E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70n20a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	37.1.	Description	590
3	37.2.	Embedded Characteristics	591
3	37.3.	Block Diagram	
3	37.4.	Product Dependencies	
3	37.5.	Functional Description	
		Register Summary	
38. (GMA	AC - Ethernet MAC	640
3	38.1.	Description	640
3	38.2.	Embedded Characteristics	640
3	38.3.	Block Diagram	641
3	38.4.	Signal Interface	641
3	38.5.	Product Dependencies	642
3	38.6.	Functional Description	642
3	38.7.	Programming Interface	673
3	38.8.	Register Summary	678
30 I	ISB	High-Speed Interface (USBHS)	831
		Description	
		Embedded Characteristics	
		Block Diagram	
		Product Dependencies	
		Functional Description	
		Register Summary	
40. ł	High	-Speed Multimedia Card Interface (HSMCI)	1042
40. H	-ligh 10.1.	n-Speed Multimedia Card Interface (HSMCI) Description	1042
40. H	High 10.1. 10.2.	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics	1042 1042 1042
40. H	High 10.1. 10.2. 10.3.	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram	1042 1042 1042 1043
40. H	High 10.1. 10.2. 10.3. 10.4.	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram	1042
40. H	High 10.1. 10.2. 10.3. 10.4. 10.5.	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List	1042
40. H	High 10.1. 10.2. 10.3. 10.4. 10.5. 10.6.	Description Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies	1042
40. H	High 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7.	Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology	1042
40. H	High 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7. 10.8.	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations	1042
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.5. 40.7. 40.8.	Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation	1042
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.5. 40.6. 40.7. 40.8. 40.9.	Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation CE-ATA Operation	1042
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.5. 40.5. 40.5. 40.7. 40.10 40.11	n-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation CE-ATA Operation HSMCI Boot Operation Mode	1042
40. H	High 40.1. 40.2. 40.3. 40.5. 40.5. 40.6. 40.7. 40.8. 40.9. 40.10 40.11.	Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation C CE-ATA Operation HSMCI Boot Operation Mode HSMCI Transfer Done Timings.	1042
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.7. 40.9. 40.10 40.11. 40.12 40.13	Description Embedded Characteristics. Block Diagram. Application Block Diagram. Pin Name List. Product Dependencies. Bus Topology. High-Speed Multimedia Card Operations. SD/SDIO Card Operation. O. CE-ATA Operation. HSMCI Boot Operation Mode Register Write Protection.	1042
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.6. 40.7. 40.10 40.11 40.12 40.13 40.13	Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation C CE-ATA Operation HSMCI Boot Operation Mode HSMCI Transfer Done Timings.	
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.7. 40.8. 40.9. 40.10 40.11 40.12 40.13 40.14 5eria	 Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation CE-ATA Operation CE-ATA Operation Mode HSMCI Boot Operation Mode HSMCI Transfer Done Timings. Register Write Protection Register Summary 	
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.7. 40.10 40.11 40.12 40.13 40.13 40.14 Seria 41.1.	 Speed Multimedia Card Interface (HSMCI). Description. Embedded Characteristics. Block Diagram. Application Block Diagram. Pin Name List. Product Dependencies. Bus Topology. High-Speed Multimedia Card Operations. SD/SDIO Card Operation. CE-ATA Operation. HSMCI Boot Operation Mode. HSMCI Transfer Done Timings. Register Write Protection. Register Summary. al Peripheral Interface (SPI). 	
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.7. 40.8. 40.9. 40.10 40.11 40.12 40.13 40.14 Seria 41.1.	 Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation CE-ATA Operation HSMCI Boot Operation Mode HSMCI Transfer Done Timings Register Write Protection Register Summary al Peripheral Interface (SPI) Description 	
40. H	High 40.1. 40.2. 40.3. 40.4. 40.5. 40.6. 40.7. 40.8. 40.10 40.11. 40.12 40.13 40.14 Seria 41.1. 41.2. 41.3.	A-Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics. Block Diagram Application Block Diagram Pin Name List. Product Dependencies. Bus Topology. High-Speed Multimedia Card Operations. SD/SDIO Card Operation O. CE-ATA Operation. CE-ATA Operation. HSMCI Boot Operation Mode HSMCI Boot Operation Mode Register Write Protection Register Summary. al Peripheral Interface (SPI) Description Embedded Characteristics.	
40. H	High 40.1. 40.2. 40.3. 40.5. 40.6. 40.7. 40.9. 40.10 40.11. 40.12 40.13 40.14 41.1. 41.2. 41.3. 41.3.	 Speed Multimedia Card Interface (HSMCI) Description Embedded Characteristics Block Diagram Application Block Diagram Pin Name List Product Dependencies Bus Topology High-Speed Multimedia Card Operations SD/SDIO Card Operation CE-ATA Operation HSMCI Boot Operation Mode HSMCI Transfer Done Timings Register Write Protection Register Summary al Peripheral Interface (SPI) Description Embedded Characteristics Block Diagram 	

5. Automotive Quality Grade

The SAM V70 and SAM V71 devices have been developed and manufactured according to the most stringent requirements of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive characterization (temperature and voltage).

