

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j21a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Signal Description

The following table provides details on signal names classified by peripheral.

Table 4-1. Signal Description List

Signal Name	Function	Туре	Active Level	Voltage Reference	Comments
Power Supplies					
VDDIO	Peripherals I/O Lines Power Supply	Power	-	_	-
VDDIN	Voltage Regulator Input, AFE, DAC and Analog Comparator Power Supply (see Note)	Power	_	_	_
VDDOUT	Voltage Regulator Output	Power	-	_	_
VDDPLL	PLLA Power Supply	Power	_	-	-
VDDPLLUSB	USB PLL and Oscillator Power Supply	Power	-	-	-
VDDCORE	Powers the core, the embedded memories and the peripherals	Power	-	_	_
GND, GNDPLL, GNDPLLUSB, GNDANA, GNDUTMI	, GNDPLL, Ground PLLUSB, ANA, UTMI		-	-	-
VDDUTMII	USB Transceiver Power Supply	Power	-	_	_
VDDUTMIC	USB Core Power Supply	Power	-	-	-
GNDUTMI	USB Ground	Ground	-	_	-
Clocks, Oscillators	and PLLs				
XIN	Main Oscillator Input	Input	_	VDDIO	_
XOUT	Main Oscillator Output	Output	_		_
XIN32	Slow Clock Oscillator Input	Input	_		_
XOUT32	Slow Clock Oscillator Output	Output	-		-

Supply Controller (SUPC)

Figure 23-6. Raising the VDDIO Power Supply

Note: After "proc_nreset" rising, the core starts fetching instructions from Flash.

23.4.7 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described in the "Backup Power Supply Reset" section. The vddcore_nreset signal is normally asserted before shutting down the core power supply and released as soon as the core power supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

- a supply monitor detection
- a brownout detection

23.4.7.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This is enabled by setting SUPC_SMMR.SMRSTEN.

If SUPC_SMMR.SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for a minimum of one slow clock cycle.

23.4.7.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC. This signal indicates that the voltage regulation is operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage regulator is enabled, the SUPC asserts vddcore_nreset if SUPC_MR.BODRSTEN is written to '1'.

If SUPC_MR.BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset signal is asserted for a minimum of one slow clock cycle and then released if bodcore_in has been reactivated. SUPC_SR.BODRSTS indicates the source of the last reset.

Power Management Controller (PMC)

31.20.28 PMC SleepWalking Enable Register 0

Name:PMC_SLPWK_ER0Offset:0x0114Property:Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Γ	PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Γ	PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
Access		1	1	I		<u>I</u>		
Reset								
Bit	15	14	13	12	11	10	9	8
Γ	PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
Access				I			<u> </u>	
Reset								
Bit	7	6	5	4	3	2	1	0
Γ	PID7							
Access								

Reset

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx Peripheral x SleepWalking Enable

Not all PIDs can be configured with asynchronous partial wake-up.

Only the following PID can be configured with asynchronous partial wake-up: UARTx and TWIHSx.

The clock of the peripheral must be enabled before using its asynchronous partial wake-up (SleepWalking) function (its associated PIDx field in PMC Peripheral Clock Status Register 0 or PMC Peripheral Clock Status Register 1 is set to '1').

Value	Description
0	No effect.
1	The asynchronous partial wakeup (SleepWalking) function of the corresponding peripheral is enabled.
	Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers"

Power Management Controller (PMC)

31.20.37 PMC SleepWalking Activity In Progress Register

Reset

Bit 0 – AIP Activity In Progress

Only the following PIDs can be configured with asynchronous partial wakeup: UARTx and TWIHSx.

Value	Description
0	There is no activity on peripherals. The asynchronous partial wakeup (SleepWalking) function can be activated on one or more peripherals. The device can enter Wait mode.
1	One or more peripherals are currently active. The device must not enter Wait mode if the asynchronous partial wakeup is enabled for one of the following PIDs: UARTx and TWIHSx.

