

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	44
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 5x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70j21b-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SAM-BA Boot is in ROM at address 0x0 when the bit GPNVM1 is set to 0.

11.1.5.10 General-purpose NVM (GPNVM) Bits

All SAM E70/S70/V70/V71 devices feature nine general-purpose NVM (GPNVM) bits that can be cleared or set, through the "Clear GPNVM Bit" and "Set GPNVM Bit" commands of the EEFC User Interface.

The GPNVM0 bit is the security bit.

The GPNVM1bit is used to select the Boot mode (Boot always at 0x00) on ROM or Flash.

Table 11-4.	General-purpose	Non volatile	Memory Bits
-------------	-----------------	--------------	--------------------

Function
Security bit
Boot mode selection 0: ROM (default) 1: Flash
Free
Reserved
TCM configuration 00: 0 Kbytes DTCM + 0 Kbytes ITCM (default) 01: 32 Kbytes DTCM + 32 Kbytes ITCM 10: 64 Kbytes DTCM + 64 Kbytes ITCM 11: 128 Kbytes DTCM + 128 Kbytes ITCM Note: After programming, a user reboot must be done.

11.1.6 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed using GPNVM bits.

A GPNVM bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set, respectively, through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting the bit GPNVM1 selects boot from the Flash. Clearing it selects boot from the ROM. Asserting ERASE resets the bit GPNVM1 and thus selects boot from ROM.

11.2 External Memories

The SAM E70/S70/V70/V71 features one External Bus Interface to provide an interface to a wide range of external memories and to any parallel peripheral.

Parallel Input/Output Controller (PIO)

32.6.1.21 PIO Pull-Up Disable Register

Name:	PIO_PUDR
Offset:	0x0060
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		Į	Į	I	1			
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access		I	1					
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access		1	1	I				I]
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Pull-Up Disable

Value	Description
0	No effect.
1	Disables the pullup resistor on the I/O line.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.											
		23:16											
		31:24											
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE			
0,450	XDMAC_CC2	15:8		DIF	SIF	DWID	FH[1:0]		CSIZE[2:0]	1			
UXF8		23:16	WRIP	RDIP	INITD	DAM[1:0] SAM[1:0]							
		31:24		PERID[6:0]									
		7:0	SDS_MSP[7:0]										
OVEC	C XDMAC_CDS_MSP	15:8		SDS_MSP[15:8]									
UNIC		23:16		DDS_MSP[7:0]									
		31:24		DDS_MSP[15:8]									
		7:0				SUB	S[7:0]						
0x0100	XDMAC CSUS2	15:8				SUBS	6[15:8]						
0.0100	ADIMAC_03032	23:16				SUBS	[23:16]						
		31:24											
		7:0				DUB	S[7:0]						
0x0104	x0104 XDMAC_CDUS2	15:8				DUBS	6[15:8]						
0,0104		23:16				DUBS	[23:16]						
		31:24											
0x0108													
	Reserved												
0x010F													
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE			
0x0110	XDMAC_CIE3	15:8											
		23:16											
		31:24											
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID			
0x0114	XDMAC_CID3	15:8											
		23:16											
		31:24											
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM			
0x0118	XDMAC_CIM3	15:8											
		23:16											
		31:24		DOIO		DDEIO	510	DIO	110	DIO			
		7:U		RUIS	WBEIS	KBEIS	FIS		LIS	BIS			
0x011C	XDMAC_CIS3	15:8											
		23:16											
		31:24				0.41	7.01						
		1:0				SA	[7:U] 15:01						
0x0120	XDMAC_CSA3	15:8				SAL	0.401						
		23:10				SA[2	3. IOJ						
		31:24				5A[3	1.∠4j 7.01						
		15:9					./ .U] 15-01						
0x0124	XDMAC_CDA3	10:0					10.0J						
		20.10				DA[2	3. [0] 1.241						
0x0408		31:24					1.24]						
UXU128	XDMAC_CNDA3	7:0	NDA[5:0] NDAIF										