The quality and reliability of the SAM V70 and SAM V71 has been verified during regular product qualification as per AEC-Q100 grade 2 (-40° C to $+105^{\circ}$ C).

Table 5-1. Temperature Grade Identification for Automotive Products

Temperature (°C)	Temperature Identifier	Comments
–40°C to +105°C	В	AEC-Q100 Grade 2

22. Enhanced Embedded Flash Controller (EEFC)

22.1 Description

The Enhanced Embedded Flash Controller (EEFC) provides the interface of the Flash block with the 32bit internal bus.

Its 128-bit wide memory interface increases performance. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

22.2 Embedded Characteristics

- Increases Performance in Thumb-2 Mode with 128-bit-wide Memory Interface up to 150 MHz
- Code Loop Optimization
- 128 Lock Bits, Each Protecting a Lock Region
- 9 General-purpose GPNVM Bits
- One-by-one Lock Bit Programming
- Commands Protected by a Keyword
- Erase the Entire Flash
- Erase by Plane
- Erase by Sector
- Erase by Page
- Provides Unique Identifier
- Provides 512-byte User Signature Area
- Supports Erasing before Programming
- Locking and Unlocking Operations
- ECC Single and Multiple Error Flags Report
- Supports Read of the Calibration Bits
- Register Write Protection

22.3 Product Dependencies

22.3.1 Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller has no effect on its behavior.

22.3.2 Interrupt Sources

The EEFC interrupt line is connected to the interrupt controller. Using the EEFC interrupt requires the interrupt controller to be programmed first. The EEFC interrupt is generated only if the value of EEFC_FMR.FRDY is '1'.

22.4.2.3 Data Read Optimization

The organization of the Flash in 128 bits is associated with two 128-bit prefetch buffers and one 128-bit data read buffer, thus providing maximum system performance. This buffer is added in order to store the requested data plus all the data contained in the 128-bit aligned data. This speeds up sequential data reads if, for example, FWS is equal to 1 (see Figure 22-6). The data read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set, this buffer is disabled and the data read is no longer optimized.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 22-6	6. Data	a Read (Optimiz	zation	for FWS	5 = 1						
Master Clock												
ARM Request (32-bit)			1	1	1	1		1	1	1	1	1
	@Byte 0		@4	@ 8	@ 12	@ 16		@ 20	@ 24	@ 28	@ 32	@ 36
Flash Access	xxx	X Bytes	0–15			X	Bytes 16	6–31			X	Bytes 32–47
Buffer (128 bits)	X	XXX		(By	ytes 0–15		X		E	Bytes 16–31	
Data to ARM	χ_,	XX	Bytes 0-3	4-7	X 8–11	(12–15)		16–19	20–23	24–27	28–31	32–35

22.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock regions, consecutive programming, locking and full Flash erasing, etc.

The commands are listed in the following table.

Table 22-1. Set of Commands

Command	Value	Mnemonic
Get Flash Descriptor	0x00	GETD
Write Page	0x01	WP
Write Page and Lock	0x02	WPL
Erase Page and Write Page	0x03	EWP
Erase Page and Write Page and then Lock	0x04	EWPL
Erase All	0x05	EA
Erase Pages	0x07	EPA
Set Lock Bit	0x08	SLB
Clear Lock Bit	0x09	CLB
Get Lock Bit	0x0A	GLB
Set GPNVM Bit	0x0B	SGPB
Clear GPNVM Bit	0x0C	CGPB

Supply Controller (SUPC)

Value	Description
0	(NO): No wakeup due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
1	(PRESENT): At least one wakeup due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

Bit 1 – WKUPS WKUP Wakeup Status (cleared on read)

Parallel Input/Output Controller (PIO)

32.6.1.9 PIO Input Filter Status Register

Name:	PIO_IFSR
Offset:	0x0028
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		•			•		•	
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access			•				•	
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access					•		•	
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Input Filter Status

Value	Description
0	The input glitch filter is disabled on the I/O line.
1	The input glitch filter is enabled on the I/O line.

