Start

The transmitter and receiver can both be programmed to start their operations when an event occurs, respectively in the Transmit Start Selection (START) field of SSC_TCMR and in the Receive Start Selection (START) field of SSC_RCMR.

Under the following conditions the start event is independently programmable:

- Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR and the reception starts as soon as the receiver is enabled.
- Synchronously with the transmitter/receiver
- On detection of a falling/rising edge on TF/RF
- On detection of a low level/high level on TF/RF
- On detection of a level change or an edge on TF/RF

A start can be programmed in the same manner on either side of the Transmit/Receive Clock Register (SSC_RCMR/SSC_TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Moreover, the receiver can start when data is detected in the bit stream with the Compare Functions.

SAM E70/S70/V70/V71 Family Universal Synchronous Asynchronous Receiver Transc...

46.7.3 USART Mode Register

Name:	US_MR
Offset:	0x0004
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register. For SPI configuration, see "USART Mode Register (SPI_MODE)".

Bit	31	30	29	28	27	26	25	24
	ONEBIT	MODSYNC	MAN	FILTER		MA	X_ITERATION[2	2:0]
Access								
Reset	0	0	0	0		0	0	0
Bit_	23	22	21	20	19	18	17	16
	INVDATA	VAR_SYNC	DSNACK	INACK	OVER	CLKO	MODE9	MSBF
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CHMODE[1:0]		NBSTOP[1:0] PAR[2:0		PAR[2:0]	SYN		
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ	CHRL[1:0] USCLKS[1:0]			USART_N	10DE[3:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bit 31 - ONEBIT Start Frame Delimiter Selector

Value	Description
0	Start frame delimiter is COMMAND or DATA SYNC.
1	Start frame delimiter is one bit.

Bit 30 – MODSYNC Manchester Synchronization Mode

Value	Description
0	The Manchester start bit is a 0 to 1 transition
1	The Manchester start bit is a 1 to 0 transition.

Bit 29 – MAN Manchester Encoder/Decoder Enable

Value	Description
0	Manchester encoder/decoder are disabled.
1	Manchester encoder/decoder are enabled.

Bit 28 - FILTER Receive Line Filter

Universal Synchronous Asynchronous Receiver Transc...

46.7.32 USART LIN Mode Register

Name:	US_LINMR			
Offset:	0x0054			
Reset:	0x0			
Property:	Read/Write			

This register is relevant only if USART_MODE = 0xA or 0xB in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					•	•		
Reset								
Bit	23	22	21	20	19	18	17	16
							SYNCDIS	PDCM
Access								
Reset							0	0
Bit	15	14	13	12	11	10	9	8
	DLC[7:0]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WKUPTYP	FSDIS	DLM	CHKTYP	CHKDIS	PARDIS	NAC	T[1:0]
Access		•	•	•		•		
Reset	0	0	0	0	0	0	0	0

Bit 17 – SYNCDIS Synchronization Disable

Value	Description
0	The synchronization procedure is performed in LIN slave node configuration.
1	The synchronization procedure is not performed in LIN slave node configuration.

Bit 16 - PDCM DMAC Mode

Value	Description
0	The LIN mode register US_LINMR is not written by the DMAC.
1	The LIN mode register US_LINMR (excepting that flag) is written by the DMAC.

Bits 15:8 - DLC[7:0] Data Length Control

Value	Description
0-255	Defines the response data length if DLM = 0, in that case the response data length is equal to
	DLC+1 bytes.

Bit 7 – WKUPTYP Wakeup Signal Type

SAM E70/S70/V70/V71 Family Universal Asynchronous Receiver Transmitter (UART)

47.6.10 UART Comparison Register

	Name: Offset: Reset: Property:	UART_CMPR 0x24 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VAL2	2[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		CMPPAR		CMPMODE				
Access		R/W		R/W				
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
				VAL1	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:16 - VAL2[7:0] Second Comparison Value for Received Character

Value	Description
0-255	The received character must be lower or equal to the value of VAL2 and higher or equal to
	VAL1 to set CMP flag in UART_SR. If asynchronous partial wake-up (SleepWalking) is
	enabled in PMC_SLPWK_ER, the UART requests a system wake-up if condition is met.

Bit 14 – CMPPAR Compare Parity

Value	Description
0	The parity is not checked and a bad parity cannot prevent from waking up the system.
1	The parity is checked and a matching condition on data can be cancelled by an error on parity bit, so no wake-up is performed.

Bit 12 – CMPMODE Comparison Mode

Value	Name	Description
0	FLAG_ONLY	Any character is received and comparison function drives CMP flag.
1	START_CONDITION	Comparison condition must be met to start reception.

Bits 7:0 - VAL1[7:0] First Comparison Value for Received Character

Media Local Bus (MLB)

HBI Channel	CAT Address	CAT Offset
0x3E	0x8F	110
0x3F	0x8F	111

48.6.3.3 Routing Fabric Block

The Routing Fabric (RF) block manages the flow of data between the MediaLB Port and the HBI Port. Bus multiplexers and a bus arbiter are implemented in the RF block for accessing the channel table RAM (CTR) and data buffer RAM (DBR).

Each DMA controller in the routing fabric uses Channel Descriptors (stored in the CTR) to manage access to dynamic buffers in the DBR.

Data Buffer RAM

The MLB has an external data buffer RAM (DBR) that is 8-bit x 16k entries deep. The DBR provides dynamic circular buffering between the transmit and receive devices.

The size and location of each data buffer is defined by software in the channel descriptor table (CDT), which is located in the CTR.

Receive devices retain the write address pointer to the associated circular data buffer in the DBR, while transmit devices retain the read address pointer. The DMA controllers in the routing fabric are responsible for ensuring that the circular buffers do not overflow or underflow. Each channel type (e.g., synchronous, isochronous, asynchronous and control) has Full and Empty detection.

Synchronous Channels

For synchronous channels, two mechanisms prevent overflow and underflow of the data buffer:

- Hardware aligns the read pointer (RPTR) to the write pointer (WPTR) to ensure an offset of two sub-buffers.
- RPTR and WPTR are periodically synchronized to the start of the next sub-buffer (e.g. following a FRAMESYNC).
- Isochronous Channels

For isochronous channels, hardware does not read from an empty data buffer or write to a full data buffer. The conditions used by hardware for detection include:

Data buffer Empty condition: (RPTR = WPTR) AND (BF = 0), and

Data buffer Full condition: (WPTR = RPTR) AND (BF = 1).

Asynchronous and Control Channels

For asynchronous and control channels, hardware does not read from an empty data buffer or write to a full data buffer. Hardware evaluates the DMA pointers (RPTR, WPTR) and packet count (RPC, WPC) to detect the data buffer condition, where:

- Data buffer Empty condition: (RPTR = WPTR) AND (RPC = WPC), and
- Data buffer Full condition: ((WPTR = RPTR) AND (WPC != RPC)) OR (WPC = (RPC 1)).

Channel Table RAM

The MLB has an external Channel Table RAM (CTR) that is 128-bit x 144-entry. The CTR allows system software to dynamically configure channel routing and allocate data buffers in the DBR.

The CTR is logically divided into three sub-tables:

• Channel Descriptor Table (CDT)

Controller Area Network (MCAN)

49.6.1 MCAN Core Release Register

Name:	MCAN_CREL
Offset:	0x00
Reset:	0xrrrddddd
Property:	Read-only

Due to clock domain crossing, there is a delay between when a register bit or field is written and when the related status register bits are updated.

Bit	31	30	29	28	27	26	25	24
		REL	[3:0]			STER	P[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	x	x	x	x	x	х	x	x
Bit	23	22	21	20	19	18	17	16
		SUBST	EP[3:0]			YEAF	٦[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	x	х	х	х	x	x	x	x
Bit	15	14	13	12	11	10	9	8
				MON	N[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	x	х	х	х	x	x	х	х
Bit	7	6	5	4	3	2	1	0
				DAY	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	х	х	x	x	х	х	х	х

Bits 31:28 – REL[3:0] Core Release

One digit, BCD-coded.

Bits 27:24 – STEP[3:0] Step of Core Release One digit, BCD-coded.

Bits 23:20 – SUBSTEP[3:0] Sub-step of Core Release One digit, BCD-coded.

Bits 19:16 – YEAR[3:0] Timestamp Year

One digit, BCD-coded. This field is set by generic parameter on MCAN synthesis.

Bits 15:8 - MON[7:0] Timestamp Month

Two digits, BCD-coded. This field is set by generic parameter on MCAN synthesis.

Bits 7:0 - DAY[7:0] Timestamp Day

Two digits, BCD-coded. This field is set by generic parameter on MCAN synthesis.

Pulse Width Modulation Controller (PWM)

