

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	44
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j20b-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAM E70/S70/V70/V71 Family Bus Matrix (MATRIX)

Name Description 16BEAT_BURST 16-beat Burst—The undefined length burst or bursts sequence is split into 16-beat bursts or less, allowing re-arbitration every 16 beats. 32BEAT_BURST 32-beat Burst—The undefined length burst or bursts sequence is split into 32-beat bursts or less, allowing re-arbitration every 32 beats. 64BEAT_BURST 64-beat Burst—The undefined length burst or bursts sequence is split into 64-beat bursts or less, allowing re-arbitration every 64 beats. 128BEAT_BURST 128-beat Burst—The undefined length burst or bursts sequence is split into 64-beat bursts or less, allowing re-arbitration every 64 beats. 128BEAT_BURST 128-beat Burst—The undefined length burst or bursts sequence is split into 128-beat bursts or less, allowing re-arbitration every 128 beats.

Note: Unless duly needed, the ULBT should be left at its default 0 value
for power saving.

Value

4

5

6

7

Real-time Clock (RTC)

Offset	Name	Bit Pos.						
		31:24						
0x2C RT		7:0			NVCALALR	NVTIMALR	NVCAL	NVTIM
		15:8						
	RIC_VER	23:16						
		31:24						

Static Memory Controller (SMC)

Figure 35-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

35.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, provided that the Page mode is enabled (SMC_MODE.PMEN =1). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in the following table.

Static Memory Controller (SMC)

	Name: Offset: Reset: Property:	SMC_WPSR 0xE8 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
D :+	22	22	01	20	10	10	17	16
BI	23	22	21	20	19	18	17	10
				WPVSF	RC[15:8]			
Access	0	0	0	0	0	0	0	<u> </u>
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
2.1				WPVS	RC[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WPVS
Access								
Reset								0

35.16.1.9 SMC Write Protection Status Register

Bits 23:8 - WPVSRC[15:0] Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bit 0 – WPVS Write Protection Violation Status

Value	Description
0	No write protection violation has occurred since the last read of the SMC_WPSR register.
1	A write protection violation has occurred since the last read of the SMC_WPSR register. If
	this violation is an unauthorized attempt to write a protected register, the associated violation
	is reported into field WPVSRC.

36.9.22 XDMAC Channel x Source Address Register [x = 0..23]

Name:	XDMAC_CSA
Offset:	0x60 + n*0x40 [n=023]
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
[SA[3	1:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				SA[2	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				SA[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[SA	7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - SA[31:0] Channel x Source Address

Program this register with the source address of the DMA transfer.

A configuration error is generated when this address is not aligned with the transfer data size.

As described above, the DMA can be programmed into a low latency mode, known as Partial Store and Forward. For further details of this mode, see the related Links.

When the DMA is in full store and forward mode, full packets are buffered which provides the possibility to:

- Discard packets with error on the receive path before they are partially written out of the DMA, thus saving AHB bus bandwidth and driver processing overhead,
- Retry collided transmit frames from the buffer, thus saving AHB bus bandwidth,
- Implement transmit IP/TCP/UDP checksum generation offload.

With the packet buffers included, the structure of the GMAC data paths is shown in this image:

Figure 38-2. Data Paths with Packet Buffers Included

38.6.3.7 Transmit Packet Buffer

The transmitter packet buffer will continue attempting to fetch frame data from the AHB system memory until the packet buffer itself is full, at which point it will attempt to maintain its full level.

To accommodate the status and statistics associated with each frame, three words per packet (or two if the GMAC is configured in 64-bit data path mode) are reserved at the end of the packet data. If the packet is bad and requires to be dropped, the status and statistics are the only information held on that packet. Storing the status in the DPRAM is required in order to decouple the DMA interface of the buffer from the MAC interface, to update the MAC status/statistics and to generate interrupts in the order in which the packets that they represent were fetched from the AHB memory.

If any errors occur on the AHB while reading the transmit frame, the fetching of packet data from AHB memory is halted. The MAC transmitter will continue to fetch packet data, thereby emptying the packet

Serial Peripheral Interface (SPI)

The end of transfer is indicated by the TXEMPTY flag in SPI_SR. If a transfer delay (DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of this delay. The peripheral clock can be switched off at this time.

Note: When the SPI is enabled, the TDRE and TXEMPTY flags are set.

