

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	44
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384К х 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j21b-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Description

Signal Name	Function	Туре	Active Level	Voltage Reference	Comments
PWMCx_PWMH0 - PWMCx_PWMH3	Waveform Output High for Channel 0–3	Output	-	-	-
PWMCx_PWML0- PWMCx_PWML3	Waveform Output Low for Channel 0–3	Output	_	_	Only output in complementary mode when dead time insertion is enabled.
PWMCx_PWMFI0 - PWMCx_PWMFI2	Fault Input	Input	-	-	-
PWMCx_PWMEX TRG0- PWMCx_PWMEX TRG1			_	_	_
Serial Peripheral In	terface - SPI(x=[01])				
SPIx_MISO	Master In Slave Out	I/O	_	-	_
SPIx_MOSI	Master Out Slave In	I/O	_	-	_
SPIx_SPCK	SPI Serial Clock	I/O	_	_	_
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	Low	-	-
SPIx_NPCS1- SPIx_NPCS3	SPI Peripheral Chip Select	Output	Low	-	_
Quad IO SPI - QSP	1				
QSCK	QSPI Serial Clock	Output	_	_	_
QCS	QSPI Chip Select	Output	_	-	-
QIO0–QIO3	QSPI I/O QIO0 is QMOSI Master Out Slave In	I/O	-	-	-
	QIO1 is QMISO Master In Slave Out				
Two-Wire Interface	- TWIHS(x=02)				
TWDx	TWIx Two-wire Serial Data	I/O	_	-	-
TWCKx	TWIx Two-wire Serial Clock	I/O	-	-	-
Analog					

21.3.2 Chip ID Extension Register

Name:	CHIPID_EXID
Offset:	0x4
Reset:	-
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
				EXID	31:24]			
Access	R	R	R	R	R	R	R	R
Reset								
Bit	23	22	21	20	19	18	17	16
				EXID	23:16]			
Access	R	R	R	R	R	R	R	R
Reset								
Bit	15	14	13	12	11	10	9	8
				EXID	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset								
Bit	7	6	5	4	3	2	1	0
				EXI	D[7:0]			
Access	R	R	R	R	R	R	R	R
Reset								

Bits 31:0 – EXID[31:0] Chip ID Extension This field is cleared if CHIPID_CIDR.EXT = 0.

Value	Name	Description
0xX	Reserved	Reserved

22.4.2.3 Data Read Optimization

The organization of the Flash in 128 bits is associated with two 128-bit prefetch buffers and one 128-bit data read buffer, thus providing maximum system performance. This buffer is added in order to store the requested data plus all the data contained in the 128-bit aligned data. This speeds up sequential data reads if, for example, FWS is equal to 1 (see Figure 22-6). The data read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set, this buffer is disabled and the data read is no longer optimized.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 22-6	6. Data	a Read (Optimiz	zation	for FWS	5 = 1						
Master Clock												
ARM Request (32-bit)			1	1	1	1		1	1	1	1	1
	@Byte 0		@4	@ 8	@ 12	@ 16		@ 20	@ 24	@ 28	@ 32	@ 36
Flash Access	xxx	X Bytes	0–15			X	Bytes 16	6–31			X_	Bytes 32–47
Buffer (128 bits)	X	XXX		(By	ytes 0–15		X		E	Bytes 16–31	
Data to ARM	χ_,	XX	Bytes 0-3	4-7	X 8–11	(12–15)		16–19	20–23	24–27	28–31	32–35

22.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock regions, consecutive programming, locking and full Flash erasing, etc.

The commands are listed in the following table.

Table 22-1. Set of Commands

Command	Value	Mnemonic
Get Flash Descriptor	0x00	GETD
Write Page	0x01	WP
Write Page and Lock	0x02	WPL
Erase Page and Write Page	0x03	EWP
Erase Page and Write Page and then Lock	0x04	EWPL
Erase All	0x05	EA
Erase Pages	0x07	EPA
Set Lock Bit	0x08	SLB
Clear Lock Bit	0x09	CLB
Get Lock Bit	0x0A	GLB
Set GPNVM Bit	0x0B	SGPB
Clear GPNVM Bit	0x0C	CGPB

Power Management Controller (PMC)

31.20.27 PMC Oscillator Calibration Register

Name:	PMC_OCR
Offset:	0x0110
Reset:	0x00404040
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
	SEL12				CAL12[6:0]			
Access								
Reset	0	1	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	SEL8				CAL8[6:0]			
Access								
Reset	0	1	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SEL4				CAL4[6:0]			
Access								
Reset	0	1	0	0	0	0	0	0

Bit 23 – SEL12 Selection of Main RC Oscillator Calibration Bits for 12 MHz

Value	Description
0	Factory-determined value stored in Flash memory.
1	Value written by user in CAL12 field of this register.