External Bus Interface (EBI)

Name	Function	Туре	Active Level				
NWAIT	External Wait Signal	Input	Low				
SMC							
NCS0-EBI_NCS3	Chip Select Lines	Output	Low				
NWR0-NWR1	Write Signals	Output	Low				
NRD	Read Signal	Output	Low				
NWE	Write Enable	Output	Low				
NBS0-NBS1	Byte Mask Signals	Output	Low				
EBI for NAND Flash Support							
NANDCS	NAND Flash Chip Select Line	Output	Low				
NANDOE	NAND Flash Output Enable	Output	Low				
NANDWE	NAND Flash Write Enable	Output	Low				
SDRAM Controller		5 <u> </u>					
SDCK (see Note)	SDR-SDRAM Clock	Output					
SDCKE	SDR-SDRAM Clock Enable	Output	High				
SDCS	SDR-SDRAM Controller Chip Select Line	Output	Low				
BA0-1	Bank Select	Output					
SDWE	SDR-SDRAM Write Enable	Output	Low				
RAS - CAS	Row and Column Signal	Output	Low				
SDA10	SDRAM Address 10 Line	Output					

Note: SDCK is the MCK clock for EBI, SDRAM Controller and SMC interfaces.

The connection of some signals through the MUX logic is not direct and depends on the Memory Controller in use at the moment.

The following table details the connections between the two Memory Controllers and the EBI pins.

Table 33-2. EBI Pins and Memory Controllers I/O Lines Connections

EBIx Pins	SDRAM I/O Lines	SMC I/O Lines
NWR1/NBS1	NBS1	NWR1
A0/NBS0	NBS0	SMC_A0
A1	Not Supported	SMC_A1
A[11:2]	SDRAMC_A[9:0]	SMC_A[11:2]
SDA10	SDRAMC_A10	Not Supported
A12	Not Supported	SMC_A12
A[15:13]	SDRAMC_A[13:11]	SMC_A[15:13]

When the priority queuing feature is enabled, the number of interrupt outputs from the GMAC core is increased to match the number of supported queues. The number of Interrupt Status registers is increased by the same number. Only DMA related events are reported using the individual interrupt outputs, as the GMAC can relate these events to specific queues. All other events generated within the GMAC are reported in the interrupt associated with the lowest priority queue. For the lowest priority queue (or the only queue when only 1 queue is selected), the Interrupt Status register is located at address 0x24. For all other queues, the Interrupt Status register is located at sequential addresses starting at address 0x400.

Note: The address matching is the first level of filtering. If there is a match, the screeners are the next level of filtering for routing the data to the appropriate queue. See MAC Filtering Block for more details.

The additional screening done by the functions Compare A, B, and C each have an enable bit and compare register field. COMPA, COMPB and COMPC in GMAC_ST2RPQ are pointers to a configured offset (OFFSVAL), value (COMPVAL), and mask (MASKVAL). If enabled, the compare is true if the data at the offset into the frame, ANDed with MASKVAL, is equal to the value of COMPVAL ANDed with MASKVAL. A 16-bit word comparison is done. The byte at the offset number of bytes from the index start is compared to bits 7:0 of the configured COMPVAL and MASKVAL. The byte at the offset number of bytes + 1 from the index start is compared to bits 15:8 of the configured COMPVAL and MASKVAL.

The offset value in bytes, OFFSVAL, ranges from 0 to 127 bytes from either the start of the frame, the byte after the EtherType field, the byte after the IP header (IPv4 or IPv6) or the byte after the TCP/UDP header. Note the logic to decode the IP header or the TCP/UDP header is reused from the TCP/UDP/IP checksum offload logic and therefore has the same restrictions on use (the main limitation is that IP fragmentation is not supported). Refer to the Checksum Offload for IP, TCP and UDP section of this documentation for further details.

Compare A, B, and C use a common set of 24 GMAC_ST2CW0/1 registers, thus all COMPA, COMPB and COMPC fields in the registers GMAC_ST2RPQ point to a single pool of 24 GMAC_ST2CW0/1 registers.

Note that Compare A, B and C together allow matching against an arbitrary 48 bits of data and so can be used to match against a MAC address.

All enabled comparisons are ANDed together to form the overall type 2 screening match.

Related Links

38.6.6 Checksum Offload for IP, TCP and UDP

38.6.4 MAC Transmit Block

The MAC transmitter can operate in either half duplex or full duplex mode and transmits frames in accordance with the Ethernet IEEE 802.3 standard. In half duplex mode, the CSMA/CD protocol of the IEEE 802.3 specification is followed.

