

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	384К х 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsame70q21b-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Debug and Test Features

For more information, refer to BDSL files available on www.microchip.com.

16.7.9 ID Code Register

Access: Read-only

04 00 00 07 00 05								
31	30	29	28	27	26	25	24	
VERSION				PART N	UMBER			
23	22	21	20	19	18	17	16	
				PART NUM	IBER			
15	14	13	12	11	10	9	8	
PART NUMBER					MANUFACTUF	RER IDENTITY		
7	7 6 5 4 3 2 1							
	MANUFACTURER IDENTITY							

- VERSION[31:28]: Product Version Number Set to 0x0.
- **PART NUMBER[27:12]: Product Part Number** Set to 0x0.

PART NUMBER
0x5B3D

- MANUFACTURER IDENTITY[11:1]: Manufacturer ID Set to 0x01F.
- Bit[0]: Required by IEEE Std. 1149.1 Set to 0x1.

JTAG ID Code
0x5B3D_D03F

Fast Flash Programming Interface (FFPI)

Table 18-12. Get GP NVM Bit Command

Step	Handshake Sequence	MODE[3:0]	DATA[15:0]
1	Write handshaking	CMDE GGPB	
2	Read handshaking	DATA	GP NVM Bit Mask Status 0 = GP NVM bit is cleared 1 = GP NVM bit is set

18.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash programming is disabled. No other command can be run. An event on the Erase signal can erase the security bit once the contents of the Flash have been erased.

Table 18-13. Set Security Bit Command

Step	Handshake Sequence	MODE[3:0]	DATA[15:0]	
1	Write handshaking	CMDE	SSE	
2	Write handshaking	DATA	0	

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the Flash.

To erase the Flash, perform the following steps:

- 1. Power off the chip.
- 2. Power on the chip with TST = 0.
- 3. Assert the ERASE signal for at least the ERASE pin assertion time as defined in the section "Electrical Characteristics".
- 4. Power off the chip.

Return to FFPI mode to check that the Flash is erased.

18.3.5.7 Memory Write Command

This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained; an internal address buffer is automatically increased.

Table 18-14. Write Command

Step	Handshake Sequence	MODE[3:0]	DATA[15:0]	
1	Write handshaking	CMDE	WRAM	
2	Write handshaking	ADDR0 Memory Address		
3	Write handshaking	ADDR1	Memory Address	
4	Write handshaking	DATA	*Memory Address++	
5	Write handshaking	DATA	*Memory Address++	

19.4.11 Write Protection Mode Register

Name:	MATRIX_WPMR
Offset:	0x01E4
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24			
	WPKEY[23:16]										
Access	iss										
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				WPKE	Y[15:8]						
Access											
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				WPK	EY[7:0]						
Access											
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
								WPEN			
Access											
Reset								0			

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x4D415	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
4		Always reads as 0.

Bit 0 – WPEN Write Protection Enable

Refer to the "Register Write Protection" section for the list of registers that can be write-protected.

Value	Description
0	Disables the write protection if WPKEY corresponds to 0x4D4154 ("MAT" in ASCII).
1	Enables the write protection if WPKEY corresponds to 0x4D4154 ("MAT" in ASCII).

29.3 Register Summary

Offset	Name	Bit Pos.					
	SYS_GPBRx	7:0		GPBR_V	ALUE[7:0]		
0×00		15:8		GPBR_VA	LUE[15:8]		
0x00		23:16		GPBR_VA	LUE[23:16]		
		31:24		GPBR_VA	LUE[31:24]		

Parallel Input/Output Controller (PIO)

32.6.1.6 PIO Output Status Register

Name:	PIO_OSR
Offset:	0x0018
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access			•					
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Output Status