Bits 22:16 – CAL12[6:0] Main RC Oscillator Calibration Bits for 12 MHz Calibration bits applied to the RC Oscillator when SEL12 is set.

Bit 15 – SEL8 Selection of Main RC Oscillator Calibration Bits for 8 MHz

Value	Description
0	Factory-determined value stored in Flash memory.
1	Value written by user in CAL8 field of this register.

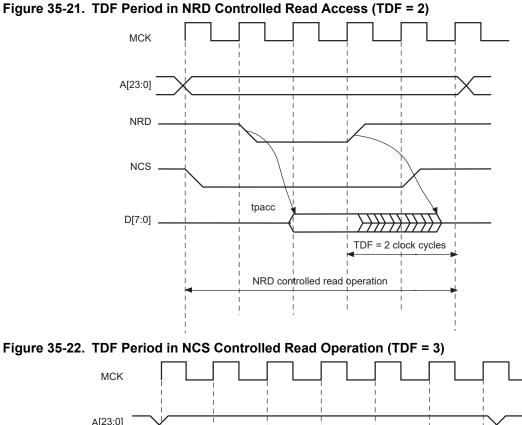
Bits 14:8 – CAL8[6:0] Main RC Oscillator Calibration Bits for 8 MHz Calibration bits applied to the RC Oscillator when SEL8 is set.

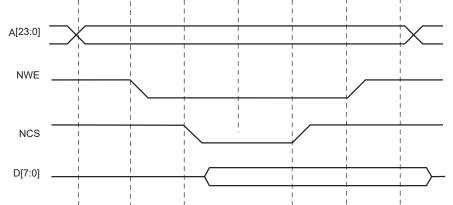
Bit 7 – SEL4 Selection of Main RC Oscillator Calibration Bits for 4 MHz

Parallel Input/Output Controller (PIO)

32.6.1.21 PIO Pull-Up Disable Register

Name:	PIO_PUDR
Offset:	0x0060
Property:	Write-only


This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.


Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Pull-Up Disable

Value	Description
0	No effect.
1	Disables the pullup resistor on the I/O line.

Static Memory Controller (SMC)

35.12.2 TDF Optimization Enabled (SMC_MODE.TDF_MODE = 1)

When SMC_MODE.TDF_MODE is set to 1 (TDF optimization is enabled), the SMC takes advantage of the setup period of the next access to optimize the number of wait states cycle to insert.

The following figure shows a read access controlled by NRD, followed by a write access controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

nrd_hold = 4; SMC_MODE.read_mode = 1 (NRD controlled)

nwe_setup = 3; SMC_MODE.write_mode = 1 (NWE controlled)

SMC_MODE.TDF_CYCLES = 6; SMC_MODE.TDF_MODE = 1 (optimization enabled).

	Name: Offset: Reset: Property:	GMAC_LC 0x144 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
•								
Access Reset								
Resei								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								L[9:8]
Access							R	R
Reset							0	0
Dit	7	c	F	4	3	2	4	0
Bit	7	6	5	4	_[7:0]	2	1	0
A								
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

38.8.55 GMAC Late Collisions Register

Bits 9:0 - LCOL[9:0] Late Collisions

This register counts the number of late collisions occurring after the slot time (512 bits) has expired. In 10/100 mode, late collisions are counted twice i.e., both as a collision and a late collision.