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
		7:0	SDS_MSP[7:0]									
	XDMAC_CDS_MSP	15:8			SDS_M	SP[15:8]						
0x053C	19	23:16			DDS_M	ISP[7:0]						
		31:24			DDS_M	SP[15:8]						
		7:0			SUBS	S[7:0]						
0.0540		15:8			SUBS	5[15:8]						
0x0540	Jx0540 XDMAC_CSUS19	23:16	SUBS[23:16]									
		31:24										
		7:0			DUB	S[7:0]						
		15:8			DUBS	6[15:8]						
0x0544	XDMAC_CDUS19	23:16			DUBS	[23:16]						
		31:24										
0x0548												
	Reserved											
0x054F												
		7:0	ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE			
0,0550		15:8										
0x0330	XDMAC_CIE20	23:16										
		31:24										
		7:0	ROID	WBEID	RBEID	FID	DID	LID	BID			
0x0554		15:8										
0x0554	ADIVIAC_CID20	23:16										
		31:24										
		7:0	ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM			
0x0558		15:8										
0,0000		23:16										
		31:24										
		7:0	ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS			
0x055C	XDMAC CIS20	15:8										
0,0000	////////0_0/020	23:16										
		31:24										
		7:0			SA[7:0]						
0x0560	XDMAC CSA20	15:8			SA[1	15:8]						
	,	23:16			SA[2	3:16]						
		31:24			SA[3	1:24]						
		7:0			DA[7:0]						
0x0564	XDMAC CDA20	15:8			DA[´	15:8]						
0.0001		23:16			DA[2	3:16]						
		31:24	 		DA[3	1:24]						
		7:0	 	NDA	[5:0]				NDAIF			
0x0568	XDMAC CNDA20	15:8			NDA	[13:6]						
		23:16			NDA[2	21:14]						
		31:24	 		NDA[2	29:22]						
		7:0			NDVIE	W[1:0]	NDDUP	NDSUP	NDE			
0x056C	XDMAC_CNDC20	15:8										
		23:16										

The GMAC supports both hardware controlled pause of the transmitter, upon reception of a pause frame, and hardware generated pause frame transmission.

38.6.16.1 802.3 Pause Frame Reception

Bit 13 of the Network Configuration register is the pause enable control for reception. If this bit is set, transmission will pause if a non zero pause quantum frame is received.

If a valid pause frame is received then the Pause Time register is updated with the new frame's pause time, regardless of whether a previous pause frame is active or not. An interrupt (either bit 12 or bit 13 of the Interrupt Status register) is triggered when a pause frame is received, but only if the interrupt has been enabled (bit 12 and bit 13 of the Interrupt Mask register). Pause frames received with non zero quantum are indicated through the interrupt bit 12 of the Interrupt Status register. Pause frames received with zero quantum are indicated on bit 13 of the Interrupt Status register.

Once the Pause Time register is loaded and the frame currently being transmitted has been sent, no new frames are transmitted until the pause time reaches zero. The loading of a new pause time, and hence the pausing of transmission, only occurs when the GMAC is configured for full duplex operation. If the GMAC is configured for half duplex there will be no transmission pause, but the pause frame received interrupt will still be triggered. A valid pause frame is defined as having a destination address that matches either the address stored in Specific Address register 1 or if it matches the reserved address of 0x0180C2000001. It must also have the MAC control frame type ID of 0x8808 and have the pause opcode of 0x0001.

Pause frames that have frame check sequence (FCS) or other errors will be treated as invalid and will be discarded. 802.3 Pause frames that are received after Priority-based Flow Control (PFC) has been negotiated will also be discarded. Valid pause frames received will increment the pause frames received statistic register.

The pause time register decrements every 512 bit times once transmission has stopped. For test purposes, the retry test bit can be set (bit 12 in the Network Configuration register) which causes the Pause Time register to decrement every GTXCK cycle once transmission has stopped.

The interrupt (bit 13 in the Interrupt Status register) is asserted whenever the Pause Time register decrements to zero (assuming it has been enabled by bit 13 in the Interrupt Mask register). This interrupt is also set when a zero quantum pause frame is received.

38.6.16.2 802.3 Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit pause frame bits of the Network Control register. If either bit 11 or bit 12 of the Network Control register is written with logic 1, an 802.3 pause frame will be transmitted, providing full duplex is selected in the Network Configuration register and the transmit block is enabled in the Network Control register.

Pause frame transmission will happen immediately if transmit is inactive or if transmit is active between the current frame and the next frame due to be transmitted.