Value	Description
0	The I/O line is a pure input.
1	The I/O line is enabled in output.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
		15:8										
		23:16										
		31:24										
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM		
		15:8										
0x0418	XDMAC_CIM15	23:16										
		31:24										
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS		
		15:8										
0x041C	XDMAC_CIS15	23:16										
		31:24										
		7:0				SAI	7:0]					
		15:8				SA[
0x0420	XDMAC_CSA15	23:16				SA[2						
		31:24				SA[3						
		7:0				DA						
		15:8				DA[
0x0424	XDMAC_CDA15	23:16				DA[DA[2						
		31:24										
						DA[3	1.24]					
	XDMAC_CNDA15	7:0	NDA[5:0] NDAIF									
0x0428		15:8	NDA[13:6]									
		23:16	NDA[21:14]									
		31:24					29:22]		1			
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE		
0x042C	XDMAC_CNDC15	15:8										
	_	23:16										
		31:24										
		7:0				UBLE	N[7:0]					
0x0430	XDMAC_CUBC15	15:8				UBLE						
0,0100		23:16		UBLEN[23:16]								
		31:24										
		7:0				BLEN	N[7:0]					
0x0434	XDMAC_CBC15	15:8						BLEN	I [11:8]			
0X0434	ADIVIAC_CBC15	23:16										
		31:24										
		7:0	MEMSET	SWREQ		DSYNC		MBSI	ZE[1:0]	TYPE		
0.0400		15:8		DIF	SIF	DWID	FH[1:0]		CSIZE[2:0]			
0x0438	XDMAC_CC15	23:16	WRIP	RDIP	INITD		DAN	/ [1:0]	SAM	[1:0]		
		31:24					PERID[6:0]					
		7:0		1		SDS_M	ISP[7:0]					
	XDMAC_CDS_MSP						SP[15:8]					
0x043C	15	23:16					ISP[7:0]					
		31:24					SP[15:8]					
		7:0					S[7:0]					
0x0440	XDMAC_CSUS15	15:8					5[15:8]					
5/10 110		23:16					[23:16]					
		20.10				0000	[=0.10]					

Serial Peripheral Interface (SPI)

last character transfer. Then, another DMA transfer can be started if SPI_CR.SPIEN has previously been written.

41.7.3.6 SPI Direct Access Memory Controller (DMAC)

In both Fixed and Variable modes, the Direct Memory Access Controller (DMAC) can be used to reduce processor overhead.

The fixed peripheral selection allows buffer transfers with a single peripheral. Using the DMAC is an optimal means, as the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However, if the peripheral selection is modified, SPI_MR must be reprogrammed.

The variable peripheral selection allows buffer transfers with multiple peripherals without reprogramming SPI_MR. Data written in SPI_TDR is 32 bits wide and defines the real data to be transmitted and the destination peripheral. Using the DMAC in this mode requires 32-bit wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs. However, the SPI still controls the number of bits (8 to 16) to be transferred through MISO and MOSI lines with the chip select configuration registers. This is not the optimal means in terms of memory size for the buffers, but it provides a very effective means to exchange data with several peripherals without any intervention of the processor.

41.7.3.7 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 slave peripherals by decoding the four chip select lines, NPCS0 to NPCS3 with an external decoder/demultiplexer (see figure below). This can be enabled by setting SPI_MR.PCSDEC.

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e., one NPCS line driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low.

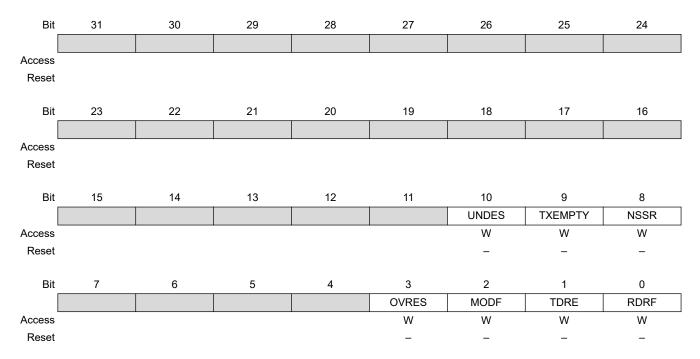
When operating with decoding, the SPI directly outputs the value defined by the PCS field on the NPCS lines of either SPI_MR or SPI_TDR (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e., all chip select lines at 1) when not processing any transfer, only 15 peripherals can be decoded.

The SPI has four chip select registers (SPI_CSR0...SPI_CSR3). As a result, when external decoding is activated, each NPCS chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Consequently, the user has to make sure to connect compatible peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14. The following figure shows this type of implementation.

If SPI_CSRx.CSAAT bit is used, with or without the DMAC, the Mode Fault detection for NPCS0 line must be disabled. This is not needed for all other chip select lines since Mode Fault detection is only on NPCS0.