The transfer of received data from the internal shift register to SPI_RDR is indicated by the Receive Data Register Full (RDRF) bit in SPI_SR. When the received data is read, SPI_SR.RDRF is cleared.

If SPI_RDR has not been read before new data is received, the Overrun Error (OVRES) flag in SPI_SR is set. As long as this flag is set, data is loaded in SPI_RDR. The user has to read SPI_SR to clear OVRES.

The following figures show, respectively, a block diagram of the SPI when operating in Master mode and a flow chart describing how transfers are handled.

Quad Serial Peripheral Interface (QSPI)

42.7.6 QSPI Interrupt Enable Register

Name:QSPI_IEROffset:0x14Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						INSTRE	CSS	CSR
Access						W	W	W
Reset						-	-	_
Bit	7	6	5	4	3	2	1	0
					OVRES	TXEMPTY	TDRE	RDRF
Access					W	W	W	W
Reset					-	-	_	_

Bit 10 – INSTRE Instruction End Interrupt Enable

Bit 9 – CSS Chip Select Status Interrupt Enable

Bit 8 – CSR Chip Select Rise Interrupt Enable

Bit 3 – OVRES Overrun Error Interrupt Enable

Bit 2 – TXEMPTY Transmission Registers Empty Enable

Bit 1 – TDRE Transmit Data Register Empty Interrupt Enable

Bit 0 - RDRF Receive Data Register Full Interrupt Enable

Quad Serial Peripheral Interface (QSPI)

Value	Name	Description
2	TRSFR_WRITE	Write transfer into the serial memory.
		Scrambling is not performed.
3	TRSFR_WRITE_MEMORY	Write data transfer into the serial memory.
		If enabled, scrambling is performed.

Bit 10 - ADDRL Address Length

The ADDRL bit determines the length of the address.

0 (24_BIT): The address is 24 bits long.

1 (32_BIT): The address is 32 bits long.

Bits 9:8 - OPTL[1:0] Option Code Length

The OPTL field determines the length of the option code. The value written in OPTL must be consistent with the value written in the field WIDTH. For example, OPTL = 0 (1-bit option code) is not consistent with WIDTH = 6 (option code sent with QuadSPI protocol, thus the minimum length of the option code is 4 bits).

Value	Name	Description
0	OPTION_1BIT	The option code is 1 bit long.
1	OPTION_2BIT	The option code is 2 bits long.
2	OPTION_4BIT	The option code is 4 bits long.
3	OPTION_8BIT	The option code is 8 bits long.

Bit 7 – DATAEN Data Enable

Value	Description
0	No data is sent/received to/from the serial Flash memory.
1	Data is sent/received to/from the serial Flash memory.

Bit 6 – OPTEN Option Enable

Value	Description
0	The option is not sent to the serial Flash memory.
1	The option is sent to the serial Flash memory.

Bit 5 – ADDREN Address Enable

Value	Description
0	The transfer address is not sent to the serial Flash memory.
1	The transfer address is sent to the serial Flash memory.

Bit 4 – INSTEN Instruction Enable

Value	Description
0	The instruction is not sent to the serial Flash memory.
1	The instruction is sent to the serial Flash memory.

Bits 2:0 – WIDTH[2:0] Width of Instruction Code, Address, Option Code and Data

Two-wire Interface (TWIHS)

43.7.6 TWIHS Status Register

Name:	TWIHS_SR
Offset:	0x20
Reset:	0x03000009
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
[SDA	SCL
Access		·	·				R	R
Reset							1	1
Bit	23	22	21	20	19	18	17	16
			SMBHHM	SMBDAM	PECERR	TOUT		MCACK
Access			R	R	R	R		R
Reset			0	0	0	0		0
Bit	15	14	13	12	11	10	9	8
					EOSACC	SCLWS	ARBLST	NACK
Access					R	R	R	R
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	UNRE	OVRE	GACC	SVACC	SVREAD	TXRDY	RXRDY	TXCOMP
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	1	0	0	1

Bit 25 – SDA SDA Line Value

Value	Description
0	SDA line sampled value is '0'.
1	SDA line sampled value is '1'.

Bit 24 – SCL SCL Line Value

Value	Description
0	SCL line sampled value is '0'.
1	SCL line sampled value is '1.'

Bit 21 – SMBHHM SMBus Host Header Address Match (cleared on read)

Value	Description
0	No SMBus Host Header Address received since the last read of TWIHS_SR.
1	An SMBus Host Header Address was received since the last read of TWIHS_SR.