Transmitted pause frames comprise the following:

- A destination address of 01-80-C2-00-00-01
- A source address taken from Specific Address register 1
- A type ID of 88-08 (MAC control frame)
- A pause opcode of 00-01
- A pause quantum register
- Fill of 00 to take the frame to minimum frame length
- Valid FCS

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		7:0	SHORTPACK	RXSTALLDES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x060C	USBHS_HSTPIPIE	15.8	LIILO			NBUSYBKES				
0,0000	R7 (INTPIPES)	23.16				TIBOOT BILLO		RSTDTS	PEREEZES	PDISHDMAS
		31.24								
		7:0	SHORTPACK ETIES	CRCERRES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x060C	USBHS_HSTPIPIE	15:8				NBUSYBKES				
F	R7 (ISOPIPES)	23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	RXSTALLDES	OVERFIES	NAKEDES	PERRES	TXSTPES	TXOUTES	RXINES
0x0610	R8	15:8				NBUSYBKES				
		23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	RXSTALLDES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x0610		15:8				NBUSYBKES				
	Ro (INTEIFES)	23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	CRCERRES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x0610		15:8				NBUSYBKES				
	Ro (ISOPIPES)	23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	RXSTALLDES	OVERFIES	NAKEDES	PERRES	TXSTPES	TXOUTES	RXINES
0x0614	R9	15:8				NBUSYBKES				
		23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	RXSTALLDES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x0614		15:8				NBUSYBKES				
		23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
		7:0	SHORTPACK ETIES	CRCERRES	OVERFIES	NAKEDES	PERRES	UNDERFIES	TXOUTES	RXINES
0x0614	R9 (ISOPIPES)	15:8				NBUSYBKES				
		23:16						RSTDTS	PFREEZES	PDISHDMAS
		31:24								
0x0618 0x061F	Reserved									
0x0620	USBHS_HSTPIPID	7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	TXSTPEC	TXOUTEC	RXINEC
0,0020	R0	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC

USB High-Speed Interface (USBHS)

Bit 5 – EORSM End of Resume Interrupt

Value	Description
0	Cleared when the USBHS_DEVICR.EORSMC bit is written to one to acknowledge the
	interrupt.
1	Set when the USBHS detects a valid "End of Resume" signal initiated by the host. This
	triggers a USB interrupt if USBHS_DEVIMR.EORSME = 1.

Bit 4 – WAKEUP Wakeup Interrupt

This interrupt is generated even if the clock is frozen by the USBHS_CTRL.FRZCLK bit.

Value	Description
0	Cleared when the USBHS_DEVICR.WAKEUPC bit is written to one to acknowledge the
	interrupt (USB clock inputs must be enabled before), or when the Suspend (SUSP) interrupt
	bit is set.
1	Set when the USBHS is reactivated by a filtered non-idle signal from the lines (not by an
	upstream resume). This triggers an interrupt if USBHS_DEVIMR.WAKEUPE = 1.

Bit 3 – EORST End of Reset Interrupt

Value	Description
0	Cleared when the USBHS_DEVICR.EORSTC bit is written to one to acknowledge the
	interrupt.
1	Set when a USB "End of Reset" has been detected. This triggers a USB interrupt if
	USBHS_DEVIMR.EORSTE = 1.

Bit 2 – SOF Start of Frame Interrupt

Value	Description
0	Cleared when the USBHS_DEVICR.SOFC bit is written to one to acknowledge the interrupt.
1	Set when a USB "Start of Frame" PID (SOF) has been detected (every 1 ms). This triggers a
	USB interrupt if SOFE = 1. The FNUM field is updated. In High-speed mode, the MFNUM
	field is cleared.

Bit 1 – MSOF Micro Start of Frame Interrupt

Value	Description
0	Cleared when the USBHS_DEVICR.MSOFC bit is written to one to acknowledge the
	interrupt.
1	Set in High-speed mode when a USB "Micro Start of Frame" PID (SOF) has been detected
	(every 125 μ s). This triggers a USB interrupt if MSOFE = 1. The MFNUM field is updated.
	The FNUM field is unchanged.

