

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70n19a-cfnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Supply Controller (SUPC)

Value	Description
	(NO): No wakeup due to the assertion of the WKLIP pins has occurred since the last read of
0	SUPC_SR.
1	(PRESENT): At least one wakeup due to the assertion of the WKUP pins has occurred since
	the last read of SUPC_SR.

Bit 1 – WKUPS WKUP Wakeup Status (cleared on read)

Power Management Controller (PMC)

31.10.3 Asynchronous Partial Wakeup in Active Mode

When the system is in Active mode, peripherals enabled for asynchronous partial wakeup have their respective clocks stopped until the peripherals request a clock. When a peripheral requests the clock, the PMC provides the clock without processor intervention.

The triggering of the peripheral clock request depends on conditions which can be configured for each peripheral. If these conditions are met, the peripheral asserts a request to the PMC. The PMC disables the Asynchronous Partial Wakeup mode of the peripheral and provides the clock to the peripheral until the user instructs the PMC to re-enable partial wakeup on the peripheral. This is done by setting PMC_SLPWK_ER.PIDx.

If the conditions are not met, the peripheral clears the clock request and the PMC stops the peripheral clock until the clock request is reasserted by the peripheral.

Note: Configuring Asynchronous Partial Wakeup mode requires the same registers as SleepWalking mode.

Figure 31-3. Asynchronous Partial Wakeup in Active Mode

31.10.3.1 Configuration Procedure

Before configuring the asynchronous partial wakeup function of a peripheral, check that the PIDx bit in PMC_PCSR is set. This ensures that the peripheral clock is enabled.

The steps to enable the asynchronous partial wakeup function of a peripheral are the following:

- 1. Check that the corresponding PIDx bit in the PMC SleepWalking Activity Status register (PMC_SLPWK_ASR) is set to '0'. This ensures that the peripheral has no activity in progress.
- 2. Enable the asynchronous partial wakeup function of the peripheral by writing a '1' to the corresponding PIDx bit in the PMC_SLPWK_ER.
- 3. Check that the corresponding PIDx bit in PMC_SLPWK_ASR is set to '0'. This ensures that no activity has started during the enable phase.

If an activity has started during the enable phase, the asynchronous partial wakeup function must be immediately disabled by writing a '1' to the PIDx bit in the PMC SleepWalking Disable register (PMC_SLPWK_DR). Wait for the end of peripheral activity before reinitializing the procedure.

31.11 Free-running Processor Clock

The free-running Processor clock (FCLK) used for sampling interrupts and clocking debug blocks ensures that interrupts can be sampled, and sleep events can be traced, while the processor is sleeping.

Power Management Controller (PMC)

Offset	Register	Name	Access	Reset
0x0028	PLLA Register	CKGR_PLLAR	Read/Write	0x0000_3F00
0x002C	Reserved	-	_	-
0x0030	Master Clock Register	PMC_MCKR	Read/Write	0x0000_0001
0x0034	Reserved	-	-	-
0x0038	USB Clock Register	PMC_USB	Read/Write	0x0000_0000
0x003C	Reserved	-	-	-
0x0040+chid*0x04	Programmable Clock Register	PMC_PCK	Read/Write	0x0000_0000
0x005C	Reserved	-	-	-
0x0060	Interrupt Enable Register	PMC_IER	Write-only	_
0x0064	Interrupt Disable Register	PMC_IDR	Write-only	-
0x0068	Status Register	PMC_SR	Read-only	0x0003_0008
0x006C	Interrupt Mask Register	PMC_IMR	Read-only	0x0000_0000
0x0070	Fast Startup Mode Register	PMC_FSMR	Read/Write	0x0000_0000
0x0074	Fast Startup Polarity Register	PMC_FSPR	Read/Write	0x0000_0000
0x0078	Fault Output Clear Register	PMC_FOCR	Write-only	-
0x007C-0x00E0	Reserved	-	-	-
0x00E4	Write Protection Mode Register	PMC_WPMR	Read/Write	0x0
0x00E8	Write Protection Status Register	PMC_WPSR	Read-only	0x0
0x00EC-0x00FC	Reserved	-	_	_
0x0100	Peripheral Clock Enable Register 1	PMC_PCER1	Write-only	-
0x0104	Peripheral Clock Disable Register 1	PMC_PCDR1	Write-only	-
0x0108	Peripheral Clock Status Register 1	PMC_PCSR1	Read-only	0x0000_0000
0x010C	Peripheral Control Register	PMC_PCR	Read/Write	0x0000_0000
0x0110	Oscillator Calibration Register	PMC_OCR	Read/Write	(See Note 2)
0x0114	SleepWalking Enable Register 0	PMC_SLPWK_ER0	Write-only	-
0x0118	SleepWalking Disable Register 0	PMC_SLPWK_DR0	Write-only	-
0x011C	SleepWalking Status Register 0	PMC_SLPWK_SR0	Read-only	0x00000000
0x0120	SleepWalking Activity Status Register 0	PMC_SLPWK_ASR0	Read-only	0x00000000