A small input buffer receives data through the FIFO interface which will extract data in 32-bit form. All subsequent processing prior to the final output is performed in bytes.

Transmit data can be output using the MII interface.

Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the transmit FIFO interface a word at a time.

If necessary, padding is added to take the frame length to 60 bytes. CRC is calculated using an order 32bit polynomial. This is inverted and appended to the end of the frame taking the frame length to a

© 2018 Microchip Technology Inc.

USB High-Speed Interface (USBHS)

Figure 39-3. Interrupt System

See Interrupts in the Device Operation section and Interrupts in the Host Operation section for further details about device and host interrupts.

There are two kinds of general interrupts: processing, i.e., their generation is part of the normal processing, and exception, i.e., errors (not related to CPU exceptions).

39.5.1.3 MCU Power Modes

USB Suspend Mode

In Peripheral mode, the Suspend Interrupt bit in the Device Global Interrupt Status register (USBHS_DEVISR.SUSP) indicates that the USB line is in Suspend mode. In this case, the transceiver is automatically set in Suspend mode to reduce consumption.

Clock Frozen

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.									
		7:0	SHORTPACK	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	тхоиті	RXINI	
0x0544	USBHS_HSTPIPIS	15.8	CURRE	BK[1:0]	NBUSY						
0,0044	R5 (INTPIPES)	23.16	CONN					CEGOK	DIGE	α[1.0] R\//Δ[]	
		31.24					PBYCT[10:4]				
		01.24	SHORTPACK								
	USBHS HSTPIPIS	7:0	ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	TXOUTI	RXINI	
0x0544	R5 (ISOPIPES)	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
		23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	TXOUTI	RXINI	
0x0548	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	Ко	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυΤΙ	RXINI	
0x0548	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R6 (INTPIPES)	23:16		PBYCT[3:0]				CFGOK		RWALL	
		31:24		F			PBYCT[10:4]	3YCT[10:4]			
		7:0	SHORTPACK ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυΤΙ	RXINI	
0x0548	USBHS_HSTPIPIS	15:8	CURRI	CURRBK[1:0] NBUSYBK[1:0]					DTSE	Q[1:0]	
	R6 (ISOPIPES)	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	ΤΧΟυΤΙ	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURR	BK[1:0]	<[1:0] NBUSYBK[1:0]				DTSEQ[1:0]		
	R/	23:16		PBYCT[3:0]				CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	UNDERFI	TXOUTI	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURRI	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R7 (INTPIPES)	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	CRCERRI	OVERFI	NAKEDI	PERRI	UNDERFI	ΤΧΟυτι	RXINI	
0x054C	USBHS_HSTPIPIS	15:8	CURRI	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R7 (ISOPIPES)	23:16		PBYC	T[3:0]	-		CFGOK		RWALL	
		31:24					PBYCT[10:4]				
		7:0	SHORTPACK ETI	RXSTALLDI	OVERFI	NAKEDI	PERRI	TXSTPI	ΤΧΟυΤΙ	RXINI	
0x0550	USBHS_HSTPIPIS	15:8	CURRI	BK[1:0]	NBUSY	BK[1:0]			DTSE	Q[1:0]	
	R8	23:16		PBYC	T[3:0]			CFGOK		RWALL	
		31:24					PBYCT[10:4]				

USB High-Speed Interface (USBHS)

39.6.67 Host DMA Channel x Control Register

Name:	USBHS_HSTDMACONTROLx
Offset:	0x0708 + x*0x10 [x=06]
Reset:	0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
				BUFF_LEN	IGTH[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				BUFF_LEI	NGTH[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	BURST_LCK	DESC_LD_IT	END_BUFFIT	END_TR_IT	END_B_EN	END_TR_EN	LDNXT_DSC	CHANN_ENB
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:16 – BUFF_LENGTH[15:0] Buffer Byte Length (Write-only)

This field determines the number of bytes to be transferred until end of buffer. The maximum channel transfer size (32 KBytes) is reached when this field is 0 (default value). If the transfer size is unknown, this field should be set to 0, but the transfer end may occur earlier under USB device control.

When this field is written, the USBHS_HSTDMASTATUSx.BUFF_COUNT field is updated with the write value.