Bit 0 – SUSP Suspend Interrupt

Value	Description						
0	Cleared when the USBHS_DEVICR.SUSPC bit is written to one to acknowledge the						
	interrupt, or when the Wakeup (WAKEUP) interrupt bit is set.						
1	Set when a USB "Suspend" idle bus state has been detected for 3 frame periods (J state for						
	3 ms). This triggers a USB interrupt if USBHS_DEVIMR.SUSPE = 1.						

USB High-Speed Interface (USBHS)

Value Description

• (INRQ+1) In requests have been processed.

• A Pipe Reset (USBHS_HSTPIP.PRSTx rising) has occurred.

• A Pipe Enable (USBHS_HSTPIP.PEN rising) has occurred.

Bit 16 – PDISHDMA Pipe Interrupts Disable HDMA Request Enable See the USBHS_DEVEPTIMR.EPDISHDMA bit description.

Bit 14 – FIFOCON FIFO Control

For OUT and SETUP pipes:

0: Cleared when USBHS_HSTPIPIDR.FIFOCONC = 1. This sends the FIFO data and switches the bank.

1: Set when the current bank is free, at the same time as USBHS_HSTPIPISR.TXOUTI or TXSTPI.

For IN pipes:

0: Cleared when USBHS_HSTPIPIDR.FIFOCONC = 1. This frees the current bank and switches to the next bank.

1: Set when a new IN message is stored in the current bank, at the same time as USBHS_HSTPIPISR.RXINI.

Bit 12 - NBUSYBKE Number of Busy Banks Interrupt Enable

Value	Description
0	Cleared when USBHS_HSTPIPIDR.NBUSYBKEC = 1. This disables the Transmitted IN
	Data interrupt (USBHS_HSTPIPIMR.NBUSYBKE).
1	Set when USBHS_HSTPIPIER.NBUSYBKES = 1. This enables the Transmitted IN Data
	interrupt (USBHS_HSTPIPIMR.NBUSYBKE).

Bit 7 – SHORTPACKETIE Short Packet Interrupt Enable

If this bit is set for non-control OUT pipes, a short packet transmission is guaranteed upon ending a DMA transfer, thus signaling an end of transfer, provided that the End of DMA Buffer Output Enable (USBHS_HSTDMACONTROL.END_B_EN) bit and the Automatic Switch (USBHS_HSTPIPCFG.AUTOSW) bit = 1.

Value	Description
0	Cleared when USBHS_HSTPIPIDR.SHORTPACKETEC = 1. This disables the Transmitted
	interrupt Data IT (USBHS_HSTPIPIMR.SHORTPACKETE).
1	Set when USBHS_HSTPIPIER.SHORTPACKETIES = 1. This enables the Transmitted IN
	Data interrupt (USBHS_HSTPIPIMR.SHORTPACKETIE).

Bit 6 – CRCERRE CRC Error Interrupt Enable

Value	Description
0	Cleared when USBHS_HSTPIPIDR.CRCERREC = 1. This disables the Transmitted IN Data
	interrupt (USBHS_HSTPIPIMR.CRCERRE).
1	Set when USBHS_HSTPIPIER.CRCERRES = 1. This enables the Transmitted IN Data
	interrupt (USBHS_HSTPIPIMR.CRCERRE).

Bit 5 – OVERFIE Overflow Interrupt Enable

Synchronous Serial Controller (SSC)

Figure 44-5. Time Slot Application Block Diagram

44.6 Pin Name List

Table 44-1. I/O Lines Description

Pin Name	Pin Description	Туре
RF	Receive Frame Synchronization	Input/Output
RK	Receive Clock	Input/Output
RD	Receive Data	Input
TF	Transmit Frame Synchronization	Input/Output
ТК	Transmit Clock	Input/Output
TD	Transmit Data	Output

44.7 Product Dependencies

44.7.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC receiver I/O lines to the SSC Peripheral mode.

© 2018 Microchip Technology Inc.

If a write access to a write-protected register is detected, the WPVS flag in the USART Write Protection Status Register (US_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the US_WPSR.

The following registers can be write-protected:

- USART Mode Register
- USART Baud Rate Generator Register
- USART Receiver Timeout Register
- USART Transmitter Timeguard Register
- USART Manchester Configuration Register
- USART LON Mode Register
- USART LON Beta1 Tx Register
- USART LON Beta1 Rx Register
- USART LON Priority Register
- USART LON IDT Tx Register
- USART LON IDT Rx Register
- USART IC DIFF Register

Universal Synchronous Asynchronous Receiver Transc...