Serial Peripheral Interface (SPI)


41.8.7 SPI Interrupt Disable Register

Name:SPI_IDROffset:0x18Reset:-Property:Write-only

This register can only be written if the WPITEN bit is cleared in the SPI Write Protection Mode Register. The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

Bit 10 – UNDES Underrun Error Interrupt Disable

Bit 9 – TXEMPTY Transmission Registers Empty Disable

Bit 8 – NSSR NSS Rising Interrupt Disable

Bit 3 – OVRES Overrun Error Interrupt Disable

Bit 2 – MODF Mode Fault Error Interrupt Disable

Bit 1 – TDRE SPI Transmit Data Register Empty Interrupt Disable

Bit 0 – RDRF Receive Data Register Full Interrupt Disable

Universal Synchronous Asynchronous Receiver Transc...

0	Baud Rate Clock Disabled							
1 to 65535	CD = Selected Clock / (16 × Baud Rate)	CD = Selected Clock / (8 × Baud Rate)	CD = Selected Clock / Baud Rate	CD = Selected Clock / (FI_DI_RATIO × Baud Rate)				

Universal Synchronous Asynchronous Receiver Transc...

46.7.43 USART LON IDT Tx Register

Name:	US_IDTTX
Offset:	0x0080
Reset:	0x0
Property:	Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				IDTTX	[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IDTTX	[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IDTTX	X[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – IDTTX[23:0] LON Indeterminate Time after Transmission (comm_type = 1 mode only)

Value	Description
0-	LON indeterminate time after transmission in t _{bit} .
1677721	
5	

SAM E70/S70/V70/V71 Family Universal Asynchronous Receiver Transmitter (UART)

47.6 Register Summary

Offset	Name	Bit Pos.								
		7:0	TXDIS	TXEN	RXDIS	RXEN	RSTTX	RSTRX		
000		15:8				REQCLR				RSTSTA
0x00	UART_CR	23:16								
		31:24								
		7:0				FILTER				
		15:8	CHMC	DE[1:0]		BRSRCCK		PAR[2:0]		
0x04	UART_MR	23:16								
		31:24								
		7:0	PARE	FRAME	OVRE				TXRDY	RXRDY
		15:8	CMP						TXEMPTY	
0x08	UART_IER	23:16								
		31:24								
		7:0	PARE	FRAME	OVRE				TXRDY	RXRDY
		15:8	CMP						TXEMPTY	
0x0C	UART_IDR	23:16								
		31:24								
		7:0	PARE	FRAME	OVRE				TXRDY	RXRDY
	UART_IMR	15:8	CMP		-				TXEMPTY	
0x10		23:16								
		31:24								
		7:0	PARE	FRAME	OVRE				TXRDY	RXRDY
	UART_SR	15:8	CMP		01112				TXEMPTY	TOULDT
0x14		23:16	0							
		31:24								
		7:0				RXCH	R[7·0]			
		15:8					ii ([<i>1</i> .0]			
0x18	UART_RHR	23:16								
		31:24								
						TYCU	D[7:0]			
		7:0				TXCH	rt[7:0]			
0x1C	UART_THR	15:8								
		23:16								
		31:24								
		7:0				CD[
0x20	UART_BRGR	15:8				CD[²	15:8]			
		23:16								
		31:24								
		7:0				VAL1	[7:0]			
0x24	UART_CMPR	15:8		CMPPAR		CMPMODE				
	-	23:16				VAL2	2[7:0]			
		31:24								
0x28										
 0xE3	Reserved									

Controller Area Network (MCAN)

Table 49-9. Tx Event FIFO Element

	31			24	23				16	15 8	7 0
E0	ESI	XTD	RTR	ID[28:	0]						
E1	MM[7:0)]	1	<u> </u>	ET [1:0]	FDF	BRS	DLC[3	:0]	TXTS[15:0	D]

• E0 Bit 31 ESI: Error State Indicator

- 0: Transmitting node is error active.
- 1: Transmitting node is error passive.
- E0 Bit 30 XTD: Extended Identifier
- 0: 11-bit standard identifier.
- 1: 29-bit extended identifier.
- E0 Bit 29 RTR: Remote Transmission Request
- 0: Data frame transmitted.
- 1: Remote frame transmitted.
- E0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18].

• E1 Bits 31:24 MM[7:0]: Message Marker

Copied from Tx Buffer into Tx Event FIFO element for identification of Tx message status.