Notes: 1. Bits [31:2] are only writable when issuing a channel Control Command other than "Stop Now".

2. For reliability, it is highly recommended to wait for both the USBHS_HSTDMASTATUSx.CHAN_ACT and the CHAN_ENB flags to be at 0, thus ensuring the channel has been stopped before issuing a command other than "Stop Now".

Bit 7 – BURST_LCK Burst Lock Enable

Value	Description
0	The DMA never locks the bus access.
1	USB packets AHB data bursts are locked for maximum optimization of the bus bandwidth
	usage and maximization of fly-by AHB burst duration.

Bit 6 – DESC_LD_IT Descriptor Loaded Interrupt Enable

Serial Peripheral Interface (SPI)

If SPI_MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS.

Bits 15:0 – TD[15:0] Transmit Data

Data to be transmitted by the SPI interface is stored in this register. Information to be transmitted must be written to this register in a right-justified format.

Synchronous Serial Controller (SSC)

44.9.1 SSC Control Register

	Name: Offset: Reset: Property:	SSC_CR 0x0 - Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access		1	•					
Reset								
Bit	15	14	13	12	11	10	9	8
	SWRST						TXDIS	TXEN
Access	W		•				W	W
Reset	-						-	_
Bit	7	6	5	4	3	2	1	0
							RXDIS	RXEN
Access							W	W
Reset							-	_

Bit 15 – SWRST Software Reset

Value	Description
0	No effect.
1	Performs a software reset. Has priority on any other bit in SSC_CR.

Bit 9 – TXDIS Transmit Disable

Value	Description
0	No effect.
1	Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

Bit 8 – TXEN Transmit Enable

Value	Description
0	No effect.
1	Enables Transmit if TXDIS is not set.

Bit 1 – RXDIS Receive Disable

Inter-IC Sound Controller (I2SC)

In Slave mode, the serial clock and word select clock are driven by an external master. I2SC_CK and I2SC_WS pins are inputs.

In Master mode, the user can configure the master clock, serial clock, and word select clock through the I2SC_MR. I2SC_MCK, I2SC_CK, and I2SC_WS pins are outputs and MCK is used to derive the I2SC clocks.

In Master mode, if the peripheral clock frequency is higher than 96 MHz, the GCLK[PID] from PMC must be selected as I2SC input clock by writing a '1' in the I2SCxCC bit of the CCFG_PCCR register. Refer to the section "Bus Matrix (MATRIX)" for more details.

Audio codecs connected to the I2SC pins may require a master clock (I2SC_MCK) signal with a frequency multiple of the audio sample frequency (f_s), such as 256 f_s . When the I2SC is in Master mode, writing a '1' to I2SC_MR.IMCKMODE outputs MCK as master clock to the I2SC_MCK pin, and divides MCK to create the internal bit clock, output on the I2SC_CK pin. The clock division factor is defined by writing to I2SC_MR.IMCKFS and I2SC_MR.DATALENGTH, as described in the I2SC_MR.IMCKFS field description.

The master clock (I2SC_MCK) frequency is $(2 \times 16 \times (IMCKFS + 1)) / (IMCKDIV + 1)$ times the sample frequency (f_s), i.e., I2SC_WS frequency.

Example: If the sampling rate is 44.1 kHz with an I2S master clock (I2SC_MCK) ratio of 256, the core frequency must be an integer multiple of 11.2896 MHz. Assuming an integer multiple of 4, the IMCKDIV field must be configured to 4; the field IMCKFS must then be set to 31.

The serial clock (I2SC_CK) frequency is 2 × Slot Length times the sample frequency (f_s), where Slot Length is defined in the following table.

I2SC_MR.DATALENGTH	Word Length	Slot Length
0	32 bits	32
1	24 bits	32 if I2SC_MR.IWS = 0
2	20 bits	$24 \text{ if } 12SC_MR.IWS = 1$
3	18 bits	
4	16 bits	16
5	16 bits compact stereo	
6	8 bits	8
7	8 bits compact stereo	

Table 45-2. Slot Length

AWARNING I2SC_MR.IMCKMODE must be written to '1' if the master clock frequency is strictly higher than the serial clock.