46.7.18 USART Channel Status Register (SPI_MODE)

Name:US_CSR (SPI_MODE)Offset:0x0014Reset:0x0Property:Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access		•				•		
Reset								
Bit	23	22	21	20	19	18	17	16
	NSS				NSSE			
Access								
Reset	0				0			
Bit	15	14	13	12	11	10	9	8
						UNRE	TXEMPTY	
Access								
Reset						0	0	
Bit	7	6	5	4	3	2	1	0
			OVRE				TXRDY	RXRDY
Access		•	•	•		•	•	
Reset			0				0	0

Bit 23 – NSS Image of NSS Line

Value	Description
0	NSS line is driven low (if NSSE = 1, falling edge occurred on NSS line).
1	NSS line is driven high (if NSSE = 1, rising edge occurred on NSS line).

Bit 19 – NSSE NSS Line (Driving CTS Pin) Rising or Falling Edge Event (cleared on read)

Value	Description
0	No NSS line event has been detected since the last read of US_CSR.
1	A rising or falling edge event has been detected on NSS line since the last read of US_CSR.

Bit 10 – UNRE Underrun Error (cleared by writing a one to bit US_CR.RSTSTA)

Value	Description
0	No SPI underrun error has occurred since the last RSTSTA.
1	At least one SPI underrun error has occurred since the last RSTSTA.

Bit 9 – TXEMPTY Transmitter Empty (cleared by writing US_THR)

Universal Synchronous Asynchronous Receiver Transc...

46.7.44 USART LON IDT Rx Register

Name:US_IDTRXOffset:0x0084Reset:0x0Property:Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
[
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				IDTRX	[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IDTRX	〔[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IDTR	×[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – IDTRX[23:0] LON Indeterminate Time after Reception (comm_type = 1 mode only)

Value	Description
0-	LON indeterminate time after reception in t _{bit} .
1677721	
5	

Figure 47-2. Baud Rate Generator

47.5.2 Receiver

47.5.2.1 Receiver Reset, Enable and Disable

After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be enabled by writing the Control Register (UART_CR) with the bit RXEN at 1. At this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its operation.

The receiver can be put in reset state by writing UART_CR with the bit RSTRX at 1. In this case, the receiver immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

47.5.2.2 Start Detection and Data Sampling

The UART only supports asynchronous operations, and this affects only its receiver. The UART receiver detects the start of a received character by sampling the URXD signal until it detects a valid start bit. A low level (space) on URXD is interpreted as a valid start bit if it is detected for more than seven cycles of the sampling clock, which is 16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after detecting the falling edge of the start bit.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 47-3. Start Bit Detection

48.7.5 MediaLB System Data Register

Name:	MLB_MSD
Offset:	0x024
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
Γ				SD3	8[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
				SD2	2[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	SD1[7:0]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit _	7	6	5	4	3	2	1	0
				SDC	[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:24 – SD3[7:0] System Data (Byte 3)

Updated with MediaLB Data[31:24] when a MediaLB software system command is received in the system quadlet. If MLB_MSS.SWSYSCMD is already set, then SD3 is not updated.

Bits 23:16 - SD2[7:0] System Data (Byte 2)

Updated with MediaLB Data[23:16] when a MediaLB software system command is received in the system quadlet. If MLB_MSS.SWSYSCMD is already set, then SD2 is not updated.

Bits 15:8 – SD1[7:0] System Data (Byte 1)

Updated with MediaLB Data[15:8] when a MediaLB software system command is received in the system quadlet. If MLB_MSS.SWSYSCMD is already set, then SD1 is not updated.

Bits 7:0 - SD0[7:0] System Data (Byte 0)

Updated with MediaLB Data[7:0] when a MediaLB software system command is received in the system quadlet. If MLB_MSS.SWSYSCMD is already set, then SD0 is not updated.

Controller Area Network (MCAN)

Value	Description
0	Last received CAN FD message did not have its BRS flag set.
1	Last received CAN FD message had its BRS flag set.

Bit 11 – RESI ESI Flag of Last Received CAN FD Message (cleared on read) This bit is set together with RFDF, independently from acceptance filtering.

Value	Description
0	Last received CAN FD message did not have its ESI flag set.
1	Last received CAN FD message had its ESI flag set.