- E1 Bit 23:22 ET[1:0]: Event Type
- 0: Reserved
- 1: Tx event
- 2: Transmission in spite of cancellation (always set for transmissions in DAR mode)
- 3: Reserved
- E1 Bit 21 FDF: FD Format
- 0: Standard frame format.
- 1: CAN FD frame format (new DLC-coding and CRC).
- E1 Bit 20 BRS: Bit Rate Switch
- 0: Frame transmitted without bit rate switching.
- 1: Frame transmitted with bit rate switching.
- E1 Bits 19:16 DLC[3:0]: Data Length Code
- 0-8: CAN + CAN FD: frame with 0-8 data bytes transmitted.
- 9-15: CAN: frame with 8 data bytes transmitted.
- 9-15: CAN FD: frame with 12/16/20/24/32/48/64 data bytes transmitted
- E1 Bits 15:0 TXTS[15:0]: Tx Timestamp

Controller Area Network (MCAN)

49.6.17 MCAN Interrupt Enable Register

Name:	MCAN_IE
Offset:	0x54
Reset:	0x00000000
Property:	Read/Write

The following configuration values are valid for all listed bit names of this register:

- 0: Disables the corresponding interrupt.
- 1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
			ARAE	PEDE	PEAE	WDIE	BOE	EWE
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	EPE	ELOE			DRXE	TOOE	MRAFE	TSWE
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TEFLE	TEFFE	TEFWE	TEFNE	TFEE	TCFE	TCE	HPME
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RF1LE	RF1FE	RF1WE	RF1NE	RF0LE	RF0FE	RF0WE	RF0NE
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 29 – ARAE Access to Reserved Address Enable

- Bit 28 PEDE Protocol Error in Data Phase Enable
- **Bit 27 PEAE** Protocol Error in Arbitration Phase Enable
- Bit 26 WDIE Watchdog Interrupt Enable
- Bit 25 BOE Bus_Off Status Interrupt Enable
- Bit 24 EWE Warning Status Interrupt Enable
- Bit 23 EPE Error Passive Interrupt Enable
- Bit 22 ELOE Error Logging Overflow Interrupt Enable
- Bit 19 DRXE Message stored to Dedicated Receive Buffer Interrupt Enable

51.7.1 PWM Clock Register

Name:	PWM_CLK
Offset:	0x00
Reset:	0x00000000
Property:	Read/Write

This register can only be written if bits WPSWS0 and WPHWS0 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
						PRE	B[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DIVE	8[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
						PRE	A[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DIVA	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 27:24 – PREB[3:0] CLKB Source Clock Selection

Value	Name	Description
0	CLK	Peripheral clock
1	CLK_DIV2	Peripheral clock/2
2	CLK_DIV4	Peripheral clock/4
3	CLK_DIV8	Peripheral clock/8
4	CLK_DIV16	Peripheral clock/16
5	CLK_DIV32	Peripheral clock/32
6	CLK_DIV64	Peripheral clock/64
7	CLK_DIV128	Peripheral clock/128
8	CLK_DIV256	Peripheral clock/256
9	CLK_DIV512	Peripheral clock/512
10	CLK_DIV1024	Peripheral clock/1024
Other	-	Reserved

Bits 23:16 - DIVB[7:0] CLKB Divide Factor

52. Analog Front-End Controller (AFEC)

52.1 Description

The Analog Front-End Controller (AFEC) is based on an Analog Front-End (AFE) cell integrating a 12-bit Analog-to-Digital Converter (ADC), a Programmable Gain Amplifier (PGA), a Digital-to-Analog Converter (DAC) and two 6-to-1 analog multiplexers, making possible the analog-to-digital conversions of 12 analog lines (in single Sample-and-Hold mode) or two simultaneous conversions of 6 analog lines (in dual Sample-and-Hold mode). The conversions extend from 0V to VREFP. The AFEC supports a 12-bit resolution mode which can be extended up to a 16-bit resolution by digital averaging.

Conversion results are reported in a common register for all channels, as well as in a channel-dedicated register.

Software trigger, external trigger on rising edge of the AFE_ADTRG pin or internal triggers from Timer Counter output(s) are configurable.

The comparison circuitry allows automatic detection of values below a threshold, higher than a threshold, in a given range or outside the range. Thresholds and ranges are fully configurable.