If a master clock output is not required, the MCK clock is used as I2SC_CK by clearing I2SC_MR.IMCKMODE. Alternatively, if the frequency of the MCK clock used is a multiple of the required I2SC_CK frequency, the I2SC_MCK to I2SC_CK divider can be used with the ratio defined by writing the I2SC_MR.IMCKFS field.

48.4 Signal Description

48.4.1 Definition of Terms

The following terms will be used when referring to specific implementations of MediaLB.

 Table 48-1. MediaLB Definition of Terms

Names	Description
Media Local B	us:
MLBC	General reference to the Clock line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBCLK pin
MLBS	General reference to the Signal line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBSIG pin
MLBD	General reference to the Data line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBDAT pin
3-pin MediaLB	Interface:
MLBCLK	MediaLB Controller (output) pin connected to MLBC.

© 2018 Microchip Technology Inc.

48.7.9 HBI Channel Mask 0 Register

Name:	MLB_HCMR0
Offset:	0x088
Reset:	0x00000000
Property:	Read/Write

The HC can control which channel(s) are able to generate an HBI interrupt by writing the HBI Channel Mask Registers (HCMRn). Each bit of HCMRn is read/write.

Bit	31	30	29	28	27	26	25	24
			CHM	1: Bitwise Chann	el Mask Bit [31[3	1:24]		
Access								
Reset	0	0	0	0	0	0	0	0
Dit	00	22	01	20	10	10	17	16
	23	22	21	20	19	10	17	10
			CHM	1: Bitwise Chann	el Mask Bit [31[2	3:16]		
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CHM: Bitwise Channel Mask Bit [31[15:8]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			CH	M: Bitwise Chan	nel Mask Bit [31[7:0]		
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CHM: Bitwise Channel Mask Bit [31[31:0] 0]

CHM[n] = 1 indicates that channel n can generate an interrupt.

Timer Counter (TC)

Value	Name	Description
0	UP	UP mode without automatic trigger on RC Compare
1	UPDOWN	UPDOWN mode without automatic trigger on RC Compare
2	UP_RC	UP mode with automatic trigger on RC Compare
3	UPDOWN RC	UPDOWN mode with automatic trigger on RC Compare

Bit 12 – ENETRG External Event Trigger Enable

Whatever the value programmed in ENETRG, the selected external event only controls the TIOAx output and TIOBx if not used as input (trigger event input or other input used).

Value	Description
0	The external event has no effect on the counter and its clock.
1	The external event resets the counter and starts the counter clock.

Bits 11:10 – EEVT[1:0] External Event Selection

Signal selected as external event.

Value	Name	Description	TIOB Direction
0	TIOB	TIOB	Input
1	XC0	XC0	Output
2	XC1	XC1	Output
3	XC2	XC2	Output

Note: If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subsequently no IRQs.

Bits 9:8 – EEVTEDG[1:0] External Event Edge Selection

Value	Name	Description
0	NONE	None
1	RISING	Rising edge
2	FALLING	Falling edge
3	EDGE	Each edge

Bit 7 – CPCDIS Counter Clock Disable with RC Compare

Value	Description
0	Counter clock is not disabled when counter reaches RC.
1	Counter clock is disabled when counter reaches RC.

Bit 6 – CPCSTOP Counter Clock Stopped with RC Compare

Value	Description
0	Counter clock is not stopped when counter reaches RC.
1	Counter clock is stopped when counter reaches RC.

Bits 5:4 – BURST[1:0] Burst Signal Selection

Pulse Width Modulation Controller (PWM)

Value	Description
0	The comparison x is disabled and can not match.
1	The comparison x is enabled and can match.

Analog Front-End Controller (AFEC)

Table 52-2. Input Pins and Channel Numbers

Input Pins	Channel Numbers			
	Single-ended Mode	Differential Mode		
AFE_AD0	CH0	CH0		
AFE_AD1	CH1			
AFE_AD10	CH10	CH10		
AFE_AD11	CH11			

52.6.10 Sample-and-Hold Modes

The AFE can be configured in either single Sample-and-Hold mode (AFEC_SHMR.DUALx = 0) or dual Sample-and-Hold mode (AFEC_SHMR.DUALx = 1). By default, after a reset, the AFE is in single Sample-and-Hold mode.

The AFEC can apply a different mode on each channel.