Bits 10:8 – DLEC[2:0] Data Phase Last Error Code (set to 111 on read)

Type of last error that occurred in the data phase of a CAN FD format frame with its BRS flag set. Coding is the same as for LEC. This field will be cleared to zero when a CAN FD format frame with its BRS flag set has been transferred (reception or transmission) without error.

Bit 7 – BO Bus_Off Status

Value	Description
0	The MCAN is not Bus_Off.
1	The MCAN is in Bus_Off state.

Bit 6 – EW Warning Status

Value	Description
0	Both error counters are below the Error_Warning limit of 96.
1	At least one of error counter has reached the Error_Warning limit of 96.

Bit 5 - EP Error Passive

Value	Description
0	The MCAN is in the Error_Active state. It normally takes part in bus communication and
	sends an active error flag when an error has been detected.
1	The MCAN is in the Error_Passive state.

Bits 4:3 – ACT[1:0] Activity

Monitors the CAN communication state of the CAN module.

Value	Name	Description
0	SYNCHRONIZING	Node is synchronizing on CAN communication
1	IDLE	Node is neither receiver nor transmitter
2	RECEIVER	Node is operating as receiver
3	TRANSMITTER	Node is operating as transmitter

Bits 2:0 - LEC[2:0] Last Error Code (set to 111 on read)

The LEC indicates the type of the last error to occur on the CAN bus. This field is cleared when a message has been transferred (reception or transmission) without error.

51.6.2.7.1 Recoverable Fault

The PWM provides a Recoverable Fault mode on fault 1 and 2 (see figure Fault Protection).

The recoverable fault signal is an internal signal generated as soon as an external trigger event occurs (see PWM External Trigger Mode).

When the fault 1 or 2 is defined as a recoverable fault, the corresponding fault input pin is ignored and bits FFIL1/2, FMOD1/2 and FFIL1/2 are not taken into account.

The fault 1 is managed as a recoverable fault by the PWMEXTRG1 input trigger when PWM_ETRG1.RFEN = 1, PWM_ENA.CHID1 = 1, and PWM_ETRG1.TRGMODE \neq 0.

The fault 2 is managed as a recoverable fault by the PWMEXTRG2 input trigger when PWM_ETRG2.RFEN = 1, PWM_ENA.CHID2 = 1, and PWM_ETRG2.TRGMODE \neq 0.

Recoverable fault 1 and 2 can be taken into account by all channels by enabling the bit FPEx[1/2] in the PWM Fault Protection Enable registers (PWM_FPEx). However the synchronous channels (see Synchronous Channels) do not use their own fault enable bits, but those of the channel 0 (bits FPE0[1/2]).

When a recoverable fault is triggered (according to the PWM_ETRGx.TRGMODE setting), the PWM counter of the affected channels is not cleared (unlike in the classic fault protection mechanism) but the channel outputs are forced to the values defined by the fields FPVHx and FPVLx in the PWM Fault Protection Value Register 1 (PWM_FPV), as per table *Forcing Values of PWM Outputs by Fault Protection*. The output forcing is made asynchronously to the channel counter and lasts from the recoverable fault occurrence to the end of the next PWM cycle (if the recoverable fault is no longer present) (see the figure below).

The recoverable fault does not trigger an interrupt. The Fault Status FSy (with y = 1 or 2) is not reported in the PWM Fault Status Register when the fault y is a recoverable fault.

53. Digital-to-Analog Converter Controller (DACC)

53.1 Description

The Digital-to-Analog Converter Controller (DACC) offers up to two single-ended analog outputs or one differential analog output, making it possible for the digital-to-analog conversion to drive up to two independent analog lines.

The DACC supports 12-bit resolution.

The DACC operates in Free-running mode, Max speed mode, Trigger mode or Interpolation mode.

The DACC integrates a Bypass mode which minimizes power consumption in case of a limited sampling rate conversion.

Each channel connects with a separate DMA channel. This feature reduces both power consumption and processor intervention.