Bit 20 - SMBDAM SMBus Default Address Match (cleared on read)

Value	Description
0	No SMBus Default Address received since the last read of TWIHS_SR.
1	An SMBus Default Address was received since the last read of TWIHS_SR.

Synchronous Serial Controller (SSC)

44.9.1 SSC Control Register

	Name: Offset: Reset: Property:	SSC_CR 0x0 - Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access		1	•					
Reset								
Bit	15	14	13	12	11	10	9	8
	SWRST						TXDIS	TXEN
Access	W		•				W	W
Reset	-						-	_
Bit	7	6	5	4	3	2	1	0
							RXDIS	RXEN
Access							W	W
Reset							-	_

Bit 15 – SWRST Software Reset

Value	Description
0	No effect.
1	Performs a software reset. Has priority on any other bit in SSC_CR.

Bit 9 – TXDIS Transmit Disable

Value	Description
0	No effect.
1	Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

Bit 8 – TXEN Transmit Enable

Value	Description
0	No effect.
1	Enables Transmit if TXDIS is not set.

Bit 1 – RXDIS Receive Disable

Inter-IC Sound Controller (I2SC)

	Name: Offset: Reset: Property:	I2SC_SCR 0x0C - Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			TXUR	CH[1:0]				
Access			W	W			•	
Reset			_	-				
Bit	15	14	13	12	11	10	9	8
							RXOR	CH[1:0]
Access							W	W
Reset							-	-
Bit	7	6	5	4	3	2	1	0
		TXUR				RXOR		
Access		W				W		
Reset		_				_		

Bits 21:20 – TXURCH[1:0] Transmit Underrun Per Channel Status Clear Writing a '0' has no effect.

Writing a '1' to any bit in this field clears the corresponding bit in the I2SC_SR and the corresponding interrupt request.

Bits 9:8 – RXORCH[1:0] Receive Overrun Per Channel Status Clear Writing a '0' has no effect.

Writing a '1' to any bit in this field clears the corresponding bit in the I2SC_SR and the corresponding interrupt request.

Bit 6 – TXUR Transmit Underrun Status Clear Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the status bit.

Bit 2 – RXOR Receive Overrun Status Clear Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the status bit.

45.8.4

I2SC Status Clear Register

Universal Synchronous Asynchronous Receiver Transc...

Figure 46-35. Typical Connection to a RS485 Bus

RS485 mode is enabled by writing the value 0x1 to the US_MR.USART_MODE.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is programmed so that the line can remain driven after the last character completion. Figure 46-36 gives an example of the RTS waveform during a character transmission when the timeguard is enabled.

Figure 46-36. Example of RTS Drive with Timeguard

46.6.7 Modem Mode

The USART features the Modem mode, which enables control of the signals DTR (Data Terminal Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect), and RI (Ring Indicator). While operating in Modem mode, the USART behaves as a DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR, DCD, CTS, and RI.

Modem mode is enabled by writing the value 0x3 to US_MR.USART_MODE. While operating in Modem mode, the USART behaves as though in Asynchronous mode and all the parameter configurations are available.

The following table provides the correspondence of the USART signals with modem connection standards.

USART Pin	V24	ССІТТ	Direction
TXD	2	103	From terminal to modem
RTS	4	105	From terminal to modem
DTR	20	108.2	From terminal to modem

Table 46-11. Circuit References

Universal Synchronous Asynchronous Receiver Transc...

Table 46-12. SPI Bus Protocol Mode

SPI Bus Protocol Mode	CPOL	СРНА
0	0	1
1	0	0
2	1	1
3	1	0

Figure 46-37. SPI Transfer Format (CPHA = 1, 8 bits per transfer)

46.6.8.4 Receiver and Transmitter Control

SPI Slave -> CTS

See "Receiver and Transmitter Control".

Controller Area Network (MCAN)

49.5.6 FIFO Acknowledge Handling

The Get Indices of Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO are controlled by writing to the corresponding FIFO Acknowledge Index in the registers MCAN_RXF0A, MCAN_RXF1A and MCAN_TXEFA. Writing to the FIFO Acknowledge Index will set the FIFO Get Index to the FIFO Acknowledge Index plus one and thereby updates the FIFO Fill Level. There are two use cases:

When only a single element has been read from the FIFO (the one being pointed to by the Get Index), this Get Index value is written to the FIFO Acknowledge Index.