38.8.67 GMAC 256 to 511 Byte Frames Received Register

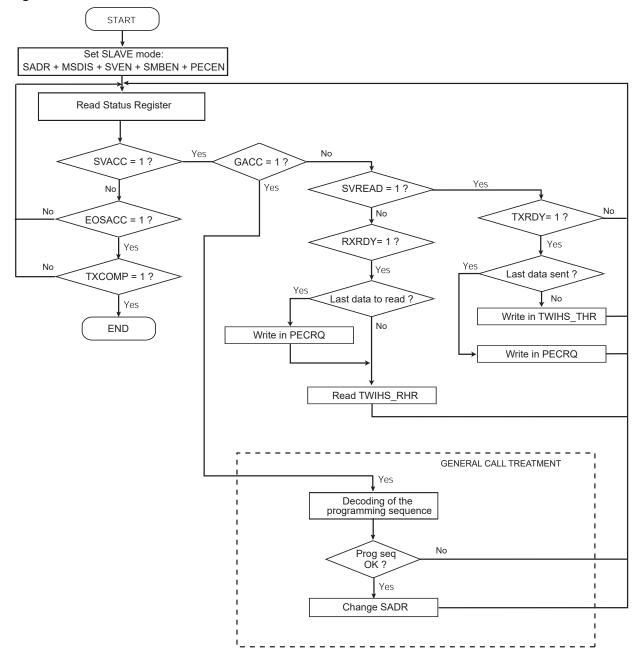
Bit 31 30 29 28 27 26 25 24 NFRX[31:24] Access R<		Name: Offset: Reset: Property:	GMAC_TBFR511 0x174 0x00000000 -						
Access R <td>Bit</td> <td>31</td> <td>30</td> <td>29</td> <td>28</td> <td>27</td> <td>26</td> <td>25</td> <td>24</td>	Bit	31	30	29	28	27	26	25	24
Reset 0 0 0 0 0 0 0 0 Bit 23 22 21 20 19 18 17 16 Access R R R R R R R R R R Access R					NFRX[31:24]			
Bit 23 22 21 20 19 18 17 16 Access R R R R R R R R Access R R R R R R R R Bit 15 14 13 12 11 10 9 8 Access R R R R R R R Bit 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 Access R R R R R R R	Access	R	R	R	R	R	R	R	R
Access R <td>Reset</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Reset	0	0	0	0	0	0	0	0
Access R <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Access R <td>Bit</td> <td>23</td> <td>22</td> <td>21</td> <td>20</td> <td>19</td> <td>18</td> <td>17</td> <td>16</td>	Bit	23	22	21	20	19	18	17	16
Reset 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 Access R R R R R R R R Access R 10 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 Bit 7 6 7 8 7					NFRX[23:16]			
Bit 15 14 13 12 11 10 9 8 Model NFRX[15:8] NFRX[15:8] NFRX[15:8] NFRX[15:8] NFRX[15:8] NFRX[15:8] Access R<	Access	R	R	R	R	R	R	R	R
NFRX[15:8] Access R R R R R R R Reset 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 Access R R R R R R R R	Reset	0	0	0	0	0	0	0	0
NFRX[15:8] Access R R R R R R R Reset 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 Access R R R R R R R R									
Access R <td>Bit</td> <td>15</td> <td>14</td> <td>13</td> <td>12</td> <td>11</td> <td>10</td> <td>9</td> <td>8</td>	Bit	15	14	13	12	11	10	9	8
Reset 0 <td></td> <td></td> <td></td> <td></td> <td>NFRX</td> <td>[15:8]</td> <td></td> <td></td> <td></td>					NFRX	[15:8]			
Bit 7 6 5 4 3 2 1 0 NFRX[7:0] NFRX[7:0]	Access	R	R	R	R	R	R	R	R
NFRX[7:0] Access R	Reset	0	0	0	0	0	0	0	0
NFRX[7:0] Access R									
Access R R R R R R R R	Bit	7	6	5	4	3	2	1	0
					NFRX	([7:0]			
Reset 0 0 0 0 0 0 0 0 0	Access	R	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0	0

Bits 31:0 - NFRX[31:0] 256 to 511 Byte Frames Received without Error

This bit fields counts the number of 256 to 511 byte frames successfully received without error. Excludes pause frames, and is only incremented if the frame is successfully filtered and copied to memory.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
			SHORTPACK							
		7:0	ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0644	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R9 (INTPIPES)	23:16							PFREEZEC	PDISHDMAC
		31:24								
			SHORTPACK							
		7:0	ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0644	USBHS_HSTPIPID	15:8	2.1.20	FIFOCONC		NBUSYBKEC				
0,0044	R9 (ISOPIPES)	23:16				NBOOTBREO			PFREEZEC	PDISHDMAC
		31:24							FINELZEC	PDISHDMA
00040		31.24								
0x0648	December									
	Reserved									
0x064F										
		7:0				INRC	Q[7:0]			
0x0650	USBHS_HSTPIPIN	15:8								INMODE
	RQ0	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0,0654	USBHS_HSTPIPIN	15:8								INMODE
0x0654	RQ1	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
	USBHS_HSTPIPIN RQ2	15:8								INMODE
0x0658		23:16								
		31:24								
		7:0				INRG	0[7:0]			
	USBHS_HSTPIPIN	15:8					-[]			INMODE
0x065C	RQ3	23:16								
	T CQ O	31:24								
						INDC	17.01			
		7:0				INRG	λ[1:0]			INNODE
0x0660	USBHS_HSTPIPIN	15:8								INMODE
	RQ4	23:16								
		31:24								
		7:0				INRC	Q[7:0]			
0x0664	USBHS_HSTPIPIN	15:8								INMODE
	RQ5	23:16								
		31:24								
0x0668		7:0				INRC	Q[7:0]			
	USBHS_HSTPIPIN	15:8								INMODE
	RQ6	23:16								
		31:24								
		7:0				INRG	Q[7:0]			
	USBHS_HSTPIPIN	15:8								INMODE
0x066C	RQ7	23:16								
		31:24								
		• ···E 1								


