

Welcome to E-XFL.COM

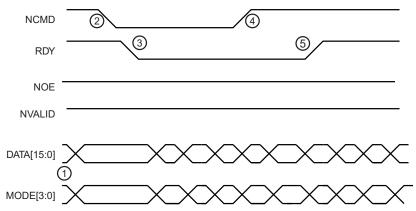
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j21b-an

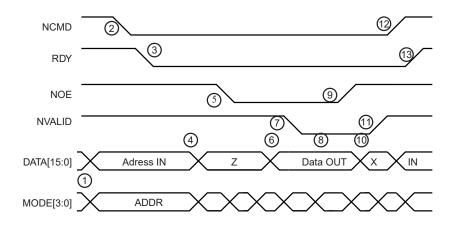

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18.3.4.1 Write Handshaking

For details on the write handshaking sequence, refer to the following figure and table.

Figure 18-2. Parallel Programming Timing, Write Sequence


Table 18-4. Write Handshake

Step	Programmer Action	Device Action	Data I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latches MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

18.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to the following figure and table.

Figure 18-3. Parallel Programming Timing, Read Sequence

Parallel Input/Output Controller (PIO)

32.6.1.4 PIO Output Enable Register

Name:	PIO_OER
Offset:	0x0010
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset								

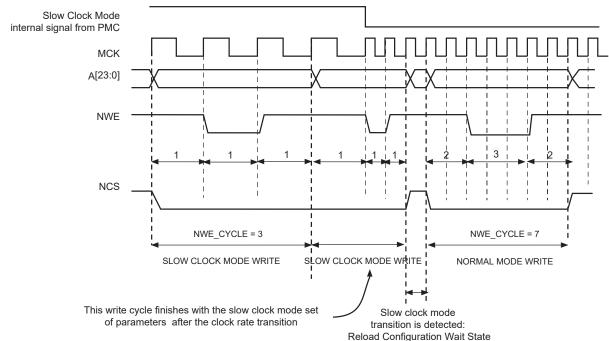
Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Output Enable

Value	Description
0	No effect.
1	Enables the output on the I/O line.

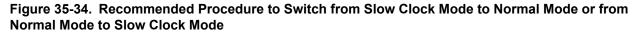
Static Memory Controller (SMC)

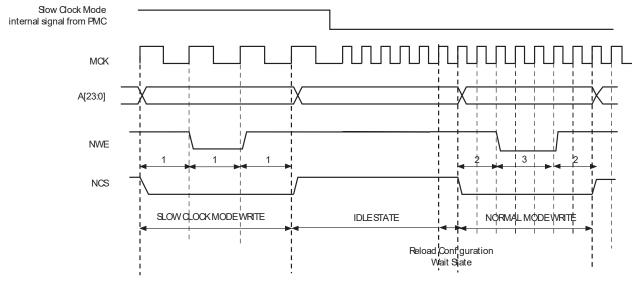
Figure 35-6. Standard and "CE don't care" NAND Flash Application Examples

19. Bus Matrix (MATRIX)


35.8 Application Example

35.8.1 Implementation Examples


Hardware configurations are given for illustration only. The user should refer to the manufacturer web site to check for memory device availability.


For hardware implementation examples, refer to the evaluation kit schematics for this microcontroller, which show examples of a connection to an LCD module and NAND Flash.

Static Memory Controller (SMC)

Figure 35-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

35.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, provided that the Page mode is enabled (SMC_MODE.PMEN =1). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in the following table.

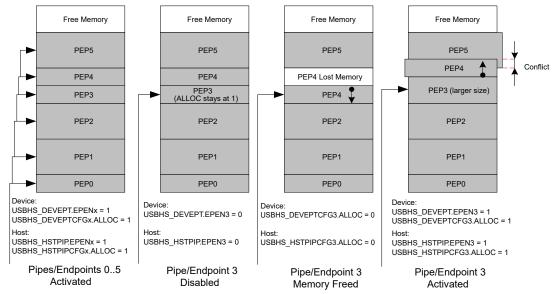
SAM E70/S70/V70/V71 Family GMAC - Ethernet MAC

38.8.45 GMAC 65 to 127 Byte Frames Transmitted Register

Name: Offset: Reset: Property:		GMAC_TBFT127 0x11C 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
				NFTX[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				NFTX[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
					[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				NFT>				
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – NFTX[31:0] 65 to 127 Byte Frames Transmitted without Error

This register counts the number of 65 to 127 byte frames successfully transmitted without error, i.e., no underrun and not too many retries. Excludes pause frames.