When a sequence of elements has been read from the FIFO, it is sufficient to write the FIFO Acknowledge Index only once at the end of that read sequence (value: Index of the last element read), to update the FIFO's Get Index.

Due to the fact that the processor has free access to the MCAN's Message RAM, special care has to be taken when reading FIFO elements in an arbitrary order (Get Index not considered). This might be useful when reading a High Priority Message from one of the two Rx FIFOs. In this case the FIFO's Acknowledge Index should not be written because this would set the Get Index to a wrong position and also alters the FIFO's Fill Level. In this case some of the older FIFO elements would be lost.

Note: The application has to ensure that a valid value is written to the FIFO Acknowledge Index. The MCAN does not check for erroneous values.

49.5.7 Message RAM

49.5.7.1 Message RAM Configuration

The Message RAM has a width of 32 bits. The MCAN module can be configured to allocate up to 4352 words in the Message RAM. It is not necessary to configure each of the sections listed in the figure below, nor is there any restriction with respect to the sequence of the sections.

When operated in CAN FD mode, the required Message RAM size depends on the element size configured for Rx FIFO0, Rx FIFO1, Rx Buffers, and Tx Buffers via MCAN_RXESC.F0DS, MCAN_RXESC.F1DS, MCAN_RXESC.RBDS, and MCAN_TXESC.TBDS.

Figure 49-12. Message RAM Configuration

Start Address

- Read of the Capture Registers by the DMAC
- Compare Event Fault Generation for PWM
- Register Write Protection

50.3 Block Diagram

 Table 50-1. Timer Counter Clock Assignment

Name	Definition
TIMER_CLOCK1	PCK6 or PCK7 (TC0 only)
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5 (1)	SLCK

- 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock register), SLCK input is equivalent to Peripheral Clock.
- 2. The PCK6 or PCK7 (TC0 only) frequency must be at least three times lower than peripheral clock frequency.

Note:

The QDEC connections are detailed in Predefined Connection of the Quadrature Decoder with Timer Counters.

	Name: Offset: Reset: Property:	TC_QISR 0xD4 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
D .1		00	0.4	00	10	40	47	10
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
110001								
Bit	15	14	13	12	11	10	9	8
								DIR
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
					MPE	QERR	DIRCHG	IDX
Access					R	R	R	R
Reset					0	0	0	0

50.7.20 TC QDEC Interrupt Status Register

Bit 8 – DIR Direction

Returns an image of the current rotation direction.

Bit 3 – MPE Consecutive Missing Pulse Error

Value	Description
0	The number of consecutive missing pulses has not reached the maximum value specified in
	MAXCMP since the last read of TC_QISR.
1	An occurrence of MAXCMP consecutive missing pulses has been detected since the last
	read of TC QISR.

Bit 2 – QERR Quadrature Error

Value	Description
0	No quadrature error since the last read of TC_QISR.
1	A quadrature error occurred since the last read of TC_QISR.

Bit 1 – DIRCHG Direction Change

Value	Description
0	No change on rotation direction since the last read of TC_QISR.
1	The rotation direction changed since the last read of TC_QISR.

Pulse Width Modulation Controller (PWM)

51.7.42 PWM Channel Duty Cycle Update Register

 Name:
 PWM_CDTYUPDx

 Offset:
 0x0208 + x*0x20 [x=0..3]

 Reset:

 Property:
 Write-only

This register acts as a double buffer for the CDTY value. This prevents an unexpected waveform when modifying the waveform duty-cycle.

29 Bit 31 30 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 CDTYUPD[23:16] W w W W W W W W Access 0 0 0 0 0 0 0 0 Reset Bit 14 13 12 10 9 8 15 11 CDTYUPD[15:8] W W W W W W W Access W Reset 0 0 0 0 0 0 0 0 7 6 5 4 2 0 Bit 3 1 CDTYUPD[7:0] W w W W w W W W Access 0 Reset 0 0 0 0 0 0 _

Only the first 16 bits (channel counter size) are significant.

Bits 23:0 - CDTYUPD[23:0] Channel Duty-Cycle Update

Defines the waveform duty-cycle. This value must be defined between 0 and CPRD (PWM_CPRDx).

Electrical Characteristics for SAM ...

