

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	44
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j20b-mnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Input/Output Lines

CCFG_SYSIO Bit Number	Default Function After Reset	Other Function	Constraints for Normal Start	Configuration
12	ERASE	PB12	Low Level at startup (see Note 1)	In Matrix User Interface Registers (Refer to the 19.4.7 CCFG_SYSIO register)
7	TCK/SWCLK	PB7	-	
6	TMS/SWDIO	PB6	-	
5	TDO/ TRACESWO	PB5	-	
4	TDI	PB4	-	
-	PA7	XIN32	-	(see Note 2)
-	PA8	XOUT32	-	
-	PB9	XIN	-	(see Note 3)
_	PB8	XOUT	-	

Table 8-1. System I/O Configuration Pin List

Note:

- 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode.
- 2. Refer to 23.4.2 Slow Clock Generator.
- 3. Refer to 30.5.3 Main Crystal Oscillator.

8.2.1 Serial Wire Debug Port (SW-DP) Pins

The SW-DP pins SWCLK and SWDIO are commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 4-1.

At startup, SW-DP pins are configured in SW-DP mode to allow connection with debugging probe. For more details, refer to 16. Debug and Test Features.

SW-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SW-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pulldown resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

The JTAG Debug Port TDI, TDO, TMS and TCK is inactive. It is provided for Boundary Scan Manufacturing Test purpose only.

8.2.2 Embedded Trace Module (ETM) Pins

The Embedded Trace Module (ETM) depends on the Trace Port Interface Unit (TPIU) to export data out of the system.

The TPUI features the following pins:

Peripherals

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Description
20	TWIHS1	Х	Х	Two-wire Interface (I2C-compatible)
21	SPI0	Х	Х	Serial Peripheral Interface
22	SSC	Х	Х	Synchronous Serial Controller
23	TC0_CHANNEL0	Х	Х	16-bit Timer Counter 0, Channel 0
24	TC0_CHANNEL1	Х	Х	16-bit Timer Counter 0, Channel 1
25	TC0_CHANNEL2	Х	Х	16-bit Timer Counter 0, Channel 2
26	TC1_CHANNEL0	Х	Х	16-bit Timer Counter 1, Channel 0
27	TC1_CHANNEL1	Х	Х	16-bit Timer Counter 1, Channel 1
28	TC1_CHANNEL2	Х	Х	16-bit Timer Counter 1, Channel 2
29	AFEC0	Х	Х	Analog Front-End Controller
30	DACC	Х	Х	Digital-to-Analog Converter
31	PWM0	Х	Х	Pulse Width Modulation Controller
32	ICM	Х	Х	Integrity Check Monitor
33	ACC	Х	Х	Analog Comparator Controller
34	USBHS	Х	Х	USB Host / Device Controller
35	MCAN0	Х	Х	CAN IRQ Line 0
36	MCAN0	INT1	-	CAN IRQ Line 1
37	MCAN1	Х	Х	CAN IRQ Line 0
38	MCAN1	INT1	-	CAN IRQ Line 1
39	GMAC	Х	Х	Ethernet MAC
35	-	-	-	Reserved
36	-	-	-	Reserved
37	-	-	_	Reserved
38	-	-	-	Reserved
39	-	-	_	Reserved
40	AFEC1	Х	Х	Analog Front End Controller
41	TWIHS2	Х	х	Two-wire Interface
42	SPI1	Х	Х	Serial Peripheral Interface
43	QSPI	Х	х	Quad I/O Serial Peripheral Interface
44	UART2	Х	X	Universal Asynchronous Receiver/ Transmitter

Bus Matrix (MATRIX)