Parallel Input/Output Controller (PIO)

32.6.1.21 PIO Pull-Up Disable Register

Name:	PIO_PUDR
Offset:	0x0060
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		Į	Į	I	1			
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access		I	1					
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access		1	1	I				I]
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Pull-Up Disable

Value	Description
0	No effect.
1	Disables the pullup resistor on the I/O line.

External Bus Interface (EBI)

Name	Function	Туре	Active Level			
NWAIT	External Wait Signal	Input	Low			
SMC		5 <u> </u>				
NCS0-EBI_NCS3	Chip Select Lines	Output	Low			
NWR0-NWR1	Write Signals	Output	Low			
NRD	Read Signal	Output	Low			
NWE	Write Enable	Output	Low			
NBS0-NBS1	Byte Mask Signals	Output	Low			
EBI for NAND Flash Support						
NANDCS	NAND Flash Chip Select Line	Output	Low			
NANDOE	NAND Flash Output Enable	Output	Low			
NANDWE	NAND Flash Write Enable	Output	Low			
SDRAM Controller		5 <u> </u>				
SDCK (see Note)	SDR-SDRAM Clock	Output				
SDCKE	SDR-SDRAM Clock Enable	Output	High			
SDCS	SDR-SDRAM Controller Chip Select Line	Output	Low			
BA0-1	Bank Select	Output				
SDWE	SDR-SDRAM Write Enable	Output	Low			
RAS - CAS	Row and Column Signal	Output	Low			
SDA10	SDRAM Address 10 Line	Output				

Note: SDCK is the MCK clock for EBI, SDRAM Controller and SMC interfaces.

The connection of some signals through the MUX logic is not direct and depends on the Memory Controller in use at the moment.

The following table details the connections between the two Memory Controllers and the EBI pins.

Table 33-2. EBI Pins and Memory Controllers I/O Lines Connections

EBIx Pins	SDRAM I/O Lines	SMC I/O Lines
NWR1/NBS1	NBS1	NWR1
A0/NBS0	NBS0	SMC_A0
A1	Not Supported	SMC_A1
A[11:2]	SDRAMC_A[9:0]	SMC_A[11:2]
SDA10	SDRAMC_A10	Not Supported
A12	Not Supported	SMC_A12
A[15:13]	SDRAMC_A[13:11]	SMC_A[15:13]

34.7.7 SDRAMC Interrupt Mask Register

	Name: Offset: Reset: Property:	SDRAMC_IMF 0x1C 0x00000000 Read-only	2					
Bit	31	30	29	28	27	26	25	24
Accoss								
Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								RES
Access								R
Reset								0