53.2 Embedded Characteristics

- Up to Two Independent Single-Ended Analog Outputs or One Differential Analog Output
- 12-bit Resolution
- Integrated Interpolation Filter with 2×, 4×, 8×, 16× or 32× Oversampling Ratio (OSR)
- Reduced Number of System Bus Accesses (Word Transfer Mode)
- Individual Control of Each Analog Channel
- Hardware Triggers
 - One Trigger Selection Per Channel
 - External trigger pin
 - Internal events
- DMA Support
- One Internal FIFO per Channel
- Register Write Protection

56.6.1 TRNG Control Register

Name:	TRNG_CR
Offset:	0x00
Reset:	_
Property:	Write-only

Bit	31	30	29	28	27	26	25	24
[WAKE	Y[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WAKE	Y[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WAKI	EY[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-
Bit	7	6	5	4	3	2	1	0
[ENABLE
Access					•			W
Reset								_

Bits 31:8 - WAKEY[23:0] Register Write Access Key

Value	Name	Description
0x524E4	PASSWD	Writing any other value in this field aborts the write operation.
7		

Bit 0 - ENABLE Enables the TRNG to Provide Random Values

Value	Description
0	Disables the TRNG.
1	Enables the TRNG if 0x524E47 ("RNG" in ASCII) is written in KEY field at the same time.

Electrical Characteristics for SAM ...

Table 58-14. Typical Sleep Mode Current Consumption vs. Master Clock (MCK) Variation with Fast RC

Core Clock/MCK (MHz)	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit	Wakeup Time	Unit
12	2.0	2.0		12	
8	1.5	1.5		18	
4	1.0	1.1		31	
2	0.8	0.8	mA	62	μs
1	0.6	0.7		123	
0.5	0.6	0.6		247	
0.25	0.5	0.5		494	

58.3.3 Wait Mode Current Consumption and Wakeup Time

The Wait mode configuration and measurements are defined as follows:

- Core clock and Master clock stopped
- Current measurement as shown below
- All peripheral clocks deactivated
- BOD disabled
- RTT enabled

Figure 58-7. Measurement Setup for Wait Mode

The following tables give current consumption and wakeup time⁽¹⁾ in Wait mode.

Table 58-15. Typical Current Consumption in Wait Mode

	Typical Value				
Wait Mode Consumption	at 2	5°C	at 85°C	at 105°C	_
	VDDIO	= 3.3V	VDDIO = 3.3V VDDIO = 3.3V		
Conditions	VDDOUT Consumption AMP1	Total Consumption AMP2	Total Consumption AMP2	Total Consumption AMP2	
No activity on the I/Os of the device	_	0.3	3.8	7.5	mA

© 2018 Microchip Technology Inc.

Electrical Characteristics for SAM E70/S70

Parameter	Conditions		Min	Тур	Max	Unit
	Program at 25°C	on V_{DDCORE} =1.2V	_	2	3	
		on V_{DDIO}	_	8	12	
	Erase at 25°C	on V_{DDCORE} =1.2V	_	2	2	
		on V _{DDIO}	_	8	12	

Note:

1. Cycling over full temperature range.

Maximum operating frequencies are shown in the following table, but are limited by the Embedded Flash access time when the processor is fetching code out of it. These tables provide the device maximum operating frequency defined by the field FWS of the EEFC_FMR register. This field defines the number of wait states required to access the Embedded Flash Memory.

Table 59-51. Embedded Flash Wait States for Worst-Case Conditions

EWS	Poad Operations	Maximum Operating Frequency (MHz)			
		VDDIO = 1.7V	VDDIO = 3.0V		
0	1 cycle	21	23		
1	2 cycles	42	46		
2	3 cycles	63	69		
3	4 cycles	84	92		
4	5 cycles	106	115		
5	6 cycles	125	138		
6	7 cycles	137	150		

59.13 Timings for STH Conditions

59.13.1 AC Characteristics

59.13.1.1 Processor Clock Characteristics

Table 59-52. Processor Clock Waveform Parameters

Symbol	Parameter	Conditions	Min	Мах	Unit
1/(t _{CPPCK})	Processor Clock Frequency	Worst case	_	300	MHz

59.13.1.2 Master Clock Characteristics

Table 59-53. Master Clock Waveform Parameters

Symbol	Parameter	Conditions	Min	Max	Unit
1/(t _{CPMCK})	Master Clock Frequency	Worst case	_	150	MHz

59.13.1.3 I/O Characteristics

Criteria used to define the maximum frequency of the I/Os: