

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9×9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j20a-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.1.	Embedded Characteristics	
12.2.	Real-time Event Mapping	66
12 Sve	em Controller	70
-		
	System Controller and Peripherals Mapping	
	Power-on-Reset, Brownout and Supply Monitor Reset Controller	
10.0.		
14. Peri	pherals	72
14.1.	Peripheral Identifiers	
14.2.	Peripheral Signal Multiplexing on I/O Lines	75
15 ARM	/ Cortex-M7 (ARM)	76
	ARM Cortex-M7 Configuration	
10.1.		
16. Deb	ug and Test Features	77
16.1.	Description	
	Embedded Characteristics	
	Associated Documents	
	Debug and Test Block Diagram	
	Debug and Test Pin Description	
	Application Examples Functional Description	
10.7.		
17. SAN	I-BA Boot Program	85
17.1.	Description	85
	Embedded Characteristics	
	Hardware and Software Constraints	
	Flow Diagram	
	Device Initialization SAM-BA Monitor	
17.0.	SAM-BA MOMOI	
18. Fas	Flash Programming Interface (FFPI)	91
18.1.	Description	
	Embedded Characteristics	
18.3.	Parallel Fast Flash Programming	91
19. Bus	Matrix (MATRIX)	
	Description	
	Embedded Characteristics	
19.3.	Functional Description	
	Register Summary	
20 USE	3 Transmitter Macrocell Interface (UTMI)	132
	B Transmitter Macrocell Interface (UTMI)	
20.1.	Description	132
20.1. 20.2.		

22.4 Functional Description

22.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the internal bus. The embedded Flash is composed of:

- One memory plane organized in several pages of the same size for the code
- A separate 2 x 512-byte memory area which includes the unique chip identifier
- A separate 512-byte memory area for the user signature
- Two 128-bit read buffers used for code read optimization
- One 128-bit read buffer used for data read optimization
- One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer is write-only and accessible all along the 1 Mbyte address space, so that each word can be written to its final address.
- Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is associated with a lock region composed of several pages in the memory plane.
- Several bits that may be set and cleared through the EEFC interface, called general-purpose non-volatile memory bits (GPNVM bits)

The embedded Flash size, the page size, the organization of lock regions and the definition of GPNVM bits are specific to the device. The EEFC returns a descriptor of the Flash controller after a 'Get Flash Descriptor' command has been issued by the application (see the "Get Flash Descriptor Command" section).

Power Management Controller (PMC)

	Name: Offset: Reset: Property:	PMC_SLPWk 0x0140 0x00000000 Read-only	(_ASR1					
Bit	31	30	29	28	27	26	25	24
[PID62		PID60	PID59	PID58	PID57	PID56
Access				•				
Reset								
Bit	23	22	21	20	19	18	17	16
			PID53	PID52	PID51	PID50	PID49	PID48
Access				·				
Reset								
Bit	15	14	13	12	11	10	9	8
	PID47	PID46	PID45	PID44	PID43	PID42	PID41	PID40
Access		•		•		•		
Reset								
Bit	7	6	5	4	3	2	1	0
	PID39		PID37		PID35	PID34	PID33	PID32
Access Reset								

31.20.36 PMC SleepWalking Activity Status Register 1

Bits 0:3,5,7:28,30 – PID Peripheral Clock x Disable

Value	Description
0	No effect.
1	Disables the corresponding peripheral clock.

When the I/O line is controlled by the PIO Controller, the pin can be configured to be driven. This is done by writing the Output Enable Register (PIO_OER) and Output Disable Register (PIO_ODR). The results of these write operations are detected in the Output Status Register (PIO_OSR). When a bit in this register is at zero, the corresponding I/O line is used as an input only. When the bit is at one, the corresponding I/O line is driven by the PIO Controller.

The level driven on an I/O line can be determined by writing in the Set Output Data Register (PIO_SODR) and the Clear Output Data Register (PIO_CODR). These write operations, respectively, set and clear the Output Data Status Register (PIO_ODSR), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level driven on the I/O line.