Bit 0 – RES Refresh Error Interrupt Mask

Value	Description
0	The refresh error interrupt is disabled.
1	The refresh error interrupt is enabled.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.									
		7:0	SDS_MSP[7:0]								
	XDMAC_CDS_MSP	15:8				SDS_M	SP[15:8]				
0x037C	12	23:16		DDS_MSP[7:0]							
		31:24				DDS_M	SP[15:8]				
		7:0		SUBS[7:0]							
		15:8				SUBS	[15:8]				
0x0380 XDMAC_CSUS12	23:16		SUBS[23:16]								
	31:24				-						
		7:0				DUBS	5[7:0]				
		15:8				DUBS	5[15:8]				
0x0384	XDMAC_CDUS12	23:16				DUBS	[23:16]				
		31:24									
0x0388											
	Reserved										
0x038F											
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE	
		15:8									
0x0390	XDMAC_CIE13	23:16									
	31:24										
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID	
		15:8									
0x0394	XDMAC_CID13	23:16									
		31:24									
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM	
		15:8									
0x0398	XDMAC_CIM13	23:16									
		31:24									
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS	
		15:8									
0x039C	XDMAC_CIS13	23:16									
		31:24									
		7:0				SA	7:0]				
		15:8				SA[1	15:8]				
0x03A0	XDMAC_CSA13	23:16				SA[2	3:16]				
		31:24				SA[3	1:24]				
		7:0				DA	7:0]				
		15:8				DAI	15:81				
0x03A4	XDMAC_CDA13	23:16				DAI2	3:16]				
		31:24				DAI3	1:24]				
		7:0			NDA	v[5:0]				NDAIF	
		15:8				NDAI	13:6]				
0x03A8	XDMAC_CNDA13	23:16				NDAI	21:14]				
		31:24				NDAI	29:221				
		7:0					W[1:0]	NDDUP	NDSUP	NDE	
0x03AC	XDMAC CNDC13	15:8					[]				
		23.16									
		20.10									

DMA Controller (XDMAC)

Offset	Name	Bit Pos.								
		15:8				NDA	[13:6]			
		23:16				NDA[2	21:14]			
		31:24				NDA[2	29:22]			
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE
0×044.0	XDMAC_CNDC17	15:8								
UXU4AC		23:16								
		31:24								
		7:0				UBLE	N[7:0]		:	
0x04B0 XDM		15:8				UBLEN	N[15:8]			
	ADIVIAC_COBC17	23:16				UBLEN	I[23:16]			
		31:24								
		7:0				BLEN	N[7:0]			
0x04P4		15:8						BLEN	I [11:8]	
0X04D4	ADIVIAC_CBC17	23:16								
		31:24								
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE
0x0488		15:8		DIF	SIF	DWID	TH[1:0]		CSIZE[2:0]	
0X04D0	XDIVIAC_CC17	23:16	WRIP	RDIP	INITD		DAM	I[1:0]	SAM	I[1:0]
		31:24					PERID[6:0]		:	
		7:0				SDS_M	ISP[7:0]			
0x04BC	XDMAC_CDS_MSP	15:8				SDS_M	SP[15:8]			
	17	23:16				DDS_M	ISP[7:0]			
		31:24				DDS_M	SP[15:8]			
		7:0				SUBS	S[7:0]			
0x04C0		15:8				SUBS	5[15:8]			
0,0400		23:16				SUBS	[23:16]			
		31:24								
		7:0				DUB	S[7:0]			
0x04C4	XDMAC CDUS17	15:8				DUBS	6[15:8]			
0,0101		23:16				DUBS	[23:16]			
		31:24								
0x04C8										
	Reserved									
0x04CF										
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE
0x04D0	XDMAC_CIE18	15:8								
		23:16								
		31:24								
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID
0x04D4	XDMAC_CID18	15:8								
		23:16								
		31:24								-
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM
0x04D8	XDMAC_CIM18	15:8								
		23:16								
		31:24								