				1	1	1	1			
Offset	Name	Bit Pos.								
		15:8			M3PI	R[1:0]			M2F	R[1:0]
		23:16			M5PI	R[1:0]			M4F	PR[1:0]
		31:24			M7PI	R[1:0]			M6F	PR[1:0]
		7:0			M9PI	R[1:0]			M8F	PR[1:0]
		15:8			M11P	R[1:0]			M10	PR[1:0]
0xAC	MATRIX_PRBS5	23:16							M12	PR[1:0]
		31:24								
		7:0			M1PI	R[1:0]			MOF	PR[1:0]
		15:8			M3PI	R[1:0]			M2F	PR[1:0]
0xB0	MATRIX_PRAS6	23:16			M5PI	R[1:0]			M4F	PR[1:0]
		31:24			M7Pi	R[1:0]			M6F	PR[1:0]
		7:0			M9PI	R[1:0]			M8F	PR[1:0]
		15:8				R[1:0]				PR[1:0]
0xB4	MATRIX_PRBS6	23:16								PR[1:0]
		31:24								
		7:0			M1PI	R[1:0]			MOF	'R[1:0]
		15:8				R[1:0]				PR[1:0]
0xB8	MATRIX_PRAS7	23:16				R[1:0]				PR[1:0]
		31:24				R[1:0]				'R[1:0]
		7:0			M9PI					PR[1:0]
		15:8				R[1:0]				PR[1:0]
0xBC	MATRIX_PRBS7	23:16								PR[1:0]
		31:24								
		7:0			M1PI	R[1:0]			MOF	'R[1:0]
		15:8				R[1:0]				PR[1:0]
0xC0	MATRIX_PRAS8	23:16				R[1:0]				PR[1:0]
		31:24				R[1:0]				PR[1:0]
		7:0			M9PI					PR[1:0]
		15:8				R[1:0]				PR[1:0]
0xC4	MATRIX_PRBS8	23:16								PR[1:0]
		31:24								
0xC8										
	Reserved									
0xFF										
		7:0	RCB7	RCB6	RCB5	RCB4	RCB3	RCB2	RCB1	RCB0
		15:8				RCB12	RCB11	RCB10	RCB9	RCB8
0x0100	MATRIX_MRCR	23:16								
		31:24								
0x0104										
	Reserved									
0x010F										
		7:0				Reserv	/ed[7:0]			
0.0110		15:8								Reserved[8:8]
0x0110	CCFG_CAN0	23:16				CANOD	1ABA[7:0]			_
		31:24				CAN0DM	ABA[15:8]			
0x0114	CCFG_SYSIO	7:0	SYSI07	SYSIO6	SYSIO5	SYSIO4				
		•								

Parallel Input/Output Controller (PIO)

32.6.1.48 PIO Schmitt Trigger Register

Name:	PIO_SCHMITT
Offset:	0x0100
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
	SCHMITT31	SCHMITT30	SCHMITT29	SCHMITT28	SCHMITT27	SCHMITT26	SCHMITT25	SCHMITT24
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	SCHMITT23	SCHMITT22	SCHMITT21	SCHMITT20	SCHMITT19	SCHMITT18	SCHMITT17	SCHMITT16
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	SCHMITT15	SCHMITT14	SCHMITT13	SCHMITT12	SCHMITT11	SCHMITT10	SCHMITT9	SCHMITT8
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SCHMITT7	SCHMITT6	SCHMITT5	SCHMITT4	SCHMITT3	SCHMITT2	SCHMITT1	SCHMITT0
Access								
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – SCHMITT PIO Schmitt Trigger Control

Value	Description
0	Schmitt trigger is enabled.
1	Schmitt trigger is disabled.

36.6.2.1 Descriptor Structure Microblock Control Member

Name:MBR_UBCProperty:Read-only

Bit	31	30	29	28	27	26	25	24
				NVIE	W[1:0]	NDEN	NSEN	NDE
Access		•		R	R	R	R	R
Reset								
Bit	23	22	21	20	19	18	17	16
				UBLEN	I[23:16]			
Access	R	R	R	R	R	R	R	R
Reset								
Bit	15	14	13	12	11	10	9	8
				UBLEI	N[15:8]			
Access	R	R	R	R	R	R	R	R
Reset								
Bit	7	6	5	4	3	2	1	0
				UBLE	N[7:0]			
Access	R	R	R	R	R	R	R	R
Reset								

Bits 28:27 - NVIEW[1:0] Next Descriptor View

Value	Name	Description
0	NDV0	Next Descriptor View 0
1	NDV1	Next Descriptor View 1
2	NDV2	Next Descriptor View 2
3	NDV3	Next Descriptor View 3

Bit 26 - NDEN Next Descriptor Destination Update

Value	Description
0	Destination parameters remain unchanged.
1	Destination parameters are updated when the descriptor is retrieved.

Bit 25 - NSEN Next Descriptor Source Update

Value	Description
0	Source parameters remain unchanged.
1	Source parameters are updated when the descriptor is retrieved.

Bit 24 – NDE Next Descriptor Enable

Value	Description
0	Descriptor fetch is disabled.
1	Descriptor fetch is enabled.

SAM E70/S70/V70/V71 Family DMA Controller (XDMAC)

	Name: Offset: Reset: Property:	XDMAC_GRW 0x34 – Write-only	/R					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	RWR23	RWR22	RWR21	RWR20	RWR19	RWR18	RWR17	RWR16
Access	W	W	W	W	W	W	W	W
Reset	-	-	-	-	-	-	-	-
Bit	15	14	13	12	11	10	9	8
	RWR15	RWR14	RWR13	RWR12	RWR11	RWR10	RWR9	RWR8
Access	W	W	W	W	W	W	W	W
Reset	-	_	_	_	-	_	-	_
Bit	7	6	5	4	3	2	1	0
	RWR7	RWR6	RWR5	RWR4	RWR3	RWR2	RWR1	RWR0
Access	W	W	W	W	W	W	W	W
Reset	-	-	_	_	-	_	-	_

36.9.14 XDMAC Global Channel Read Write Resume Register

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 – RWRx XDMAC Channel x Read Write Resume

Value	Description
0	No effect.
1	Read and write requests are serviced.

36.9.24 XDMAC Channel x Next Descriptor Address Register [x = 0..23]

Name:	XDMAC_CNDA
Offset:	0x68 + n*0x40 [n=023]
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
		NDA[29:22]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NDA[21:14]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		NDA[13:6]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	NDA[5:0]						NDAIF	
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bits 31:2 - NDA[29:0] Channel x Next Descriptor Address

The 30-bit width of the NDA field represents the next descriptor address range 31:2. The descriptor is word-aligned and the two least significant register bits 1:0 are ignored.

Bit 0 – NDAIF	Channel x Next Descriptor Interface
---------------	-------------------------------------

Value	Description
0	The channel descriptor is retrieved through system interface 0.
1	The channel descriptor is retrieved through system interface 1.

Image Sensor Interface (ISI)

Value	Name	Description
		Byte 3 B/G(MSB)
3	MODE3	Byte 0 G(LSB)/B
		Byte 1 R/G(MSB)
		Byte 2 G(LSB)/B
		Byte 3 R/G(MSB)

Bits 29:28 – YCC_SWAP[1:0] YCrCb Format Swap Mode Defines the YCC image data.

Value	Name	Description
0	DEFAULT	Byte 0 Cb(i)
		Byte 1 Y(i)
		Byte 2 Cr(i)
		Byte 3 Y(i+1)
1	MODE1	Byte 0 Cr(i)
		Byte 1 Y(i)
		Byte 2 Cb(i)
		Byte 3 Y(i+1)
2	MODE2	Byte 0 Y(i)
		Byte 1 Cb(i)
		Byte 2 Y(i+1)
		Byte 3 Cr(i)
3	MODE3	Byte 0 Y(i)
		Byte 1 Cr(i)
		Byte 2 Y(i+1)
		Byte 3 Cb(i)

Bits 26:16 – IM_HSIZE[10:0] Horizontal Size of the Image Sensor [0..2047] If 8-bit Grayscale mode is enabled, IM_HSIZE = (Horizontal size/2) - 1.

Else IM_HSIZE = Horizontal size - 1.

Bit 15 – COL_SPACE Color Space for the Image Data

Value	Description
0	YCbCr.
1	RGB.

Bit 14 – RGB_SWAP RGB Format Swap Mode

The RGB_SWAP has no effect when Grayscale mode is enabled.

Image Sensor Interface (ISI)

37.6.12 ISI Interrupt Enable Register

Name:	ISI_IER
Offset:	0x2C
Reset:	_
Property:	Write-only

Bit	31	30	29	28	27	26	25	24
					FR_OVR	CRC_ERR	C_OVR	P_OVR
Access					W	W	W	W
Reset					_	_	-	_
Bit	23	22	21	20	19	18	17	16
							CXFR_DONE	PXFR_DONE
Access							W	W
Reset							-	_
Bit	15	14	13	12	11	10	9	8
						VSYNC		
Access						W		
Reset						_		
Bit	7	6	5	4	3	2	1	0
						SRST	DIS_DONE	
Access						W	W	
Reset						-	-	

Bit 27 – FR_OVR Frame Rate Overflow Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.

Bit 26 – CRC_ERR Embedded Synchronization CRC Error Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.

Bit 25 – C_OVR Codec Datapath Overflow Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.

Bit 24 – P_OVR Preview Datapath Overflow Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.

Name: Offset: Reset: Property:		GMAC_RJFM 0x048 0x00003FFF Read/Write	L					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					FML[13:8]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
					.[7:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

38.8.19 GMAC RX Jumbo Frame Max Length Register

```
Bits 13:0 – FML[13:0] Frame Max Length Rx jumbo frame maximum length.
```

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.									
			SHORTPACK			HBISOFLUSH	HBISOINERRI				
	USBHS_DEVEPTIC	7:0	ETC	CRCERRIC	OVERFIC	IC	С	UNDERFIC	RXOUTIC	TXINIC	
0x016C		15:8									
	R3 (ISOENPT)	23:16									
		31:24									
		01.24	SHORTPACK								
	USBHS_DEVEPTIC	7:0	ETC	STALLEDIC	OVERFIC	NAKINIC	NAKOUTIC	RXSTPIC	RXOUTIC	TXINIC	
0x0170	R4	15:8									
	114	23:16									
		31:24									
		7:0	SHORTPACK ETC	CRCERRIC	OVERFIC	HBISOFLUSH IC	HBISOINERRI C	UNDERFIC	RXOUTIC	TXINIC	
0x0170	USBHS_DEVEPTIC	15:8									
	R4 (ISOENPT)	23:16									
		31:24									
		51.24	SHODEDAOK								
		7:0	SHORTPACK ETC	STALLEDIC	OVERFIC	NAKINIC	NAKOUTIC	RXSTPIC	RXOUTIC	TXINIC	
0x0174	USBHS_DEVEPTIC R5	15:8									
		23:16									
		31:24									
	USBHS_DEVEPTIC R5 (ISOENPT)	7:0	SHORTPACK ETC	CRCERRIC	OVERFIC	HBISOFLUSH IC	HBISOINERRI C	UNDERFIC	RXOUTIC	TXINIC	
0x0174		15:8	-								
0,0171		23:16									
		31:24									
		51.24	SUODTRACK								
	USBHS_DEVEPTIC	7:0	SHORTPACK ETC	STALLEDIC	OVERFIC	NAKINIC	NAKOUTIC	RXSTPIC	RXOUTIC	TXINIC	
0x0178	_	15:8									
	R6	23:16									
		31:24									
		7:0	SHORTPACK ETC	CRCERRIC	OVERFIC	HBISOFLUSH IC	HBISOINERRI C	UNDERFIC	RXOUTIC	TXINIC	
0x0178	USBHS_DEVEPTIC	15:8	210				v				
010170	R6 (ISOENPT)										
		23:16									
		31:24	0110000000								
		7:0	SHORTPACK ETC	STALLEDIC	OVERFIC	NAKINIC	NAKOUTIC	RXSTPIC	RXOUTIC	TXINIC	
0x017C	USBHS_DEVEPTIC	15:8									
	R7	23:16									
		31:24									
		7:0	SHORTPACK ETC	CRCERRIC	OVERFIC	HBISOFLUSH	HBISOINERRI C	UNDERFIC	RXOUTIC	TXINIC	
0x017C	USBHS_DEVEPTIC	15:8	210				J				
UXU17C	R7 (ISOENPT)										
		23:16									
		31:24									

USB High-Speed Interface (USBHS)

39.6.28 Device DMA Channel x Address Register

Name:	USBHS_DEVDMAADDRESSx
Offset:	0x0304 + x*0x10 [x=06]
Reset:	0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
	BUFF_ADD[31:24]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				BUFF_A	DD[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				BUFF_A	DD[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUFF_/	ADD[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – BUFF_ADD[31:0] Buffer Address

This field determines the AHB bus starting address of a DMA channel transfer.

Channel start and end addresses may be aligned on any byte boundary.

The firmware can write this field only when the USBHS_DEVDMASTATUS.CHANN_ENB bit is clear.

This field is updated at the end of the address phase of the current access to the AHB bus. It is incremented by the access byte width. The access width is 4 bytes (or less) at packet start or end, if the start or end address is not aligned on a word boundary.

The packet start address is either the channel start address or the next channel address to be accessed in the channel buffer. The packet end address is either the channel end address or the latest channel address accessed in the channel buffer.

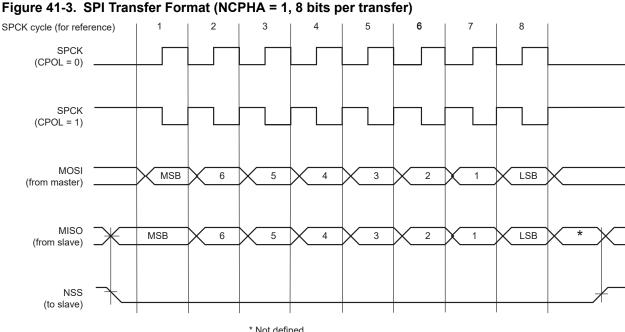
The channel start address is written by software or loaded from the descriptor. The channel end address is either determined by the end of buffer or the USB device, or by the USB end of transfer if the USBHS_DEVDMACONTROLx.END_TR_EN bit is set.

Serial Peripheral Interface (SPI)

- The SPCK pin is driven by the transmitter to synchronize the receiver.
- The NPCS0 pin becomes an input, and is used as a slave select signal (NSS)
- The NPCS1 to NPCS3 pins are not driven and can be used for other purposes.

The data transfers are identically programmable for both modes of operation. The baud rate generator is activated only in Master mode.

41.7.2 Data Transfer


Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the CPOL bit in the SPI Chip Select registers (SPI_CSRx). The clock phase is programmed with the NCPHA bit. These two parameters determine the edges of the clock signal on which data is driven and sampled. Each of the two parameters has two possible states, resulting in four possible combinations that are incompatible with one another. Consequently, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves are connected and require different configurations, the master must reconfigure itself each time it needs to communicate with a different slave.

The table below shows the four modes and corresponding parameter settings.

SPI Mode	CPOL	NCPHA	Shift SPCK Edge	Capture SPCK Edge	SPCK Inactive Level
0	0	1	Falling	Rising	Low
1	0	0	Rising	Falling	Low
2	1	1	Rising	Falling	High
3	1	0	Falling	Rising	High

Table 41-2. SPI Bus Protocol Modes

The following figures show examples of data transfers.

Synchronous Serial Controller (SSC)

Bit 9 – CP1 Compare 1

Value	Description
0	A compare 1 has not occurred since the last read of the Status Register.
1	A compare 1 has occurred since the last read of the Status Register.

Bit 8 – CP0 Compare 0

Value	Description
0	A compare 0 has not occurred since the last read of the Status Register.
1	A compare 0 has occurred since the last read of the Status Register.

Bit 5 – OVRUN Receive Overrun

Value	Description
0	No data has been loaded in SSC_RHR while previous data has not been read since the last
	read of the Status Register.
1	Data has been loaded in SSC_RHR while previous data has not yet been read since the last
	read of the Status Register.

Bit 4 – RXRDY Receive Ready

V	alue	Description
0		SSC_RHR is empty.
1		Data has been received and loaded in SSC_RHR.

Bit 1 – TXEMPTY Transmit Empty


Value	Description
0	Data remains in SSC_THR or is currently transmitted from TSR.
1	Last data written in SSC_THR has been loaded in TSR and last data loaded in TSR has been transmitted.

Bit 0 – TXRDY Transmit Ready

Value	Description
0	Data has been loaded in SSC_THR and is waiting to be loaded in the transmit shift register
	(TSR).
1	SSC_THR is empty.

Universal Synchronous Asynchronous Receiver Transc...

Figure 46-22. Timeguard Operations

The following table indicates the maximum length of a timeguard period that the transmitter can handle depending on the baud rate.

Baud Rate (bit/s)	Bit Time (μs)	Timeguard (ms)
1,200	833	212.50
9,600	104	26.56
14,400	69.4	17.71
19,200	52.1	13.28
28,800	34.7	8.85
38,400	26	6.63
56,000	17.9	4.55
57,600	17.4	4.43
115,200	8.7	2.21

Table 46-7. Maximum Timeguard Length Depending on Baud Rate

46.6.3.11 Receiver Timeout

The Receiver Timeout provides support in handling variable-length frames. This feature detects an idle condition on the RXD line. When a timeout is detected, US_CSR.TIMEOUT rises and can generate an interrupt, thus indicating to the driver an end of frame.

The timeout delay period (during which the receiver waits for a new character) is programmed in the TO field of the Receiver Timeout register (US_RTOR). If TO is written to '0', the Receiver Timeout is disabled and no timeout is detected. US_CSR.TIMEOUT remains at '0'. Otherwise, the receiver loads a 16-bit counter with the value programmed in US_RTOR.TO. This counter is decremented at each bit period and reloaded each time a new character is received. If the counter reaches 0, TIMEOUT rises. Then, the user can either:

• Stop the counter clock until a new character is received. This is performed by writing a '1' to US_CR.STTTO. In this case, the idle state on RXD before a new character is received will not provide a timeout. This prevents having to handle an interrupt before a character is received and allows waiting for the next idle state on RXD after a frame is received.

SAM E70/S70/V70/V71 Family Universal Synchronous Asynchronous Receiver Transc...

- Bit 9 TXEMPTY TXEMPTY Interrupt Enable
- **Bit 8 TIMEOUT** Timeout Interrupt Enable
- Bit 7 PARE Parity Error Interrupt Enable
- Bit 6 FRAME Framing Error Interrupt Enable
- Bit 5 OVRE Overrun Error Interrupt Enable
- Bit 2 RXBRK Receiver Break Interrupt Enable
- Bit 1 TXRDY TXRDY Interrupt Enable
- Bit 0 RXRDY RXRDY Interrupt Enable

Controller Area Network (MCAN)

49.6.35 MCAN Tx Buffer Configuration

Name:	MCAN_TXBC
Offset:	0xC0
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

The sum of TFQS and NDTB may not exceed 32. There is no check for erroneous configurations. The Tx Buffers section in the Message RAM starts with the dedicated Tx Buffers.

Bit	31	30	29	28	27	26	25	24
		TFQM	TFQS[5:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
					NDTE	B[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TBSA	[13:6]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			TBS	A[5:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		

Bit 30 – TFQM Tx FIFO/Queue Mode

Value	Description
0	Tx FIFO operation.
1	Tx Queue operation.

Bits 29:24 - TFQS[5:0] Transmit FIFO/Queue Size

Value	Description
0	No Tx FIFO/Queue.
1-32	Number of Tx Buffers used for Tx FIFO/Queue.
>32	Values greater than 32 are interpreted as 32.

Bits 21:16 - NDTB[5:0] Number of Dedicated Transmit Buffers

Value	Description			
0	No dedicated Tx Buffers.			
1-32	Number of dedicated Tx Buffers.			
>32	Values greater than 32 are interpreted as 32.			

Timer Counter (TC)

Value	Description
0	No effect.
1	Enables the interrupt when a rising edge occurs on IDX input.

Pulse Width Modulation Controller (PWM)

	Name: Offset: Reset: Property:	PWM_LEBRx 0x0430 + x*0x 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
D .1		22	0.1	00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
					PWMHREN	PWMHFEN	PWMLREN	PWMLFEN
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
			LEBDELAY[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

51.7.50 PWM Leading-Edge Blanking Register

Bit 19 – PWMHREN PWMH Rising Edge Enable

Leading-edge blanking is enabled on PWMHx output rising edge.

Value	Description
0	Leading-edge blanking is disabled on PWMHx output rising edge.
1	Leading-edge blanking is enabled on PWMHx output rising edge.

Bit 18 – PWMHFEN PWMH Falling Edge Enable

Value	Description
0	Leading-edge blanking is disabled on PWMHx output falling edge.
1	Leading-edge blanking is enabled on PWMHx output falling edge.

Bit 17 – PWMLREN PWML Rising Edge Enable

Value	Description
0	Leading-edge blanking is disabled on PWMLx output rising edge.
1	Leading-edge blanking is enabled on PWMLx output rising edge.

Bit 16 – PWMLFEN PWML Falling Edge Enable

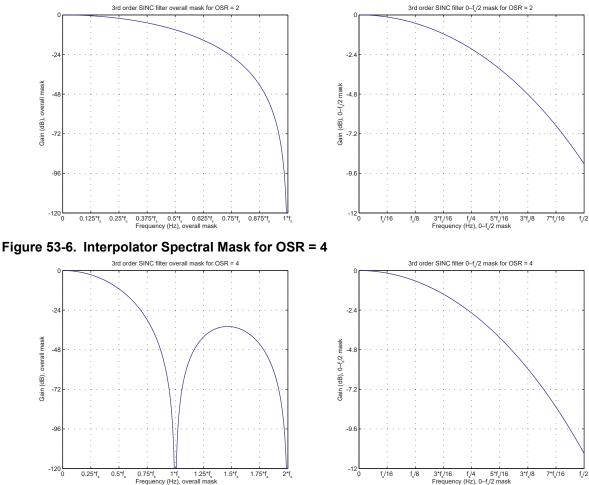
53.6.4.4 Bypass Mode

Bypass mode disables the DAC output buffer and thus minimizes power consumption. This mode can be used to generate slow varying signals. Refer to the DAC Characteristics in the section "Electrical Characteristics" of this datasheet.

To enter this mode, Free-running mode must be selected and the DACC_ACR.IBCTLCHx field configured in Bypass mode.

Related Links

58. Electrical Characteristics for SAM V70/V71


53.6.4.5 Interpolation Mode

The DACC integrates interpolation filters that allow OSR of 2×, 4×, 8×, 16× or 32×. This mode can be used only if Trigger mode is enabled and value in the field OSRx is not '0'. The OSR of the interpolator is configured in the OSRx field in the DACC Trigger Register (DACC_TRIGR).

The data is sampled once every OSR trigger event and then recomputed at the trigger sample rate using a third-order SINC filter. This reduces the number of accesses to the DACC and increases the signal-to-noise ratio (SNR) of the converted output signal.

The figures below show the spectral mask of the SINC filter depending on the selected OSR. f_s is the sampling frequency of the input signal which corresponds to the trigger frequency divided by OSR.

Figure 53-5. Interpolator Spectral Mask for OSR = 2