The AFEC internal fault output is directly connected to PWM Fault input. This input can be asserted by means of comparison circuitry in order to immediately put the PWM outputs in a safe state (pure combinational path).

The AFEC also integrates a Sleep mode and a conversion sequencer and connects with a DMA channel. These features reduce both power consumption and processor intervention.

The AFEC has a selectable single-ended or fully differential input and benefits from a 2-bit programmable gain. A set of reference voltages is generated internally from a single external reference voltage node that may be equal to the analog supply voltage. An external decoupling capacitance is required for noise filtering.

A digital error correction circuit based on the multi-bit redundant signed digit (RSD) algorithm is employed in order to reduce INL and DNL errors.

Finally, the user can configure AFE timings, such as startup time and tracking time.

52.2 Embedded Characteristics

- 12-bit Resolution up to 16-bit Resolution by Digital Averaging
- Wide Range of Power Supply Operation
- Selectable Single-ended or Differential Input Voltage
- Selectable Single or Dual Sample-and-Hold Mode
- Programmable Gain for Maximum Full-Scale Input Range 0–V_{DD}
- Programmable Offset Per Channel
- Automatic Correction of Offset and Gain Errors
- Integrated Multiplexers Offering Up to 12 Independent Analog Inputs
- Individual Enable and Disable of Each Channel
- Hardware or Software Trigger
 - External trigger pin

Analog Front-End Controller (AFEC)

52.7.16 AFEC Channel Gain Register

Name:	AFEC_CGR
Offset:	0x54
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access		•	•	•			•	
Reset								
Bit	23	22	21	20	19	18	17	16
	GAIN	11[1:0]	GAIN	10[1:0]	GAIN	9[1:0]	GAIN	8[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	GAIN	7[1:0]	GAIN	6[1:0]	GAIN	5[1:0]	GAIN	4[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GAIN	3[1:0]	GAIN	2[1:0]	GAIN	1[1:0]	GAIN	0[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0:1, 2:3, 4:5, 6:7, 8:9, 10:11, 12:13, 14:15, 16:17, 18:19, 20:21, 22:23 – GAINx Gain for Channel x Gain applied on input of Analog Front-End.

See section AFEC Channel Differential Register for a description of DIFFx.

GAINx	Gain Applied				
	DIFFx = 0	DIFFx = 1			
0	1	1			
1	2	2			
2	4	4			
3	4	4			

Advanced Encryption Standard (AES)

Bit 15 – LOD Last Output Data Mode

Awarning In DMA mode, reading to the Output Data registers before the last data encryption/decryption process may lead to unpredictable results.

Value	Description
0	No effect.
	After each end of encryption/decryption, the output data are available either on the output data registers (Manual and Auto modes) or at the address specified in the Channel Buffer Transfer Descriptor for DMA mode.
	In Manual and Auto modes, the DATRDY flag is cleared when at least one of the Output Data registers is read.
1	The DATRDY flag is cleared when at least one of the Input Data Registers is written. No more Output Data Register reads are necessary between consecutive encryptions/ decryptions (see Last Output Data Mode).

Bits 14:12 – OPMOD[2:0] Operating Mode

For CBC-MAC operating mode, set OPMOD to CBC and LOD to 1.

Value	Name	Description
0	ECB	ECB: Electronic Codebook mode
1	CBC	CBC: Cipher Block Chaining mode
2	OFB	OFB: Output Feedback mode
3	CFB	CFB: Cipher Feedback mode
4	CTR	CTR: Counter mode (16-bit internal counter)
5	GCM	GCM: Galois/Counter mode

Bits 11:10 - KEYSIZE[1:0] Key Size

Value	Name	Description
0	AES128	AES Key Size is 128 bits
1	AES192	AES Key Size is 192 bits
2	AES256	AES Key Size is 256 bits

Bits 9:8 - SMOD[1:0] Start Mode

If a DMA transfer is used, configure SMOD to 2. See DMA Mode for more details.