USB High-Speed Interface (USBHS)

- Endpoint Direction (USBHS_DEVEPTCFGx.EPDIR)
- Endpoint Type (USBHS_DEVEPTCFGx.EPTYPE)

To free endpoint memory, the user must write a zero to the USBHS_DEVEPTCFGx.ALLOC bit. The x+1 pipe/endpoint memory window then slides down and its data is lost. Note that the following pipe/endpoint memory windows (from x + 2) do not slide.

The following figure illustrates the allocation and reorganization of the DPRAM in a typical example.

Figure 39-4. Allocation and Reorganization of the DPRAM

- 1. Pipes/endpoints 0 to 5 are enabled, configured and allocated in ascending order. Each pipe/ endpoint then owns a memory area in the DPRAM.
- 2. Pipe/endpoint 3 is disabled, but its memory is kept allocated by the controller.
- 3. In order to free its memory, its USBHS_DEVEPTCFGx.ALLOC bit is written to zero. The pipe/ endpoint 4 memory window slides down, but pipe/endpoint 5 does not move.
- 4. If the user chooses to reconfigure pipe/endpoint 3 with a larger size, the controller allocates a memory area after the pipe/endpoint 2 memory area and automatically slides up the pipe/endpoint 4 memory window. Pipe/endpoint 5 does not move and a memory conflict appears as the memory windows of pipes/endpoints 4 and 5 overlap. The data of these pipes/endpoints is potentially lost. Note: 1. The data of pipe/endpoint 0 cannot be lost (except if it is de-allocated) as the memory allocation and de-allocation may affect only higher pipes/endpoints.

2. Deactivating then reactivating the same pipe/endpoint with the same configuration only modifies temporarily the controller DPRAM pointer and size for this pipe/endpoint. Nothing changes in the DPRAM. Higher endpoints seem not to have been moved and their data is preserved as long as nothing has been written or received into them while changing the allocation state of the first pipe/ endpoint.

3. When the user writes a one to the USBHS_DEVEPTCFGx.ALLOC bit, the Configuration OK Status bit (USBHS_DEVEPTISRx.CFGOK) is set only if the configured size and number of banks are correct as compared to the endpoint maximum allowed values and to the maximum FIFO size (i.e., the DPRAM size). The USBHS_DEVEPTISRx.CFGOK value does not consider memory allocation conflicts.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01D4	USBHS_DEVEPTIM R5 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDM
		31:24								
	USBHS_DEVEPTIM	7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01D8	R6	15:8		FIFOCON	KILLBK	NBUSYBKE				
	110	23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDM
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01D8	USBHS_DEVEPTIM R6 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDM
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01DC	USBHS_DEVEPTIM R7	15:8		FIFOCON	KILLBK	NBUSYBKE				
		23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDM
		31:24								
	USBHS_DEVEPTIM R7 (ISOENPT)	7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01DC		15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDM
		31:24								
	USBHS_DEVEPTIM	7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01E0	R8	15:8		FIFOCON	KILLBK	NBUSYBKE				
		23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDM
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01E0	USBHS_DEVEPTIM R8 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDM
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01E4	USBHS_DEVEPTIM R9	15:8		FIFOCON	KILLBK	NBUSYBKE				
		23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDM
		31:24								
0x01E4	USBHS_DEVEPTIM R9 (ISOENPT)	7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
			SHORTPACK							
		7:0	ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0644	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R9 (INTPIPES)	23:16							PFREEZEC	PDISHDMAC
		31:24								
			SHORTPACK							
		7:0	ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0644	USBHS_HSTPIPID	15:8	2.1.20	FIFOCONC		NBUSYBKEC				
0,0044	R9 (ISOPIPES)	23:16				NBOOTBREO			PFREEZEC	PDISHDMAC
		31:24							FINELZEC	PDISHDMA
00040		31.24								
0x0648	December									
	Reserved									
0x064F										
		7:0				INRC	Q[7:0]			
0x0650	USBHS_HSTPIPIN	15:8								INMODE
	RQ0	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0,0654	USBHS_HSTPIPIN	15:8								INMODE
0x0654	RQ1	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
	USBHS_HSTPIPIN RQ2	15:8								INMODE
0x0658		23:16								
		31:24								
		7:0				INRG	0[7:0]			
	USBHS_HSTPIPIN	15:8					-[]			INMODE
0x065C	RQ3	23:16								
	T CQ O	31:24								
						INDC	17.01			
		7:0				INRG	λ[1:0]			INNODE
0x0660	USBHS_HSTPIPIN	15:8								INMODE
	RQ4	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0x0664	USBHS_HSTPIPIN	15:8								INMODE
	RQ5	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0x0668	USBHS_HSTPIPIN	15:8								INMODE
000000	RQ6	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
	USBHS_HSTPIPIN	15:8								INMODE
0x066C	RQ7	23:16								
	11527	31:24								
		• ···E 1								