High-Speed Multimedia Card Interface (HSMCI)

Value	Name	Description
6	65536	CSTOCYC x 65536
7	1048576	CSTOCYC x 1048576

Bits 3:0 – CSTOCYC[3:0] Completion Signal Timeout Cycle Number

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers. Its value is calculated by (CSTOCYC x Multiplier).

Two-wire Interface (TWIHS)

- Bit 7 UNRE Underrun Error Interrupt Enable
- Bit 6 OVRE Overrun Error Interrupt Enable
- Bit 5 GACC General Call Access Interrupt Enable
- Bit 4 SVACC Slave Access Interrupt Enable
- Bit 2 TXRDY Transmit Holding Register Ready Interrupt Enable
- Bit 1 RXRDY Receive Holding Register Ready Interrupt Enable
- Bit 0 TXCOMP Transmission Completed Interrupt Enable

Universal Synchronous Asynchronous Receiver Transc...

- Bit 14 LINID LIN Identifier Sent or LIN Identifier Received Interrupt Mask
- Bit 13 LINBK LIN Break Sent or LIN Break Received
- Bit 9 TXEMPTY TXEMPTY Interrupt Mask
- Bit 8 TIMEOUT Timeout Interrupt Mask
- Bit 7 PARE Parity Error Interrupt Mask
- **Bit 6 FRAME** Framing Error Interrupt Mask
- Bit 5 OVRE Overrun Error Interrupt Mask
- Bit 1 TXRDY TXRDY Interrupt Mask
- Bit 0 RXRDY RXRDY Interrupt Mask

Universal Synchronous Asynchronous Receiver Transc...

46.7.23 USART Baud Rate Generator Register

Name:	US_BRGR
Offset:	0x0020
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							FP[2:0]	
Access								
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
				CD[[*]	15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CD	7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 18:16 - FP[2:0] Fractional Part

▲ WARNING When the value of field FP is greater than 0, the SCK (oversampling clock) generates nonconstant duty cycles. The SCK high duration is increased by "selected clock" period from time to time. The duty cycle depends on the value of the CD field.

Value	Description
0	Fractional divider is disabled.
1-7	Baud rate resolution, defined by FP × 1/8.

Bits 15:0 – CD[15:0] Clock Divider

CD	USART_MODE ≠ IS	USART_MODE =			
	SYNC = 0		SYNC = 1	ISO7816	
	OVER = 0	OVER = 1	or		
			USART_MODE = SPI		
			(Master or Slave)		

(e.g. MediaLB or HBI channel). All entries are indexed according to a fixed physical address assigned to every Rx/Tx channel (as shown in the following table). The value stored in a CAT entry includes a 6-bit Connection Label, which provides a pointer to the CDT. To complete a logical channel and form a routing connection, system software must assign the same Connection Label to both the Rx and Tx channels.

Peripheral	Tx Channels	Rx Channels	CAT Start Index	CAT End Index	Entries
MediaLB	0 to 64	64 - Tx Channels	0	63	64
HBI	0 to 64	64 - Tx Channels	64	127	64

Table 48-11. CAT Entry Map

The format of a full CAT entry is shown in Table 48-12, with field descriptions described in Table 48-13. All reserved bits of a CAT entry field should be written as zero.

	Table 48-12.	CAT Entry	Formats
--	--------------	-----------	---------

Channel Type	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Isochronous	rsvd	FCE	rsvd	RNW	CE	CT[2:	0] = 3	3	rsv	d	CL	[5:0)]			
Asynchronous	rsvd		MT	RNW	CE	CT[2:0] = 2			rsv	vd CL[5:0]						
Control	rsvd		MT	RNW	CE	CT[2:	0] = 1	1	rsv	d	CL	[5:0)]			
Synchronous	rsvd	MFE	MT	RNW	CE	CT[2:	0] = ()	rsv	d	CL	[5:0)]			