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.										
	USBHS_HSTDMAA DDRESSx	7:0		BUFF_ADD[7:0]								
		15:8	BUFF_ADD[15:8]									
0x0754		23:16	BUFF_ADD[23:16]									
		31:24		BUFF_ADD[31:24]								
		7:0	BURST_LCK	DESC_LD_IT	END_BUFFIT	END_TR_IT	END_B_EN	END_TR_EN	LDNXT_DSC	CHANN_ENB		
0.0750	USBHS_HSTDMAC	15:8										
0x0758	ONTROLx	23:16		BUFF_LENGTH[7:0]								
		31:24				BUFF_LEN	IGTH[15:8]					
		7:0		DESC_LDST	END_BF_ST	END_TR_ST			CHANN_ACT	CHANN_ENB		
0.0750	USBHS_HSTDMAS	15:8										
0x075C	TATUSx	23:16		1	-	BUFF_CC	DUNT[7:0]	1	1	1		
		31:24				BUFF_CO	UNT[15:8]					
		7:0				NXT_DSC	_ADD[7:0]					
0×0760	USBHS_HSTDMAN	15:8				NXT_DSC	_ADD[15:8]					
0.0700	XTDSC7	23:16				NXT_DSC_	ADD[23:16]					
		31:24				NXT_DSC_	ADD[31:24]					
		7:0		BUFF_ADD[7:0]								
0x0764	USBHS_HSTDMAA DDRESSx	15:8		BUFF_ADD[15:8]								
0,0104		23:16		BUFF_ADD[23:16]								
		31:24			-	BUFF_A	DD[31:24]	-				
	USBHS_HSTDMAC ONTROLX	7:0	BURST_LCK	DESC_LD_IT	END_BUFFIT	END_TR_IT	END_B_EN	END_TR_EN	LDNXT_DSC	CHANN_ENB		
0x0768		15:8										
		23:16		BUFF_LENGTH[7:0]								
		31:24				BUFF_LEN	IGTH[15:8]					
		7:0		DESC_LDST	END_BF_ST	END_TR_ST			CHANN_ACT	CHANN_ENB		
0x076C	USBHS_HSTDMAS	15:8										
	TATUSx	23:16		BUFF_COUNT[7:0]								
		31:24				BUFF_CO	UNT[15:8]					
0x0770												
	Reserved											
0x07FF												
		7:0	LIODE	502011/		RDERRE						
0x0800	USBHS_CTRL	02:40	USBE	FRZULK						VBUSHWC		
		23.10										
		31.24				PDEPDI			UIWOD	UID		
		15.0			SDEE							
0x0804	USBHS_SR	10.0		CLKUSABLE	SFEE	.D[1.0]						
		23.10										
		7.0				RDERRIC						
		15.8				RELATIO						
0x0808	USBHS_SCR	23.16										
		31.24										
		7:0				RDFRRIS						
0x080C	USBHS_SFR	15.8							VBUSROS			
		10.0							10001000			

Two-wire Interface (TWIHS)

SAM E70/S70/V70/V71 Family Universal Synchronous Asynchronous Receiver Transc...

46.7.4 USART Mode Register (SPI_MODE)

Name:US_MR (SPI_MODE)Offset:0x0004Reset:0x0Property:Read/Write

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

– Applicable if USART operates in SPI mode (USART_MODE = 0xE or 0xF):

Bit 20 - WRDBT Wait Read Data Before Transfer

Value	Description
0	The character transmission starts as soon as a character is written into US_THR (assuming
	TXRDY was set).
1	The character transmission starts when a character is written and only if RXRDY flag is
	cleared (Receive Holding Register has been read).

Bit 18 – CLKO Clock Output Select

Value	Description
0	The USART does not drive the SCK pin.
1	The USART drives the SCK pin if USCLKS does not select the external clock SCK.

Bit 16 - CPOL SPI Clock Polarity

Applicable if USART operates in SPI mode (Slave or Master, USART_MODE = 0xE or 0xF):

CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to produce the required clock/data relationship between master and slave devices.

© 2018 Microchip Technology Inc.

Media Local Bus (MLB)

Channel Address	Logical Channel
0x0002	1
0x0004	2
0x0006	3
0x007C	62
0x007E	63
0x01FE	0 ⁽¹⁾

Table 48-8. MediaLB Channel Address to Logical Channel Mapping

Note: 1. Logical Channel 0 is the System Channel and is reserved.

48.6.3.2 Host Bus Interface Block

The Host Bus Interface (HBI) block provides a 16-bit parallel slave port that provides an external Host Controller (HC) with access to all MOST channels and data types.

Up to 64 independent HBI channels are available to the HC, each configurable for either transmitting or receiving a particular application data type (synchronous, isochronous, asynchronous, or control). The HBI block provides source and sink access to the full network data bandwidth.

HBI Physical Addresses

To access a particular HBI DMA channel, hardware must first translate the HBI channel address to a channel allocation table (CAT) physical address. This physical address is then used to retrieve the channel label (CL), which in turn retrieves the channel descriptor.

See the following table for more information on the mapping between the HBI channel address and physical address.