USB High-Speed Interface (USBHS)

Bit 1 – RXOUTIC Received OUT Data Interrupt Clear

Bit 0 – TXINIC Transmitted IN Data Interrupt Clear

USB High-Speed Interface (USBHS)

39.6.38 Host Frame Number Register

	Name: Offset: Reset: Property:	USBHS_HSTFNUM 0x0420 0x00000000 y: Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				FLENHI	GH[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
					FNUM	I[10:5]		
Access		-						
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			FNUM[4:0]	-			MFNUM[2:0]	
Access								
Reset	0	0	0	0	0	0	0	0

Bits 23:16 - FLENHIGH[7:0] Frame Length

In High-speed mode, this field contains the 8 high-order bits of the 16-bit internal frame counter (at 30 MHz, the counter length is 3750 to ensure a SOF generation every $125 \ \mu$ s).

Bits 13:3 - FNUM[10:0] Frame Number

This field contains the current SOF number.

This field can be written. In this case, the MFNUM field is reset to zero.

Bits 2:0 – MFNUM[2:0] Micro Frame Number

This field contains the current microframe number (can vary from 0 to 7), updated every 125 µs.

When operating in Full-speed mode, this field is tied to zero.

USB High-Speed Interface (USBHS)

39.6.51 Host Pipe x Set Register (Control, Bulk Pipes)

Name:USBHS_HSTPIPIFRxOffset:0x0590Reset:0Property:Read/Write

This register view is relevant only if PTYPE = 0x0 or 0x2 in "Host Pipe x Configuration Register".

For additional information, see "Host Pipe x Status Register (Control, Bulk Pipes)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Sets the corresponding bit in USBHS_HSTPIPISRx, which may be useful for test or debug purposes.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				NBUSYBKS				
Access								
Reset				0				
Bit		6	5	4	3	2	1	0
	SHORTPACKE	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	TXSTPIS	TXOUTIS	RXINIS
	TIS							
Access								
Reset	0	0	0	0	0	0	0	0

Bit 12 – NBUSYBKS Number of Busy Banks Set

Bit 7 – SHORTPACKETIS Short Packet Interrupt Set

Bit 6 – RXSTALLDIS Received STALLed Interrupt Set

Bit 5 - OVERFIS Overflow Interrupt Set

Bit 4 - NAKEDIS NAKed Interrupt Set

Bit 3 – PERRIS Pipe Error Interrupt Set

USB High-Speed Interface (USBHS)

39.6.63 Host Pipe x IN Request Register

Name:	USBHS_HSTPIPINRQx
Offset:	0x0650 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
10000								
Bit	15	14	13	12	11	10	9	8
		1-7		12			5	INMODE
, I								INMODE
Access								
Reset								0
Bit	7	6	5	4	3	2	1	0
				INRO	Q[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bit 8 - INMODE IN Request Mode

Value	Description
0	Performs a pre-defined number of IN requests. This number is the INRQ field.
1	Enables the USBHS to perform infinite IN requests when the pipe is not frozen.

Bits 7:0 - INRQ[7:0] IN Request Number before Freeze

This field contains the number of IN transactions before the USBHS freezes the pipe. The USBHS performs (INRQ+1) IN requests before freezing the pipe. This counter is automatically decreased by 1 each time an IN request has been successfully performed.

This register has no effect when INMODE = 1.

SAM E70/S70/V70/V71 Family Universal Synchronous Asynchronous Receiver Transc...

- Bit 9 TXEMPTY TXEMPTY Interrupt Mask
- Bit 8 TIMEOUT Timeout Interrupt Mask
- Bit 7 PARE Parity Error Interrupt Mask
- **Bit 6 FRAME** Framing Error Interrupt Mask
- Bit 5 OVRE Overrun Error Interrupt Mask
- Bit 2 RXBRK Receiver Break Interrupt Mask
- Bit 1 TXRDY TXRDY Interrupt Mask
- Bit 0 RXRDY RXRDY Interrupt Mask

Media Local Bus (MLB)

Field	Description	Details	Accessibility
BA	Buffer Base Address	- BA can start at any byte in the 16k DBR	r,w
BD Buffer Depth		- BD = size of buffer in bytes - 1 - Buffer end address = BA + BD	r,w
		- BD = 4 x m x bpf $-$ 1, where:	
		m = frames per sub-buffer (for MFE = 0, m = 1) bpf = bytes per frame.	
RPTR	Read Pointer	 Software initializes to zero, hardware updates Counts the read address offset within a buffer 	r,w,u ⁽¹⁾
		- DMA read address = BA + RPTR	
WPTR	Write Pointer	 Software initializes to zero, hardware updates Counts the write address offset within a buffer 	r,w,u ⁽¹⁾
		- DMA write address = BA + WPTR	
RSBC	Read Sub-buffer Counter	 Software initializes to zero, hardware updates Counts the read sub-buffer offset 	r,w,u ⁽¹⁾
		- DMA uses for pointer management	
WSBC	Write Sub-buffer Counter	 Software initializes to zero, hardware updates Counts the write sub-buffer offset 	r,w,u ⁽¹⁾
		- DMA uses for pointer management	
RSTS	Read Status	- Software initializes to zero, hardware updates - RSTS states: ⁽²⁾	r,w,u ⁽¹⁾
		xxx0 = normal operation (no mute)	
		xxx1 = normal operation (mute)	
		xx0x = idle	
WSTS	Write Status	- Software initializes to zero, hardware updates - WSTS states: ⁽²⁾	r,w,u ⁽¹⁾
		xxx0 = normal operation (no mute)	
		xxx1 = normal operation (mute)	
		xx0x = idle	
		1xxx = command protocol error	
Reserved	Reserved	- Software writes a zero to all reserved bits when the entry is initialized. The reserved bits are Read-only after initialization.	r,w,u ⁽¹⁾

Table 48-15.	Synchronous	CDT Entr	ry Field Definitions
--------------	-------------	-----------------	----------------------

Notes: 1. "u" means "Updated periodically by hardware".

Controller Area Network (MCAN)

49.6.40 MCAN Transmit Buffer Cancellation Request

	Name: Offset: Reset: Property:	MCAN_TXBCF 0xD4 0x00000000 Read/Write	3					
Bit	31	30	29	28	27	26	25	24
	CR31	CR30	CR29	CR28	CR27	CR26	CR25	CR24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	CR23	CR22	CR21	CR20	CR19	CR18	CR17	CR16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – CRx Cancellation Request for Transmit Buffer x

Each Transmit Buffer has its own Cancellation Request bit. Writing a '1' will set the corresponding Cancellation Request bit; writing a '0' has no impact. This enables the processor to set cancellation requests for multiple Transmit Buffers with one write to MCAN_TXBCR. MCAN_TXBCR bits are set only for those Transmit Buffers configured via TXBC. The bits remain set until the corresponding bit of MCAN_TXBRP is reset.