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit
	Parameter	Min		Max		
NO HOL	_D Settings (NCS	E_RD_HOLD = 0)				
SMC ₈	Data Setup before NCS High	24.9	21.4	-	-	ns
SMC ₉	Data Hold after NCS High	0	0	-	-	ns
HOLD S	Settings (NCS_RD	D_HOLD ≠ 0)				
SMC ₁₀	Data Setup before NCS High	13.4	11.7	-	-	ns
SMC ₁₁	Data Hold after NCS High	0	0	-	-	ns
HOLD o	r NO HOLD Setti	ngs (NCS_RD_HOLD ≠ 0	0, NCS_RD_HOLD = 0)			
SMC ₁₂	A0–A22 valid before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE) × t _{CPMCK} - 4.0	$\begin{array}{l} (\text{NCS}_{\text{RD}} \text{SETUP} + \\ \text{NCS}_{\text{RD}} \text{PULSE}) \times \\ t_{\text{CPMCK}} - 3.9 \end{array}$	-	-	ns
SMC ₁₃	NRD low before NCS High	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 2.8	(NCS_RD_SETUP + NCS_RD_PULSE - NRD_SETUP) × t _{CPMCK} - 4.2	_	_	ns
SMC ₁₄	NCS Pulse Width	NCS_RD_PULSE length × t _{CPMCK} - 0.9	NCS_RD_PULSE length × t _{CPMCK} - 0.2	-	-	ns

Table 58-59. SMC Read Signals - NCS Controlled (READ_MODE = 0)

58.13.1.9.2 Read Timings

Table 58-60. SMC Read Signals - NRD Controlled (READ_MODE = 1)

Symbol		VDDIO Supply		Unit	
	Parameter	Min	Max		
NO HOL	NO HOLD Settings (NRD_HOLD = 0)				
SMC ₁	Data Setup before NRD High	14.3	_	ns	
SMC ₂	Data Hold after NRD High	0	_	ns	
HOLD Settings (NRD_HOLD \neq 0)					
SMC ₃	Data Setup before NRD High	12.1	_	ns	
SMC ₄	Data Hold after NRD High	0	_	ns	
HOLD or	NO HOLD Settings (NRD_HOLD	D ≠ 0, NRD_HOLD = 0)			

Electrical Characteristics for SAM ...

Symbol	Parameter	Condition	Min	Мах	Unit
C _i ⁽¹⁾	Capacitance for each I/O Pin	-	-	10	pF
f _{TWCK}	TWCK Clock Frequency	-	0	400	kHz
R _P	Value of Pull-up resistor	f _{TWCK} ≤ 100 kHz	(V _{DDIO} - 0.4V) ÷	1000ns ÷ C _b	Ω
		f _{TWCK} > 100 kHz	3mA	300ns ÷ C _b	Ω
t _{LOW}	Low Period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(3)	-	μs
		f _{TWCK} > 100 kHz	(3)	-	μs
t _{HIGH}	High period of the TWCK clock	f _{TWCK} ≤ 100 kHz	(4)	-	μs
		f _{TWCK} > 100 kHz	(4)	-	μs
t _{HD;STA}	Hold Time (repeated) START Condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{SU;STA}	Set-up time for a repeated START condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;DAT}	Data hold time	f _{TWCK} ≤ 100 kHz	0	$3 \times t_{CPMCK}^{(5)}$	μs
		f _{TWCK} > 100 kHz	0	3 ×t _{CPMCK} ⁽⁵⁾	μs
t _{SU;DAT}	Data setup time	f _{TWCK} ≤ 100 kHz	t _{LOW -} 3 × t _{CPMCK} ⁽⁵⁾	-	ns
		f _{TWCK} > 100 kHz	t_{LOW} 3 × t_{CPMCK} ⁽⁵⁾	-	ns
t _{SU;STO}	Setup time for STOP condition	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
		f _{TWCK} > 100 kHz	t _{HIGH}	-	μs
t _{HD;STA}	Hold Time (repeated) START	f _{TWCK} ≤ 100 kHz	t _{HIGH}	-	μs
	Condition	f _{TWCK} > 100 kHz	t _{HIGH}	-	μs

Note:

- 1. Required only for $f_{TWCK} > 100$ kHz.
- 2. C_b = capacitance of one bus line in pF. Per I²C standard, C_b max = 400pF.
- 3. The TWCK low period is defined as follows: $t_{LOW} = ((CLDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.
- 4. The TWCK high period is defined as follows: $t_{HIGH} = ((CHDIV \times 2^{CKDIV}) + 4) \times t_{MCK}$.
- 5. t_{CPMCK} = MCK bus period