HBI Channel	CAT Address	CAT Offset
0x0	0x88	000
0x1	0x88	001
0x2	0x88	010
0x3	0x88	011
0x4	0x88	100
0x5	0x88	101
0x6	0x88	110
0x7	0x88	111
0x8	0x89	000

Table 48-9. HBI Channel Address to Physical Address Mapping

Media Local Bus (MLB)

- 4. Program the CAT for the inbound DMA
 - 4.1. For Tx channels (to MediaLB) HBI is the inbound DMA
 - 4.2. For Rx channels (from MediaLB) MediaLB is the inbound DMA
 - 4.3. Set the channel direction: RNW = 0
 - 4.4. Set the channel type: CT[2:0] = 010 (asynchronous), 001 (control), 011 (isochronous), or 000 (synchronous)
 - 4.5. Set the connection label: CL[5:0] = N
 - 4.6. If CT[2:0] = 000 (synchronous), set the mute bit (MT = 1)
 - 4.7. Set the channel enable: CE = 1
 - 4.8. Set all other bits of the CAT to '0'
- 5. Program the CAT for the outbound DMA
 - 5.1. For Tx channels (to MediaLB) MediaLB is the outbound DMA
 - 5.2. For Rx channels (from MediaLB) HBI is the outbound DMA
 - 5.3. Set the channel direction: RNW = 1
 - 5.4. Set the channel type: CT[2:0] = 010 (asynchronous), 001 (control), 011 (isochronous), or 000 (synchronous)
 - 5.5. Set the channel label: CL[5:0] = N
 - 5.6. If CT[2:0] = 000 (synchronous), set the mute bit (MT = 1)
 - 5.7. Set the channel enable: CE = 1
 - 5.8. Set all other bits of the CAT to '0'
- 6. Repeat steps 2–5 to initialize all logical channels

Program the AHB Block DMAs

The ADT resides in the external CTR and is programmed indirectly via APB reads and writes to the MIF.

- 1. Initialize all bits of the ADT to '0'
- 2. Select a logical channel: N = 0-63
- 3. Program the AHB block ping page for channel N
 - 3.1. Set the 32-bit base address (BA1)
 - 3.2. Set the 11-bit buffer depth (BD1): BD1 = buffer depth in bytes 1
 - 3.2.1. For synchronous channels: (BD1 + 1) = n x frames per sub-buffer (m) x bytesper-frame (bpf)
 - 3.2.2. For isochronous channels: (BD1 + 1) mod (BS + 1) = 0
 - 3.2.3. For asynchronous channels: $5 \le (BD1 + 1) \le 4096$ (max packet length)
 - 3.2.4. For control channels: $5 \le (BD1 + 1) \le 4096$ (max packet length)
 - 3.3. For asynchronous and control Tx channels set the packet start bit (PS1) iff the page contains the start of the packet
 - 3.4. Clear the page done bit (DNE1)
 - 3.5. Clear the error bit (ERR1)
 - 3.6. Set the page ready bit (RDY1)
- 4. Program the AHB block pong page for channel N
 - 4.1. Set the 32-bit base address (BA2)
 - 4.2. Set the 11-bit buffer depth (BD2): BD2 = buffer depth in bytes 1
 - 4.2.1. For synchronous channels: (BD2 +1) = n x frames per sub-buffer (m) x bytesper-frame (bpf)

Media Local Bus (MLB)

Offset	Name	Bit Pos.										
 0x7F												
0x80		7:0							RST1	RST0		
		15:8	EN									
		23:16										
		31:24										
0x84												
	Reserved											
0x87												
		7:0		CHM: Bitwise Channel Mask Bit [31[7:0]								
0x88	MLB_HCMR0	15:8	CHM: Bitwise Channel Mask Bit [31[15:8]									
		23:16			CHM:	Bitwise Chann	el Mask Bit [31	[23:16]				
		31:24			CHM:	Bitwise Chann	el Mask Bit [31	[31:24]				
		7:0			CHM	1: Bitwise Chan	nel Mask Bit [6	3[7:0]				
0x8C	MLB_HCMR1	15:8			СНМ	: Bitwise Chanr	el Mask Bit [63	8[15:8]				
		23:16			CHM:	Bitwise Channe	el Mask Bit [63	[23:16]				
		31:24			CHM:	Bitwise Chann	el Mask Bit [63	[31:24]				
		7:0		CERR: Bitwise Channel Error Bit [31[7:0]								
0x90	MLB_HCER0	15:8	CERR: Bitwise Channel Error Bit [31[15:8]									
		23:10	CERR: Bitwise Channel Error Bit [31[23:16]									
		31:24	CERR: Bitwise Channel Error Bit [31[31:24]									
	MLB_HCER1	15.9	CERR: Bitwise Channel Error Bit (63/15:8)									
0x94		10.0				· Bitwise Chan		0[10:0]				
		23.10			CEPP		ol Error Bit [63	123.10j				
		7:0			CHE	Bitwise Chan	nel Rusy Rit [31	1[7·0]				
	MLB_HCBR0	15.8			CHB	· Bitwise Chanr	nel Busy Bit [31	[15:8]				
0x98		23.16	CHB: Bitwise Channel Busy Bit [31[23:16]									
		31.24		CHB: Bitwise Channel Busy Bit [31[31:24]								
		7:0										
		15:8	CHB: Bitwise Channel Busy Bit [63[15:8]									
0x9C	MLB_HCBR1	23:16	CHB: Bitwise Channel Busy Bit [63[23:16]									
		31:24			CHB:	Bitwise Chann	el Busy Bit [63[31:24]				
0xA0								_				
	Reserved											
0xBF												
		7:0				DAT	A[7:0]	1	1			
0×00		15:8				DATA	[15:8]					
0.00	WILD_WIDATO	23:16				DATA	[23:16]					
		31:24				DATA	[31:24]					
		7:0				DAT	A [7:0]					
0xC4		15:8	3 DATA[15:8]									
		23:16				DATA	[23:16]					
		31:24				DATA	[31:24]					
0xC8		7:0				DAT	A[7:0]					
		15:8				DATA	[15:8]					

Timer Counter (TC)

Figure 50-6. Capture Mode

50.6.11 Waveform Mode

Waveform mode is entered by setting the TC_CMRx.WAVE bit.

In Waveform mode, the TC channel generates one or two PWM signals with the same frequency and independently programmable duty cycles, or generates different types of one-shot or repetitive pulses.

In this mode, TIOAx is configured as an output and TIOBx is defined as an output if it is not used as an external event (EEVT parameter in TC_CMR).

Waveform Mode shows the configuration of the TC channel when programmed in Waveform operating mode.

50.6.12 Waveform Selection

Depending on the WAVSEL parameter in TC_CMR, the behavior of TC_CV varies.

With any selection, TC_RA, TC_RB and TC_RC can all be used as compare registers.

RA Compare is used to control the TIOAx output, RB Compare is used to control the TIOBx output (if correctly configured) and RC Compare is used to control TIOAx and/or TIOBx outputs.

Timer Counter (TC)

Offset	Name	Bit Pos.									
		23:16									
		31:24									
		7:0			TC2XC	TC2XC2S[1:0]		TC1XC1S[1:0]		TC0XC0S[1:0]	
		15:8	INVIDX	INVB	INVA	EDGPHA	QDTRANS	SPEEDEN	POSEN	QDEN	
0xC4	IC_BMR	23:16		MAXF	ILT[3:0]	1		AUTOC	IDXPHB	SWAP	
		31:24				MAXCMP[3:0]			MAXFILT[5:4]		
		7:0					MPE	QERR	DIRCHG	IDX	
000		15:8									
UXC8	TC_QIER	23:16									
		31:24									
0xCC											
	Reserved										
0xCF											
		7:0					MPE	QERR	DIRCHG	IDX	
0xD0		15:8									
0,00		23:16									
		31:24									
	TC_QISR	7:0					MPE	QERR	DIRCHG	IDX	
0×D4		15:8								DIR	
0,04		23:16									
		31:24									
		7:0							ENCF1	ENCF0	
0xD8	TC EMR	15:8									
0,00	10_1	23:16									
		31:24									
0xDC											
	Reserved										
0xE3											
		7:0								WPEN	
0xF4	TC WPMR	15:8				WPKE	EY[7:0]				
UNLT	IC_WPMR	23:16				WPKE	Y[15:8]				
		31:24				WPKE	Y[23:16]				

Pulse Width Modulation Controller (PWM)

51.7.11 PWM Sync Channels Update Control Register

Bit 0 – UPDULOCK Synchronous Channels Update Unlock This bit is automatically reset when the update is done.

Value	Description
0	No effect
1	If the UPDM field is set to '0' in PWM Sync Channels Mode Register, writing the UPDULOCK
	bit to '1' triggers the update of the period value, the duty-cycle and the dead-time values of
	synchronous channels at the beginning of the next PWM period. If the field UPDM is set to
	'1' or '2', writing the UPDULOCK bit to '1' triggers only the update of the period value and of
	the dead-time values of synchronous channels.

Moreover, when a DMA channel is connected to the AFEC, a resolution lower than 16 bits sets the transfer request size to 16 bits.

Note: If ADTRG is asynchronous to the AFEC peripheral clock, the internal resynchronization introduces a jitter of 1 peripheral clock. This jitter may reduce the resolution of the converted signal. Refer to the formula below, where f_{IN} is the frequency of the analog signal to convert and t_J is the half-period of 1 peripheral clock.

$$\mathrm{SNR} = 20 \times \mathrm{log10} \left(\frac{1}{2\pi f_{\mathrm{IN}} t_J} \right)$$

52.6.4 Conversion Results

When a conversion is completed, the resulting 12-bit digital value is stored in an internal register (one register for each channel) that can be read by means of the Channel Data Register (AFEC_CDR) and the Last Converted Data Register (AFEC_LCDR). By setting the bit TAG in the AFEC_EMR, the AFEC_LCDR presents the channel number associated with the last converted data in the CHNB field.

The bits EOCx, where 'x' corresponds to the value programmed in the CSEL bit of AFEC_CSELR, and DRDY in the Interrupt Status Register (AFEC_ISR) are set. In the case of a connected DMA channel, DRDY rising triggers a data transfer request. In any case, either EOCx or DRDY can trigger an interrupt.

Reading the AFEC_CDR clears the EOCx bit. Reading AFEC_LCDR clears the DRDY bit and the EOCx bit corresponding to the last converted channel.

Figure 52-4. EOCx and DRDY Flag Behavior

If AFEC_CDR is not read before further incoming data is converted, the corresponding OVREx flag is set in the Overrun Status Register (AFEC_OVER).

New data converted when DRDY is high sets the GOVRE bit in AFEC_ISR.

The OVREx flag is automatically cleared when AFEC_OVER is read, and the GOVRE flag is automatically cleared when AFEC_ISR is read.

Digital-to-Analog Converter Controller (DACC)

53.7.8 DACC Interrupt Enable Register

Name:DACC_IEROffset:0x24Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bits 4, 5 – EOCx End of Conversion Interrupt Enable of channel x

Bits 0, 1 – TXRDYx Transmit Ready Interrupt Enable of channel x

Electrical Characteristics for SAM ...

For the other resolution defined by RES, the code C_i is extended to the corresponding resolution.

The table below is a computation example for the above formula, where V_{VREFP} = 3V:

Table 58-33. Input Voltage Values in Single-ended Mode

Ci		Gain				
Signed	Nonsigned	1	2	4		
-2048	0	0	0.75	1.125		
0	2047	1.5	1.5	1.5		
2047	4095	3	2.25	1.875		

58.8.4.3 Example of LSB Computation

The LSB is relative to the analog scale V_{VREFP} .

The term LSB expresses the quantization step in volts, also used for one AFE code variation.

- Single-ended (SE) (ex: V_{VREFP} = 3.0V)
 - Gain = 1, LSB = $(3.0V / 4096) = 732 \mu V$
 - Gain = 2, LSB = (1.5V / 4096) = 366 μV
 - Gain = 4, LSB = (750 mV / 4096) = 183 μV
- Differential (DIFF) (ex: V_{VREFP} = 3.0V)
 - Gain = 0.5, LSB = (6.0V / 4096) = 1465 μV
 - Gain = 1, LSB = $(3.0V / 4096) = 732 \mu V$
 - Gain = 2, LSB = (1.5V / 4096) = 366 μV

The data include the AFE performances, as the PGA and AFE core cannot be separated. The temperature and voltage dependency are given as separate parameters.

58.8.4.4 Gain and Offset Errors

For:

- a given gain error: E_G (%)
- a given ideal code (C_i)
- a given offset error: E_O (LSB of 12 bits)

in 12-bit mode, the actual code (C_A) is calculated using the following formula

$$C_A = \left(1 + \frac{E_G}{100}\right) \times (C_i - 2047) + 2047 + E_0$$

For higher resolutions, the code can be extended to the corresponding resolution defined by RES.

58.8.4.4.1 Differential Mode

In Differential mode, the offset is defined when the differential input voltage is zero.