Valu	e Description	
0	No cancellation pending.	
1	Cancellation pending.	

Pulse Width Modulation Controller (PWM)

51.7.47 PWM Channel Dead Time Update Register

Name:	PWM_DTUPDx
Offset:	0x021C + x*0x20 [x=03]
Reset:	0x0000000
Property:	Write-only

This register can only be written if bits WPSWS4 and WPHWS4 are cleared in the PWM Write Protection Status Register.

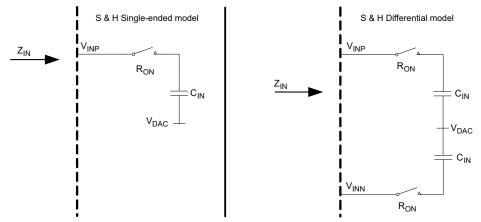
This register acts as a double buffer for the DTH and DTL values. This prevents an unexpected waveform when modifying the dead-time values.

Bit	31	30	29	28	27	26	25	24
				DTLUF	PD[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DTLU	PD[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-
Bit	15	14	13	12	11	10	9	8
				DTHUF	PD[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	DTHUPD[7:0]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-

Only the first 12 bits (dead-time counter size) of fields DTHUPD and DTLUPD are significant.

Bits 31:16 – DTLUPD[15:0] Dead-Time Value Update for PWMLx Output

Defines the dead-time value for PWMLx output. This value must be defined between 0 and CDTY (PWM_CDTYx). This value is applied only at the beginning of the next channel x PWM period.


Bits 15:0 – DTHUPD[15:0] Dead-Time Value Update for PWMHx Output

Defines the dead-time value for PWMHx output. This value must be defined between 0 and the value (CPRD – CDTY) (PWM_CPRDx and PWM_CDTYx). This value is applied only at the beginning of the next channel x PWM period.

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Typ(1)	Max	Unit
		Gain=2	-0.3	0.3	1.4	
		Gain=4	-0.3	0.7	3.3	
	Single-Ended Mode					
Eo	Single-ended Offset Error (see Note 1)	Gain=1	-20	-	35	LSB
		Gain=1	0.3	0.7	1.8	
E _G	Single-ended Gain Error	Gain=2	0.3	1.3	3.6	%
			0.3	1.7	4.7	

58.8.6 AFE Channel Input Impedance Figure 58-15. Input Channel Model

where:

- Z_{IN} is input impedance in Single-ended or Differential mode
- C_{IN} = 2 to 8 pF ±20% depending on the gain value and mode (SE or DIFF); temperature dependency is negligible
- R_{ON} is typical 2 k Ω and 8 k Ω max (worst case process and high temperature)

The following formula is used to calculate input impedance:

$$Z_{\rm IN} = \frac{1}{f_S \times C_{\rm IN}}$$

where:

- f_S is the sampling frequency of the AFE channel
- Typ values are used to compute AFE input impedance Z_{IN}

Table 58-37. Input Capacitance (CIN) Values

Gain Selection	Single-ended	Differential	Unit
1	2	2	pF
2	4	4	
4	8	8	

Electrical Characteristics for SAM E70/S70

59.13.1.6.1 Maximum SPI Frequency

The following formulas give maximum SPI frequency in Master read and write modes and in Slave read and write modes.

 f_{SPCK} max = $\frac{1}{\text{SPI}_0(\text{or SPI}_3) + t_{\text{valid}}}$

t_{valid} is the slave time response to output data after detecting an SPCK edge.

For a nonvolatile memory with t_{valid} (or t_v) = 5 ns, $f_{SPCK}max$ = 57 MHz at V_{DDIO} = 3.3V.

$$f_{\text{SPCK}} \text{max} = \frac{1}{2x(SPI_{6max}(\text{or SPI}_{9max}) + t_{\text{setup}})}$$

t_{setup} is the setup time from the master before sampling data.

Master Write Mode

The SPI sends data to a slave device only, e.g. an LCD. The limit is given by SPI_2 (or SPI_5) timing. Since it gives a maximum frequency above the maximum pad speed (see I/O Characteristics), the max SPI frequency is the one from the pad.