32.5.5 Synchronous Data Output

Clearing one or more PIO line(s) and setting another one or more PIO line(s) synchronously cannot be done by using PIO_SODR and PIO_CODR. It requires two successive write operations into two different registers. To overcome this, the PIO Controller offers a direct control of PIO outputs by single write access to PIO_ODSR. Only bits unmasked by the Output Write Status Register (PIO_OWSR) are written. The mask bits in PIO_OWSR are set by writing to the Output Write Enable Register (PIO_OWER) and cleared by writing to the Output Write Disable Register (PIO_OWDR).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0.

32.5.6 Multi-Drive Control (Open Drain)

Each I/O can be independently programmed in open drain by using the multi-drive feature. This feature permits several drivers to be connected on the I/O line which is driven low only by each device. An external pullup resistor (or enabling of the internal one) is generally required to guarantee a high level on the line.

The multi-drive feature is controlled by the Multi-driver Enable Register (PIO_MDER) and the Multi-driver Disable Register (PIO_MDDR). The multi-drive can be selected whether the I/O line is controlled by the PIO Controller or assigned to a peripheral function. The Multi-driver Status Register (PIO_MDSR) indicates the pins that are configured to support external drivers.

After reset, the multi-drive feature is disabled on all pins, i.e., PIO_MDSR resets at value 0x0.

32.5.7 Output Line Timings

The following figure shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. The Output Line Timings figure also shows when the feedback in the Pin Data Status Register (PIO_PDSR) is available.

	Name: Offset: Reset: Property:	XDMAC_GWS 0x2C 0x00000000 Read/Write	;					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	WS23	WS22	WS21	WS20	WS19	WS18	WS17	WS16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	WS15	WS14	WS13	WS12	WS11	WS10	WS9	WS8
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WS7	WS6	WS5	WS4	WS3	WS2	WS1	WS0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 – WSx XDMAC Channel x Write Suspend

Value	Description
0	The write channel is not suspended.
1	Destination requests are no longer routed to the scheduler.

Image Sensor Interface (ISI)

Value	Description
0	Codec datapath DMA interface requires a request to restart.
1	Codec datapath DMA automatically restarts.

Bits 10:8 – FRATE[2:0] Frame Rate [0..7]

Value	Description
0	All the frames are captured, else one frame every FRATE + 1 is captured.

Bit 7 – CRC_SYNC Embedded Synchronization Correction

Value	Description		
0	No CRC correction is performed on embedded synchronization.		
1	CRC correction is performed. If the correction is not possible, the current frame is discarded		
	and the CRC_ERR bit is set in the ISI_SR.		

Bit 6 – EMB_SYNC Embedded Synchronization

Value	Description
0	Synchronization by HSYNC, VSYNC.
1	Synchronization by embedded synchronization sequence SAV/EAV.

Bit 5 – GRAYLE Grayscale Little Endian

Refer to Table 37-8 and Table 37-9 for details.

Value	Description
0	The two pixels are represented in big-endian format within a 32-bit register.
1	The two pixels are represented in little-endian format within a 32-bit register.

Bit 4 – PIXCLK_POL Pixel Clock Polarity

Valu	ie	Description
0		Data is sampled on rising edge of pixel clock.
1		Data is sampled on falling edge of pixel clock.

Bit 3 – VSYNC_POL Vertical Synchronization Polarity

Value	Description
0	VSYNC active high.
1	VSYNC active low.

Bit 2 – HSYNC_POL Horizontal Synchronization Polarity

Value	Description
0	HSYNC active high.
1	HSYNC active low.

40.5 Pin Name List

Table 40-1. I/O Lines Description for 4-bit Configuration

Pin Name ⁽¹⁾	Pin Description	Type <u>(2)</u>	Comments
MCCDA	Command/response	I/O/PP/OD	CMD of an MMC or SDCard/SDIO
MCCK	Clock	I/O	CLK of an MMC or SD Card/SDIO
MCDA0-MCDA3	Data 03 of Slot A	I/O/PP	DAT[03] of an MMC DAT[03] of an SD Card/SDIO

Notes: 1. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA, MCDAy to HSMCIx_DAy.

2. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

40.6 **Product Dependencies**

40.6.1 I/O Lines

The pins used for interfacing the High Speed MultiMedia Cards or SD Cards are multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the peripheral functions to HSMCI pins.

40.6.2 Power Management

The HSMCI is clocked through the Power Management Controller (PMC), so the programmer must first configure the PMC to enable the HSMCI clock.

40.6.3 Interrupt Sources

The HSMCI has an interrupt line connected to the interrupt controller.

Handling the HSMCI interrupt requires programming the interrupt controller before configuring the HSMCI.

40.7 Bus Topology

Figure 40-3. High Speed MultiMedia Memory Card Bus Topology

The High Speed MultiMedia Card communication is based on a 13-pin serial bus interface. It has three communication lines and four supply lines.

Two-wire Interface (TWIHS)

	Name: Offset: Reset: Property:	TWIHS_THR 0x34 0x00000000 Write-only						
Bit	31	30	29	28	27	26	25	24
Access Reset								
Bit		22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
•			244		FA[7:0]		24/	
Access		W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

43.7.14 TWIHS Transmit Holding Register

Bits 7:0 - TXDATA[7:0] Master or Slave Transmit Holding Data

Synchronous Serial Controller (SSC)

44.9.5 SSC Transmit Clock Mode Register

Name:	SSC_TCMR
Offset:	0x18
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the SSC Write Protection Mode Register.

31	30	29	28	27	26	25	24		
	PERIOD[7:0]								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
23	22	21	20	19	18	17	16		
			STTD	LY[7:0]					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
15	14	13	12	11	10	9	8		
					STAR	rt[3:0]			
	1	•		R/W	R/W	R/W	R/W		
				0	0	0	0		
7	6	5	4	3	2	1	0		
CKG[1:0] CKI		СКІ		CKO[2:0]		CKS	[1:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
0	0	0	0	0	0	0	0		
	R/W 0 23 R/W 0 15 7 7 CK0	R/W R/W 0 0 23 22 R/W R/W 0 0 15 14 7 6 CKG[1:0] R/W R/W R/W	R/W R/W R/W 0 0 0 23 22 21 R/W R/W R/W 0 0 0 15 14 13 7 6 5 CKG[1:0] CKI R/W R/W	R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 STTD R/W R/W R/W R/W 0 0 15 14 13 12 12 7 6 5 4 13 12 7 6 5 4 13 12 7 6 5 4 13 12 7 6 5 4 14 </td <td>R/W R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 23 22 21 20 19 R/W R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 15 14 13 12 11 15 14 13 12 11 16 I I III III 7 6 5 4 3 CKG[1:0] CKI CKO[2:0] CKO[2:0] R/W R/W R/W R/W R/W</td> <td>PERIOD[7:0] R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 18 STTDLY[7:0] R/W R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 I5 14 13 12 11 10 STAR 7 6 5 4 3 2 7 6 5 4 3 2 CKG[1:0] CKI CKO[2:0] K/W R/W</td> <td>PERIOD[7:0] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 23 22 21 20 19 18 17 23 22 21 20 19 18 17 R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 15 14 13 12 11 10 9 15 14 13 12 11 0 9 7 6 5 4 3 2 1 7 6 5 4 3 2 1 1 CKG[1:0] CKI CKO[2:0] CKS CKS R/W R/W R/W R/W R/W R/W</td>	R/W R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 23 22 21 20 19 R/W R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 15 14 13 12 11 15 14 13 12 11 16 I I III III 7 6 5 4 3 CKG[1:0] CKI CKO[2:0] CKO[2:0] R/W R/W R/W R/W R/W	PERIOD[7:0] R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 18 STTDLY[7:0] R/W R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 I5 14 13 12 11 10 STAR 7 6 5 4 3 2 7 6 5 4 3 2 CKG[1:0] CKI CKO[2:0] K/W R/W	PERIOD[7:0] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 23 22 21 20 19 18 17 23 22 21 20 19 18 17 R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 15 14 13 12 11 10 9 15 14 13 12 11 0 9 7 6 5 4 3 2 1 7 6 5 4 3 2 1 1 CKG[1:0] CKI CKO[2:0] CKS CKS R/W R/W R/W R/W R/W R/W		

Bits 31:24 – PERIOD[7:0] Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync signal. If 0, no period signal is generated. If not 0, a period signal is generated at each 2 × (PERIOD + 1) Transmit Clock.

Bits 23:16 - STTDLY[7:0] Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the current start of transmission of data. When the transmitter is programmed to start synchronously with the receiver, the delay is also applied.

Note:

If STTDLY is too short with respect to transmit synchronization data (SSC_TSHR), SSC_THR.TDAT is transmitted instead of the end of SSC_TSHR.

Value	Name	Description
0	CONTINUOUS	Continuous, as soon as a word is written in the SSC_THR (if Transmit is
		enabled), and immediately after the end of transfer of the previous data
1	RECEIVE	Receive start
2	TF_LOW	Detection of a low level on TF signal

Bits 11:8 - START[3:0] Transmit Start Selection

US_LONMR.TCOL determines whether to terminate transmission or not upon collision notification during preamble transmission.

46.6.10.6.5 Collision Detection After CRC

As defined in "comm_type" on page 64, if comm_type=1 the LON node can be either be configured to ignore collision after the CRC has been sent but prior to the end of the frame.

US_LONMR.CDTAIL determines whether such collision notifications must be considered or not.

46.6.10.6.6 Random Number Generation

The Predictive p-persistent CSMA algorithm defined in the CEA-709.1 Standard is based on a random number generation.

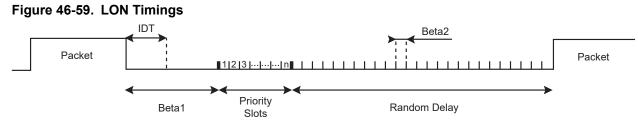
This random number is automatically generated by an internal algorithm.

In addition, a USART IC DIFF register (US_ICDIFF) is available to avoid that two same chips with the same software generate the same random number after reset. The value of this register is used by the internal algorithm to generate the random number. Therefore, putting a different value here for each chip ensures that the random number generated after a reset at the same time, will not be the same. It is recommended to put the chip ID code here.

46.6.10.7 LON Node Backlog Estimation

As defined in the CEA-709 standard, the LON node maintains its own backlog estimation. The node backlog estimation is initially set to 1, will always be greater than 1 and will never exceed 63. If the node backlog estimation exceeds the maximum backlog value, the backlog value is set to 63 and a backlog overflow error flag is set (LBLOVFE flag).

The node backlog estimation is incremented each time a frame is sent or received successfully. The increment to the backlog is encoded into the link layer header, and represents the number of messages that the packet shall cause to be generated upon reception.


The backlog decrements under one of the following conditions:

- On waiting to transmit: If Wbase randomizing slots go by without channel activity.
- On receive: If a packet is received with a backlog increment of '0'.
- On transmit: If a packet is transmitted with a backlog increment of '0'.
- On idle: If a packet cycle time expires without channel activity.

46.6.10.7.1 Optional Collision Detection Feature And Backlog Estimation

Each time a frame is transmitted and a collision occurred, the backlog is incremented by 1. In this case, the backlog increment encoded in the link layer is ignored.

46.6.10.8 LON Timings

46.6.10.8.1 Beta2

A node wishing to transmit generates a random delay T. This delay is an integer number of randomizing slots of duration Beta2.

The beta2 length (in t_{bit}) is configurable through US_FIDI. Note that a length of '0' is not allowed.

Universal Synchronous Asynchronous Receiver Transc...

46.7.33 USART LIN Identifier Register

Name:	US_LINIR
Offset:	0x0058
Reset:	0x0
Property:	Read/Write(1)

This register is relevant only if USART_MODE = 0xA or 0xB in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					-	-		
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				IDCH	R[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - IDCHR[7:0] Identifier Character

If USART_MODE = 0xA (master node configuration):

IDCHR is Read/Write and its value is the identifier character to be transmitted.

If USART_MODE = 0xB (slave node configuration):

IDCHR is Read-only and its value is the last identifier character that has been received.

Media Local Bus (MLB)

Value (see Note)	Command	Description
52h	IsoSync2Bytes	Isochronous logical channel, two data bytes valid and start of a block. First byte transmitted/received is the MSB. Last two bytes in the physical channel are empty.
54h	IsoSync3Bytes	Isochronous logical channel, three data bytes valid and start of a block. First byte transmitted/received is the MSB. Last byte in physical channel is empty.
56h	IsoSync4Bytes	Isochronous logical channel, all four data bytes valid and start of a block. First byte transmitted/received is the MSB.
58hDEh	rsvd	Reserved
System Co	mmands (Controller sends	s in System Channel):
00h	NoData	The Controller has no System command to send out.
E0h	MOSTLock	The Controller issues a MOST Network lock command in the System Channel to notify Devices that the MOST Network is in lock.
E2h	MOSTUnlock	The Controller issues a MOST Network unlock command in the System Channel to notify Devices that the MOST Network is unlocked.
E4h	MLBScan	The Controller issues an MediaLB scan command in the System Channel and uses the MLBD line to indicate the DeviceAddress which is currently being scanned. All Devices supporting MLBScan must compare the received DeviceAddress against their internal DeviceAddress, and if a match occurs, a Device responds in the following System Channel with one of the System responses as specified in Table 48-6.
E6h	MLBSubCmd	The Controller outputs a sub-command in the System Channel. The sub- command is part of the data on the MLBD line.
E8hFCh	rsvd	Reserved
FEh	MLBReset	The Controller outputs a MediaLB reset on the System Channel MLBS line. If the first two-bytes are zero on the MLBD line, then the system reset is a broadcast system reset and every Device should reset its MediaLB interface. Otherwise, the MLBD line contains the DeviceAddress of the Device being asked to reset its own MediaLB interface.

Note: All odd values (LSB set) are reserved.

For synchronous logical channels, the NoData command indicates that the Tx Device assigned to that ChannelAddress has not setup the channel yet. For asynchronous and control logical channels, NoData is used during packet data transfer when there is no data available to transmit.

Media Local Bus (MLB)

Field	No. of Bits	Description	Accessibility
		1 = Enabled	
LE	1	Endianess select: 0 = Big Endian 1 = Little Endian	r,w
PG	1	Page pointer. Software initializes to zero, hardware writes thereafter. 0 = Ping buffer 1 = Pong buffer	r,w,u ⁽¹⁾
RDY1	1	Buffer ready bit for ping buffer page: 0 = Not ready 1 = Ready	r,w
RDY2	1	Buffer ready bit for pong buffer page: 0 = Not ready 1 = Ready	r,w
DNE1	1	Buffer done bit for ping buffer page: 0 = Not done 1 = Done	r,u ⁽¹⁾ ,c0
DNE2	1	Buffer done bit for pong buffer page: 0 = Not done 1 = Done	r,u ⁽¹⁾ ,c0
ERR1	1	AHB error response detected for ping buffer page:0 = No error1 = Error	r,u ⁽¹⁾ ,c0 ⁽²⁾
ERR2	1	AHB error response detected for pong buffer page: 0 = No error 1 = Error	r,u ⁽¹⁾ ,c0 ⁽²⁾
PS1	1	Packet start bit for ping buffer page: 0 = No packet start 1 = Packet start Reserved for synchronous and isochronous channels.	r,w,u ⁽¹⁾ (both Tx and Rx)
PS2	1	Packet start bit for pong buffer page: 0 = No packet start 1 = Packet start	r,w,u ⁽¹⁾ (both Tx and Rx)

Timer Counter (TC)

Figure 50-21. Quadrature Error Detection
Peripheral Clock MAXFILT = 2
Abnormally formatted optical disk strips (theoretical view)
PHA
РНВ
strip edge inaccuracy due to disk etching/printing process
$\rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow $
PHA
\rightarrow \leftarrow \rightarrow \leftarrow
PHB
resulting PHA, PHB electrical waveforms
РНА
Even with an abnormally formatted disk, there is no occurrence of PHA, PHB switching at the same time.
PHB
\rightarrow duration < MAXFILT
QERR

MAXFILT must be tuned according to several factors such as the peripheral clock frequency, type of rotary sensor and rotation speed to be achieved.

50.6.16.4 Position and Rotation Measurement

When TC_BMR.POSEN is set, the motor axis position is processed on channel 0 (by means of the PHA, PHB edge detections) and the number of motor revolutions are recorded on channel 1 if the IDX signal is provided on the TIOB1 input. If no IDX signal is available, the internal counter can be cleared for each revolution if the number of counts per revolution is configured in TC_RC0.RC and the TC_CMR.CPCTRG bit is written to '1'. The position measurement can be read in the TC_CV0 register and the rotation measurement can be read in the TC_CV1 register.

Channel 0 and 1 must be configured in Capture mode (TC_CMR0.WAVE = 0). 'Rising edge' must be selected as the External Trigger Edge (TC_CMR.ETRGEDG = 0x01) and 'TIOAx' must be selected as the External Trigger (TC_CMR.ABETRG = 0x1). The process must be started by configuring TC_CCR.CLKEN and TC_CCR.SWTRG.

In parallel, the number of edges are accumulated on TC channel 0 and can be read on the TC_CV0 register.

Therefore, the accurate position can be read on both TC_CV registers and concatenated to form a 32-bit word.

The TC channel 0 is cleared for each increment of IDX count value.

© 2018 Microchip Technology Inc.

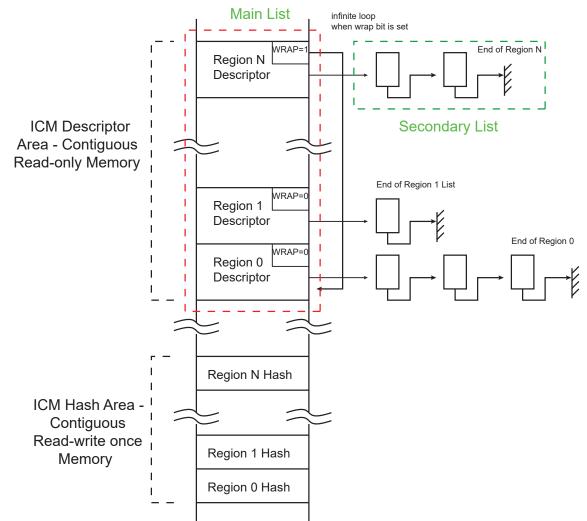
52.7.11 AFEC Interrupt Disable Register

Name:AFEC_IDROffset:0x28Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

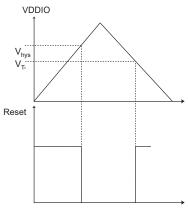

Bit	31	30	29	28	27	26	25	24
		TEMPCHG				COMPE	GOVRE	DRDY
Access		W				W	W	W
Reset		-				_	-	-
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
								_
Bit	15	14	13	12	11	10	9	8
					EOC11	EOC10	EOC9	EOC8
Access					W	W	W	W
Reset					_	_	_	-
Bit	7	6	5	4	3	2	1	0
	EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0
Access	W	W	W	W	W	W	W	W
Reset	-	_	_	-	_	-	-	-

Bit 30 – TEMPCHG Temperature Change Interrupt Disable

- Bit 26 COMPE Comparison Event Interrupt Disable
- Bit 25 GOVRE General Overrun Error Interrupt Disable
- Bit 24 DRDY Data Ready Interrupt Disable

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – EOCx End of Conversion Interrupt Disable x

Integrity Check Monitor (ICM)


Figure 55-3. ICM Region Descriptor and Hash Areas

Each region descriptor supports gathering of data through the use of the Secondary List. Unlike the Main List, the Secondary List cannot modify the configuration attributes of the region. When the end of the Secondary List has been encountered, the ICM returns to the Main List. Memory integrity monitoring can be considered as a background service and the mandatory bandwidth shall be very limited. In order to limit the ICM memory bandwidth, use ICM_CFG.BBC to control the ICM memory load.

Electrical Characteristics for SAM ...

Symbol	Parameter	Digital Code	Min	Тур	Max	Unit
		1110	-	3.28	-	
		1111	-	3.4	-	

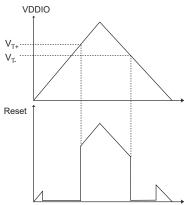
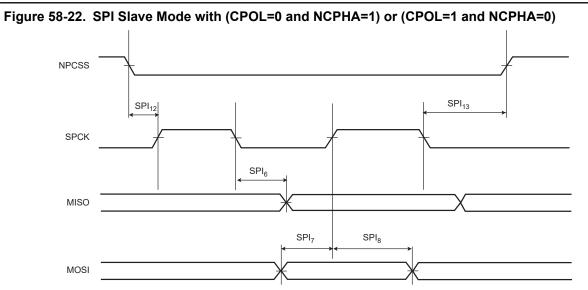
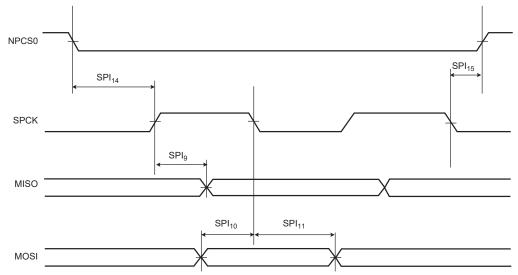

Figure 58-3. VDDIO Supply Monitor

Table 58-10. VDDIO Power-On Reset Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{T+}	Threshold Voltage Rising	-	1.45	1.53	1.61	V
V _{T-}	Threshold Voltage Falling	-	1.37	1.46	-	V
V _{hys}	Hysteresis	-	40	80	130	mV
t _{RES}	Reset Time-out Period	-	240	320	800	μs


Figure 58-4. VDDIO Power-On Reset Characteristics


58.3 Power Consumption

- Power consumption of the device depending on the different Low-Power modes (Backup, Wait, Sleep) and Active mode
- Power consumption on power supply in different modes: Backup, Wait, Sleep and Active
- Power consumption by peripheral:

Electrical Characteristics for SAM ...

58.13.1.6.1 Maximum SPI Frequency

The following formulas give maximum SPI frequency in Master read and write modes and in Slave read and write modes.

$$f_{\text{SPCK}} \max = \frac{1}{\text{SPI}_0(\text{or SPI}_3) + t_{\text{valid}}}$$

t_{valid} is the slave time response to output data after detecting an SPCK edge.

For a nonvolatile memory with t_{valid} (or t_v) = 5 ns, $f_{SPCK}max$ = 57 MHz at V_{DDIO} = 3.3V.

$$f_{\rm SPCK} \max = \frac{1}{2x(SPI_{6max}(\text{ or } SPI_{9max}) + t_{setup})}$$

 t_{setup} is the setup time from the master before sampling data.