Value	Name	Description
0	MANUAL_START	Manual Mode
1	AUTO_START	Auto Mode
2	IDATAR0_START	AES_IDATAR0 access only Auto Mode (DMA)

Bits 7:4 – PROCDLY[3:0] Processing Delay

Processing Time = $N \times (PROCDLY + 1)$

where

• N = 10 when KEYSIZE = 0

Advanced Encryption Standard (AES)

57.5.3 AES Interrupt Enable Register

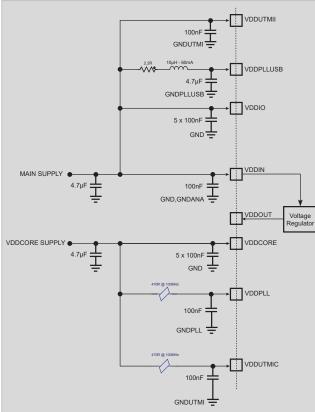
Name:AES_IEROffset:0x10Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
								TAGRDY
Access								W
Reset								_
Bit	15	14	13	12	11	10	9	8
								URAD
Access								W
Reset								_
Bit	7	6	5	4	3	2	1	0
								DATRDY
Access							•	W
Reset								_


Bit 16 – TAGRDY GCM Tag Ready Interrupt Enable

Bit 8 – URAD Unspecified Register Access Detection Interrupt Enable

Bit 0 – DATRDY Data Ready Interrupt Enable

Schematic Checklist

Power Supplies Schematic Example With Separate Power Supplies 60.3 Boot Program Hardware Constraints

Component values are given only as a typical example.

Note:

Note: Restrictions

With main supply < 3.0 V, USB is not usable.

With main supply < 2.0 V, AFE, DAC and Analog comparator are not usable.

With main supply and VDDIN > 3.0 V, all peripherals are usable.

Signal Name	Recommended Pin Connection	Description
VDDIN	Decoupling/filtering capacitors (100 nF and 4.7 µF) ^{(1,} ₂₎	Powers the voltage regulator, AFE, DAC, and Analog comparator power supply Supply ripple must not exceed 20 mVrms for 10 kHz to 20 MHz range.
		WARNING VDDIN and VDDIO must have the same level and must always be higher than VDDCORE.

Revision History

Date	Changes
	Section 25.5.2 "Reinforced Safety Watchdog Timer Mode Register": bit 14 now reserved.
	Section 26. "Reset Controller (RSTC)" Section 26.4.3.1 "General Reset": removed reference to NRSTB.
	Table 26.5 "Reset Controller (RSTC) User Interface": updated reset value for RSTC_MR.
	Section 27. "Real-time Clock (RTC)" Updated Section 27.5.7 "RTC Accurate Clock Calibration".
	Figure 27-4, "Calibration Circuitry Waveforms": corrected two instances of "3,906 ms" to "3.906 ms".
	Table 27-2 "Register Mapping": corrected reset for RTC_CALR. Added offset 0xCC as reserved. Added RTC_WPMR at offset 0xE4
	Section 27.6.1 "RTC Control Register": updated descriptions of value '0' for bits UPDTIM and UPDCAL.
	Added Section 27.6.13 "RTC Write Protection Mode Register".
	Added write protection for Section 27.6.1 "RTC Control Register", Section 27.6.2 "RTC Mode Register", Section 27.6.5 "RTC Time Alarm Register" and Section 27.6.6 "RTC Calendar Alarm Register".
	Section 30. "General Purpose Backup Registers (GPBR)" Corrected total size of backup registers.
08-Feb-16	Section 31. "Clock Generator" Section 31.2 "Embedded Characteristics": updated bullet on embedded RC oscillator.
	Figure 31-3, "Main Clock Block Diagram": renamed "3-20 MHz Crystal or Ceramic Resonator Oscillator" to "Main Crystal or Ceramic Resonator Oscillator". Renamed "3-20 MHz Oscillator Counter" to "Main Oscillator Counter".
	Section 31.5.1 "Embedded 4/8/12 MHz RC Oscillator": changed last paragraph beginning "The user can adjust the value".
	Section 31.5.4 "Main Clock Source Selection": added that the RC oscillator must be selected for Wait mode.
	Updated Section 31.5.6 "Main Clock Frequency Counter".
	Updated Section 31.5.7 "Switching Main Clock between the RC Oscillator and Crystal Oscillator".
	Updated Section 31.6.1 "Divider and Phase Lock Loop Programming" with paragraph on correct programming of the multiplication factor of the PLL.
	Section 31.7 "UTMI Phase Lock Loop Programming": deleted sentence on crystal requirements for USB.
	Section 32. "Power Management Controller (PMC)" Section 32.1 "Description": corrected list of oscillators that can be trimmed by software.