Table 48-13. CAT Field Definitions

Field	Description
CL[5:0]	Connection Label (offset into CDT)
CT[2:0]	Channel Type (Others): 111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 011 = Isochronous 010 = Asynchronous 001 = Control 000 = Synchronous
CE	Channel Enable: 1 = Enabled 0 = Disabled
RNW	Read Not Write: 1 = Read 0 = Write
MT	Mute Enable ⁽¹⁾ : 1 = Enabled 0 = Disabled

Controller Area Network (MCAN)

Offset	Name	Bit Pos.									
		15:8	TIE15	TIE14	TIE13	TIE12	TIE11	TIE10	TIE9	TIE8	
		23:16	TIE23	TIE22	TIE21	TIE20	TIE19	TIE18	TIE17	TIE16	
		31:24	TIE31	TIE30	TIE29	TIE28	TIE27	TIE26	TIE25	TIE24	
		7:0	CFIE7	CFIE6	CFIE5	CFIE4	CFIE3	CFIE2	CFIE1	CFIE0	
0xE4	MCAN TXBCIE	15:8	CFIE15	CFIE14	CFIE13	CFIE12	CFIE11	CFIE10	CFIE9	CFIE8	
0,2,4	WOAN_TABOL	23:16	CFIE23	CFIE22	CFIE21	CFIE20	CFIE19	CFIE18	CFIE17	CFIE16	
		31:24	CFIE31	CFIE30	CFIE29	CFIE28	CFIE27	CFIE26	CFIE25	CFIE24	
0xE8											
	Reserved										
0xEF											
	MCAN TXEFC	7:0	EFSA[5:0]								
0xF0		15:8	EFSA[13:6]								
0,10		23:16		EFS[5:0]							
		31:24				EFWM[5:0]					
		7:0									
0xF4	MCAN TXEFS	15:8				EFGI[4:0]					
		23:16						EFPI[4:0]			
		31:24							TEFL	EFF	
		7:0						EFAI[4:0]			
0xF8	MCAN TXEFA	15:8									
		23:16									
		31:24									

Controller Area Network (MCAN)

49.6.14 MCAN Protocol Status Register

	Name: Offset: Reset: Property:	MCAN_PSR 0x44 0x00000707 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					TDCV[6:0]			
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		PXE	RFDF	RBRS	RESI		DLEC[2:0]	
Access								
Reset		0	0	0	0	1	1	1
Bit		6	5	4	3	2	1	0
	BO	EW	EP		[1:0]		LEC[2:0]	
Access	R	R	R	R	R			
Reset	0	0	0	0	0	1	1	1

Bits 22:16 – TDCV[6:0] Transmitter Delay Compensation Value 0 to 127: Position of the secondary sample point, in CAN core clock periods, defined by the sum of the measured delay from CANTX to CANRX and MCAN_TDCR.TDCO.

Bit 14 – PXE Protocol Exception Event (cleared on read)

Value	Description
0	No protocol exception event occurred since last read access
1	Protocol exception event occurred

Bit 13 – RFDF Received a CAN FD Message (cleared on read)

This bit is set independently from acceptance filtering.

Value	Description
0	Since this bit was reset by the CPU, no CAN FD message has been received
1	Message in CAN FD format with FDF flag set has been received

Bit 12 – RBRS BRS Flag of Last Received CAN FD Message (cleared on read) This bit is set together with RFDF, independently from acceptance filtering.

Controller Area Network (MCAN)

49.6.25 MCAN New Data 1

	Name: Offset: Reset: Property:	MCAN_NDAT1 0x98 0x00000000 Read/Write	I					
Bit	31	30	29	28	27	26	25	24
	ND31	ND30	ND29	ND28	ND27	ND26	ND25	ND24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	ND23	ND22	ND21	ND20	ND19	ND18	ND17	ND16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	ND15	ND14	ND13	ND12	ND11	ND10	ND9	ND8
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ND7	ND6	ND5	ND4	ND3	ND2	ND1	ND0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 - NDx New Data

The register holds the New Data flags of Receive Buffers 0 to 31. The flags are set when the respective Receive Buffer has been updated from a received frame. The flags remain set until the processor clears them. A flag is cleared by writing a '1' to the corresponding bit position. Writing a '0' has no effect. A hard reset will clear the register.

Value	Description
0	Receive Buffer not updated
1	Receive Buffer updated from new message

Analog Comparator Controller (ACC)

Value	Description
0	No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.
1	A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

57.5.15 AES GCM Encryption Counter Value Register

Name:	AES_CTRR
Offset:	0x98
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24			
	CTR[31:24]										
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				CTR[23:16]						
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				CTR	[15:8]						
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	CTR[7:0]										
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 – CTR[31:0] GCM Encryption Counter Reports the current value of the 32-bit GCM counter.