Offset	Name	Bit Pos.								
		31:24								CVM
		7:0				CVUP	D[7:0]			
0×0144		15:8		CVUPD[15:8]						
0x0144		23:16		CVUPD[23:16]						
		31:24								CVMUPD
		7:0		CTF	R[3:0]					CEN
0x0148	PWM_CMPM1	15:8	CPRCNT[3:0]				CPR[3:0]			
0,0140		23:16	CUPRCNT[3:0]				CUPR[3:0]			
		31:24								
		7:0		CTRU	PD[3:0]					CENUPD
0x014C	PWM CMPMUPD1	15:8						CPRU	PD[3:0]	
0,0110		23:16						CUPRL	JPD[3:0]	
		31:24								
		7:0				CV[7:0]			
0x0150	PWM_CMPV2	15:8				CV[1	5:8]			
		23:16				CV[2	3:16]			
		31:24								CVM
0x0154	PWM_CMPVUPD2	7:0	CVUPD[7:0]							
		15:8	CVUPD[15:8]							
		23:16		CVUPD[23:16						
		31:24								CVMUPD
	PWM CMPM2	7:0	CTR[3:0]							CEN
0x0158		15:8	CPRCNT[3:0]					CPF	R[3:0]	
	_	23:16	CUPRCNT[3:0]					CUP	R[3:0]	
		31:24								
		7:0	CTRUPD[3:0]							CENUPD
0x015C	PWM_CMPMUPD2	15:8						CPRU	PD[3:0]	
		23:16						CUPRL	JPD[3:0]	
		31:24								
		7:0	CV[7:0]							
0x0160	PWM_CMPV3	15:8	CV[15:8]							
		23:16				CV[2	3:16]			
		31:24								CVM
		7:0	CVUPD[7:0]							
0x0164	PWM_CMPVUPD3	15:8	5:8 CVUPD[15:8]							
		23:16				CVUPL	[23:16]			0.444.000
		31:24		0.75						CVMUPD
		7:0		0000	<[3:0]			005	10.01	CEN
0x0168	PWM_CMPM3	15:8		CPRC	N I [3:0]				R[3:0]	
		23:16		CUPRO	JNT[3:0]			CUP	R[3:0]	
		31:24		0701	DD[2:0]					
		/:U		CIRU	คม[3:0]			0001		CENUPD
0x016C	PWM_CMPMUPD3	15:8						CPRU		
		23:16						CUPRL	JPD[3:0]	
0x0470		31:24				0.4	7.01			
UXU170		7:0	CV[7:0]							

Analog Comparator Controller (ACC)

54.7.2 ACC Mode Register

Name:	ACC_MR
Offset:	0x04
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the ACC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
		FE	SELFS	INV		EDGET	YP[1:0]	ACEN
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			SELPLUS[2:0]				SELMINUS[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bit 14 – FE Fault Enable

0 (DIS): The FAULT output is tied to 0.

1 (EN): The FAULT output is driven by the signal defined by SELFS.

Bit 13 – SELFS Selection Of Fault Source

0 (CE): The CE flag is used to drive the FAULT output.

1 (OUTPUT): The output of the analog comparator flag is used to drive the FAULT output.

Bit 12 - INV Invert Comparator Output

0 (DIS): Analog comparator output is directly processed.

1 (EN): Analog comparator output is inverted prior to being processed.

Bits 10:9 - EDGETYP[1:0] Edge Type

Value	Name	Description
0	RISING	Only rising edge of comparator output
1	FALLING	Falling edge of comparator output
2	ANY	Any edge of comparator output

57.5.12 AES Plaintext/Ciphertext Length Register

Name:	AES_CLENR
Offset:	0x74
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24	
Γ				CLEN	[31:24]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Γ	CLEN[23:16]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
CLEN[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
Γ	CLEN[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 – CLEN[31:0] Plaintext/Ciphertext Length

Length in bytes of the plaintext/ciphertext (C) data that is to be processed.

Note: The maximum byte length of the C portion of a message is limited to the 32-bit counter length.

Electrical Characteristics for SAM ...

58.7 USB Transceiver Characteristics

The device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification. Please refer to the USB 2.0 Specification for more information.

Table 50-20. USB manscelver Dynamic Power Consumptio	Table 58-28.	USB Transceiver D	ynamic Power	Consumptio
--	--------------	-------------------	--------------	------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{BIAS}	Bias Current Consumption on VBG	-	_	_	12	mA
Ivddutmii	HS Transceiver Current Consumption	HS transmission	_		44	mA
	HS Transceiver Current Consumption	HS reception		_	24	mA
	LS / FS Transceiver Current Consumption	FS transmission 0m cable (see Note 1)	-	_	5	mA
	LS / FS Transceiver Current Consumption	FS transmission 5m cable (see Note 1)	_	_	30	mA
	LS / FS Transceiver Current Consumption	FS reception (see Note 1)	_	_	1	mA
I _{VDDUTMIC}	Core	-	_	_	10	mA

Note:

1. Including 1 mA due to pullup/pulldown current consumption.

58.8 AFE Characteristics

Electrical data are in accordance with an operating temperature range from -40°C to +105°C unless otherwise specified.

VREFP is the positive reference of the AFE. The VREFN pin must be connected to ground.

DAC1 and DAC0 provide an analog output voltage (V_{DAC}) in the range [0 : VREFP] with an accuracy equal to 10 bits. The DAC output voltage is single-ended and is used as a reference node by the sampling stage S/H0 and S/H1 (Sample-and-Hold PGA), relative to the single-ended input signal being sampled on the selected channel.

As a consequence, programming the DAC output voltage offers a capability to compensate for a DC offset on the input signal being sampled. DC offset compensation is effective in single-ended operation and is not effective in fully differential operation.

During fully differential operation, the DAC10 output voltage can be programmed at VREFP/2, by using the 10-bit code 512. The DAC value does not affect the AFE output code.

VREFP/2 on DAC0 and DAC1 is not automatically set and must be programed as the code 512 into the channel corresponding DAC0 and DAC1.

The following figures illustrate the architecture of the AFE in Single-ended and in Differential modes.