Master Read Mode

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by setup and hold timings SPI_7/SPI_8 (or SPI_{10}/SPI_{11}). Since this gives a frequency well above the pad limit, the limit in slave read mode is given by SPCK pad.

Slave Write Mode

59.13.1.6.2 SPI Timings

Timings are given in the following domains:

- 1.8V domain: V_{DDIO} from 1.7V to 1.95V, maximum external capacitor = 20 pF
- 3.3V domain: V_{DDIO} from 2.85V to 3.6V, maximum external capacitor = 40 pF

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Max	Unit
SPI0	MISO Setup time before SPCK rises (master)	3.3V domain	12.4	-	ns
		1.8V domain	14.6	-	ns
SPI1	MISO Hold time after SPCK rises (master)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain	-3.7	2.2	ns
		1.8V domain	-3.8	2.7	ns
SPI ₃	MISO Setup time before SPCK falls (master)	3.3V domain	12.6	-	ns
		1.8V domain	15.13	-	ns
SPI4	MISO Hold time after SPCK falls (master)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI5	SPCK falling to MOSI Delay (master)	3.3V domain	-3.6	2.0	ns
		1.8V domain	-3.3	2.8	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain	3.0	11.9	ns
		1.8V domain	3.5	13.9	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain	0.6	-	ns
		1.8V domain	0.8	-	ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain	3.0	12.0	ns
		1.8V domain	3.4	13.7	ns
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain	0.6	-	ns
		1.8V domain	0.8	-	ns
SPI ₁₂	NPCS setup to SPCK rising (slave)	3.3V domain	3.9	-	ns
		1.8V domain	4.4	-	ns
SPI ₁₃	NPCS hold after SPCK falling (slave)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI ₁₄	NPCS setup to SPCK falling (slave)	3.3V domain	4.0	-	ns
		1.8V domain	4.1	-	ns

Table 59-56. SPI Timings

Schematic Checklist

Signal Name	Recommended Pin Connection	Description
		Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.
		Supply ripple must not exceed 20 mVrms for 10 kHz to 20 MHz range.
		Awarning Powerup and powerdown sequences given in the "Power Considerations" chapter must be respected.
VDDPLL	Decoupling/filtering capacitors ferrite beads (100 nF and 470 Ohm @ 100 MHz) ^{(1) (2)}	Powers the PLLA and the fast RC oscillator. The VDDPLL power supply pin draws small current, but it is noise sensitive. Care must be taken in VDDPLL power supply routing, decoupling and also on bypass capacitors.
		Supply ripple must not exceed 20 mVrms for 10 kHz to 10 MHz range and 10 mVrms for higher frequencies.
VDDUTMIC	Decoupling/filtering capacitors ferrite beads (100 nF and 470 Ohm @ 100 MHz) ^{(1) (2)}	Powers the USB transceiver core. Must always be connected even if the USB is not used.
		Decoupling/filtering capacitors/ferrite beads must be added to improve startup stability and reduce source voltage drop.
		Supply ripple must not exceed 10 mVrms for 10 kHz to 10 MHz range.
GND	Voltage Regulator, Core Chip and Peripheral I/O lines ground	GND pins are common to VDDIN, VDDCORE and VDDIO pins. GND pins should be connected as shortly as possible to the
		system ground plane.
GNDUTMI	UDPHS and UHPHS UTMI+ Core and interface ground	GNDUTMI pins are common to VDDUTMII and VDDUTMIC pins. GNDUTMI pins should be connected as shortly as possible to the system ground plane.
GNDPLL	PLLA cell and Main Oscillator ground	GNDPLL pin is provided for VDDPLL pin. GNDPLL pin should be connected as shortly as possible to the system ground plane.
GNDANA	Analog ground	GNDANA pins are common to AFE, DAC and ACC supplied by VDDIN pin. GNDANA pins should be connected as shortly as possible to the system ground plane.
GNDPLLUSB	USB PLL ground	GNDPLLUSB pin is provided for VDDPLLUSB pin. GNDPLLUSB pin should be connected as shortly as possible to the system ground plane.