Master Write Mode

The SPI sends data to a slave device only, e.g. an LCD. The limit is given by SPI_2 (or SPI_5) timing. Since it gives a maximum frequency above the maximum pad speed (see I/O Characteristics), the max SPI frequency is the one from the pad.

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
C _{SHUNT}	Shunt capacitance	-	_	_	7	pF
C _{CRYSTAL}	Allowed Crystal Capacitance Load	From crystal specification	12.5	_	17.5	pF
P _{ON}	Drive Level	3 MHz	_	_	15	μW
		8 MHz	_	_	30	
		12 MHz, 20 MHz	_	_	50	

59.4.8 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode Table 59-25. 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
1/(t _{CPXIN})	XIN Clock Frequency	(see Note 1)	-	_	20	MHz
t _{CHXIN}	XIN Clock High Half- period	(see Note 1)	25	—	-	ns
t _{CLXIN}	XIN Clock Low Half-period	(see Note 1)	25	_	-	ns
V _{XIN_IL}	V _{XIN} Input Low-level Voltage	(see Note 1)	Min of V _{IL} for CLOCK pad	_	Max of V _{IL} for CLOCK pad	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(see Note 1)	Min of V _{IH} for CLOCK pad	_	Max of V _{IH} for CLOCK pad	V

Note:

1. These characteristics apply only when the 3–20 MHz crystal oscillator is in Bypass mode.

59.4.9 Crystal Oscillator Design Considerations

59.4.9.1 Choosing a Crystal

When choosing a crystal for the 32768 Hz Slow Clock Oscillator or for the 3–20 MHz oscillator, several parameters must be taken into account. Important parameters between crystal and product specifications are as follows:

- Crystal Load Capacitance
 - The total capacitance loading the crystal, including the oscillator's internal parasitics and the PCB parasitics, must match the load capacitance for which the crystal's frequency is specified. Any mismatch in the load capacitance with respect to the crystal's specification will lead to inaccurate oscillation frequency
- Drive Level
 - Crystal drive level ≥ Oscillator Drive Level. Having a crystal drive level number lower than the oscillator specification may damage the crystal.
- Equivalent Series Resistor (ESR)
 - Crystal ESR ≤ Oscillator ESR Max. Having a crystal with ESR value higher than the oscillator may cause the oscillator to not start.
- Shunt Capacitance
 - Max. crystal shunt capacitance ≤ Oscillator Shunt Capacitance (C_{SHUNT}). Having a crystal with C_{SHUNT} value higher than the oscillator may cause the oscillator to not start.

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Max	Unit
SPI0	MISO Setup time before SPCK rises (master)	3.3V domain	12.4	-	ns
		1.8V domain	14.6	-	ns
SPI1	MISO Hold time after SPCK rises (master)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain	-3.7	2.2	ns
		1.8V domain	-3.8	2.7	ns
SPI ₃	MISO Setup time before SPCK falls (master)	3.3V domain	12.6	-	ns
		1.8V domain	15.13	-	ns
SPI4	MISO Hold time after SPCK falls (master)	3.3V domain	0	-	ns
		1.8V domain	0		ns
SPI5	SPCK falling to MOSI Delay (master)			2.0	ns
		1.8V domain	-3.3	2.8	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain	3.0	11.9	ns
		1.8V domain	3.5	13.9	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain	0.6	-	ns
		1.8V domain	domain 0.8 –		ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain	3.0	12.0	ns
		1.8V domain	3.4	11.9 1 13.9 1 - 1 - 1 - 1 12.0 1 13.7 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain	0.6	-	ns
		1.8V domain	0.8	-	ns
SPI ₁₂	NPCS setup to SPCK rising (slave)	3.3V domain	3.9	-	ns
		1.8V domain	4.4	-	ns
SPI ₁₃	NPCS hold after SPCK falling (slave)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI ₁₄	NPCS setup to SPCK falling (slave)	3.3V domain	4.0	-	ns
		1.8V domain	4.1	-	ns

Table 59-56. SPI Timings