The same inputs are used in single Sample-and-Hold mode or in dual Sample-and-Hold mode. Singleended/Differential mode and single/dual Sample-and-Hold mode can be combined. See the following tables.

Table 52-3	Input Pins	and Channel	Numbers In	Dual Sample	e-and-Hold Mode
------------	------------	-------------	------------	--------------------	-----------------

Single-Ended Input Pins	Differential Input Pins	Channel Numbers
AFE_AD0 & AFE_AD6	AFE_AD0-AD1 & AFE_AD6-AFE_AD7	CH0
AFE_AD1 & AFE_AD7	-	CH1
AFE_AD4 & AFE_AD10	AFE_AD4-AFE_AD5 & AFE_AD10-AFE_AD11	CH4
AFE_AD5 & AFE_AD11	-	CH5

Table 52-4. Input Pins and Channel Numbers in Single Sample-and-Hold Mode

Single-Ended Input Pins	Differential Input Pins	Channel Numbers
AFE_AD0	AFE_AD0-AFE_AD1	CH0
AFE_AD1	-	CH1
AFE_AD10	AFE_AD10-AFE_AD11	CH10
AFE_AD11	-	CH11

52.6.11 Input Gain and Offset

The AFE has a built-in programmable gain amplifier (PGA) and programmable offset per channel through a DAC.

The programmable gain amplifier can be set to gains of 1, 2 and 4 and can be used for single-ended applications or for fully differential applications.

Analog Front-End Controller (AFEC)

52.7.22 AFEC Temperature Compare Window Register

Name:	AFEC_TEMPCWR
Offset:	0x74
Reset:	0x0000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
ſ	THIGHTHRES[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				THIGHTH	IRES[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TLOWTHRES[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[TLOWTHRES[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:16 – THIGHTHRES[15:0] Temperature High Threshold

High threshold associated to compare settings of the AFEC_TEMPMR. For comparisons less than 16 bits and signed, the sign should be extended up to the bit 15.

Bits 15:0 - TLOWTHRES[15:0] Temperature Low Threshold

Low threshold associated to compare settings of the AFEC_TEMPMR. For comparisons less than 16 bits and signed, the sign should be extended up to the bit 15.

Digital-to-Analog Converter Controller (DACC)

53.6.5 Conversion FIFO

Each channel embeds a four half-word FIFO to handle the data to be converted.

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Max	Unit
SPI ₂	Input Data Hold Time	1.8V domain 3.3V domain	0.5 0.2	_	ns
SPI ₃	Chip Select Active to Serial Clock	1.8V domain 3.3V domain	-1.1 -0.9	_	ns
SPI4	Output Data Setup Time	1.8V domain 3.3V domain	-1.9 -1.9	10.9 10.4	ns
SPI ₅	Serial Clock to Chip Select Inactive	1.8V domain 3.3V domain	-2.4 -2.4	-1.9 -1.9	ns
Slave Mode					
SPI ₆	SCK falling to MISO	1.8V domain 3.3V domain	3.6 2.9	16.8 13.9	ns
SPI7	MOSI Setup time before SCK rises	1.8V domain 3.3V domain	2.4 2.0	-	ns
SPI ₈	MOSI Hold time after SCK rises	1.8V domain 3.3V domain	0.4 0.2	-	ns
SPI ₉	SCK rising to MISO	1.8V domain 3.3V domain	3.5 3.0	16.2 13.5	ns
SPI ₁₀	MOSI Setup time before SCK falls	1.8V domain 3.3V domain	2.2 2.1	-	ns
SPI ₁₁	MOSI Hold time after SCK falls	1.8V domain 3.3V domain	0.6 0.4	-	ns
SPI ₁₂	NPCS0 setup to SCK rising	1.8V domain 3.3V domain	1.6 0.6	-	ns
SPI ₁₃	NPCS0 hold after SCK falling	1.8V domain 3.3V domain	1.1 0.6	-	ns
SPI ₁₄	NPCS0 setup to SCK falling	1.8V domain 3.3V domain	1.3 0.6	_	ns
SPI ₁₅	NPCS0 hold after SCK rising	1.8V domain 3.3V domain	0.9 0.7	-	ns

Timings are given in the 3.3V domain, with VDDIO from 2.85V to 3.6V, maximum external capacitor = 40 pF.