GMAC - Ethernet MAC

Broadcast Frames Transmitted Register	64 Byte Frames Received Register
Multicast Frames Transmitted Register	65 to 127 Byte Frames Received Register
Pause Frames Transmitted Register	128 to 255 Byte Frames Received Register
64 Byte Frames Transmitted Register	256 to 511 Byte Frames Received Register
65 to 127 Byte Frames Transmitted Register	512 to 1023 Byte Frames Received Register
128 to 255 Byte Frames Transmitted Register	1024 to 1518 Byte Frames Received Register
256 to 511 Byte Frames Transmitted Register	1519 to Maximum Byte Frames Received Register
512 to 1023 Byte Frames Transmitted Register	Undersize Frames Received Register
1024 to 1518 Byte Frames Transmitted Register	Oversize Frames Received Register
Greater Than 1518 Byte Frames Transmitted Register	Jabbers Received Register
Transmit Underruns Register	Frame Check Sequence Errors Register
Single Collision Frames Register	Length Field Frame Errors Register
Multiple Collision Frames Register	Receive Symbol Errors Register
Excessive Collisions Register	Alignment Errors Register
Late Collisions Register	Receive Resource Errors Register
Deferred Transmission Frames Register	Receive Overrun Register
Carrier Sense Errors Register	IP Header Checksum Errors Register
Octets Received Low Register	TCP Checksum Errors Register
Octets Received High Register	UDP Checksum Errors Register
Frames Received Register	

These registers reset to zero on a read and stick at all ones when they count to their maximum value. They should be read frequently enough to prevent loss of data.

The receive statistics registers are only incremented when the receive enable bit (RXEN) is set in the Network Control register.

Once a statistics register has been read, it is automatically cleared. When reading the Octets Transmitted and Octets Received registers, bits 31:0 should be read prior to bits 47:32 to ensure reliable operation.

39.5.2.18 CRC Error

This error only exists for isochronous OUT endpoints. It sets the CRC Error Interrupt (USBHS_DEVEPTISRx.CRCERRI) bit, which triggers a PEP_x interrupt if the CRC Error Interrupt Enable (USBHS_DEVEPTIMRx.CRCERRE) bit is one.

A CRC error can occur during the OUT stage if the USBHS detects a corrupted received packet. The OUT packet is stored in the bank as if no CRC error had occurred (USBHS_DEVEPTISRx.RXOUTI is set).

39.5.2.19 Interrupts

See the structure of the USB device interrupt system in Figure 39-3.

There are two kinds of device interrupts: processing, i.e., their generation is part of the normal processing, and exception, i.e., errors (not related to CPU exceptions).

Global Interrupts

The processing device global interrupts are:

- Suspend (USBHS_DEVISR.SUSP)
- Start of Frame (USBHS_DEVISR.SOF) interrupt with no frame number CRC error the Frame Number CRC Error (USBHS_DEVFNUM.FNCERR) bit is zero.
- Micro Start of Frame (USBHS_DEVISR.MSOF) with no CRC error
- End of Reset (USBHS_DEVISR.EORST)
- Wakeup (USBHS_DEVISR.WAKEUP)
- End of Resume (USBHS_DEVISR.EORSM)
- Upstream Resume (USBHS_DEVISR.UPRSM)
- Endpoint x (USBHS_DEVISR.PEP_x)
- DMA Channel x (USBHS_DEVISR.DMA_x)

The exception device global interrupts are:

- Start of Frame (USBHS_DEVISR.SOF) with a frame number CRC error (USBHS_DEVFNUM.FNCERR = 1)
- Micro Start of Frame (USBHS_DEVFNUM.FNCERR.MSOF) with a CRC error Endpoint Interrupts

The processing device endpoint interrupts are:

- Transmitted IN Data (USBHS_DEVEPTISRx.TXINI)
- Received OUT Data (USBHS_DEVEPTISRx.RXOUTI)
- Received SETUP (USBHS_DEVEPTISRx.RXSTPI)
- Short Packet (USBHS_DEVEPTISRx.SHORTPACKET)
- Number of Busy Banks (USBHS_DEVEPTISRx.NBUSYBK)
- Received OUT Isochronous Multiple Data (DTSEQ = MDATA & USBHS_DEVEPTISRx.RXOUTI)
- Received OUT Isochronous DataX (DTSEQ = DATAX & USBHS_DEVEPTISRx.RXOUTI)

The exception device endpoint interrupts are:

- Underflow (USBHS_DEVEPTISRx.UNDERFI)
- NAKed OUT (USBHS_DEVEPTISRx.NAKOUTI)
- High-Bandwidth Isochronous IN Error (USBHS_DEVEPTISRx.HBISOINERRI)
- NAKed IN (USBHS_DEVEPTISRx.NAKINI)

USB High-Speed Interface (USBHS)

39.6.54 Host Pipe x Mask Register (Control, Bulk Pipes)

Name:	USBHS_HSTPIPIMRx
Offset:	0x05C0 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

This register view is relevant only if PTYPE = 0x0 or 0x2 in "Host Pipe x Configuration Register".

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						RSTDT	PFREEZE	PDISHDMA
Access								
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
		FIFOCON		NBUSYBKE				
Access								
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	RXSTALLDE	OVERFIE	NAKEDE	PERRE	TXSTPE	TXOUTE	RXINE
	TIE							
Access								
Reset	0	0	0	0	0	0	0	0

Bit 18 – RSTDT Reset Data Toggle

Value	Description
0	No reset of the Data Toggle is ongoing.
0	Set when USBHS_HSTPIPIER.RSTDTS = 1. This resets the Data Toggle to its initial value for the current pipe.

Bit 17 – PFREEZE Pipe Freeze

This freezes the pipe request generation.

Value	Description
0	Cleared when USBHS_HSTPIPIDR.PFREEZEC = 1. This enables the pipe request generation.
1	Set when one of the following conditions is met:
	USBHS_HSTPIPIER.PFREEZES=
	The pipe is not configured.
	A STALL handshake has been received on the pipe.
	 An error has occurred on the pipe (USBHS_HSTPIPISR.PERRI = 1).

High-Speed Multimedia Card Interface (HSMCI)

40.14.5 HSMCI Argument Register

Name:	HSMCI_ARGR
Offset:	0x10
Reset:	0x0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
		ARG[31:24]						
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ARG[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ARG	[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ARG	G[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ARG[31:0] Command Argument

Quad Serial Peripheral Interface (QSPI)

42.7.7 QSPI Interrupt Disable Register

Name:QSPI_IDROffset:0x18Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
D:4	45		10	10	44	10	0	0
Bit	15	14	13	12	11	10	9	8
						INSTRE	CSS	CSR
Access						W	W	W
Reset						-	_	_
Bit	7	6	5	4	3	2	1	0
					OVRES	TXEMPTY	TDRE	RDRF
Access					W	W	W	W
Reset					_	-	-	_

Bit 10 – INSTRE Instruction End Interrupt Disable

Bit 9 – CSS Chip Select Status Interrupt Disable

Bit 8 – CSR Chip Select Rise Interrupt Disable

Bit 3 – OVRES Overrun Error Interrupt Disable

Bit 2 – TXEMPTY Transmission Registers Empty Disable

Bit 1 – TDRE Transmit Data Register Empty Interrupt Disable

Bit 0 - RDRF Receive Data Register Full Interrupt Disable

Two-wire Interface (TWIHS)

Value	Description						
0	No effect.						
1	STOP condition is sent just after completing the current byte transmission in Master Read mode.						
	 In single data byte master read, both START and STOP must be set. In multiple data bytes master read, the STOP must be set after the last data received but one. 						
	 In Master Read mode, if a NACK bit is received, the STOP is automatically performed. In master data write operation, a STOP condition will be sent after the transmission of the current data is finished. 						

Bit 0 – START Send a START Condition

This action is necessary when the TWIHS peripheral needs to read data from a slave. When configured in Master mode with a write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWIHS_THR).

Value	Description
0	No effect.
1	A frame beginning with a START bit is transmitted according to the features defined in the
	TWIHS Master Mode Register (TWIHS_MMR).

Media Local Bus (MLB)

Field	No. of Bits	Description	Accessibility
		Reserved for synchronous and isochronous channels.	
MEP1	1	Most Ethernet Packet (MEP) indicator for ping buffer page: 0 = Not MEP	Rsvd for Tx r,u ⁽¹⁾ ,c0 ⁽²⁾ for Rx
		1 = MEP	
		MEP1 only valid for the first page of a segmented buffer.	
		Reserved for control, synchronous and isochronous channels.	
MEP2	1	MEP packet indicator for pong buffer page: 0 = not MEP	Reserved for Tx r,u ⁽¹⁾ ,c0 ⁽²⁾ for Rx
		1 = MEP MEP2 only valid for the first page of a segmented buffer.	
		Reserved for control, synchronous and isochronous channels.	
BD1 ⁽²⁾	11 to 13	Buffer depth for ping buffer page: 11 or 12-bits for asynchronous and control channels.	r,w
		13-bits for synchronous and isochronous channels.	
BD2 ⁽²⁾	11 to 13	Buffer depth for pong buffer page: 11 or 12-bits for asynchronous and control channels.	r,w
		13-bits for synchronous and isochronous channels.	
BA1	32	Buffer base address for ping buffer page	r,w
BA2	32	Buffer base address for pong buffer page	r,w
Reserved	varies	Software writes a zero to all Reserved bits when the entry is initialized. The reserved bits are Read-only after initialization.	r,w,u ⁽¹⁾

Note:

- 1. "u" means "Updated periodically by hardware".
- 2. "c0" means "Cleared by writing a 0".
- 3. The buffer depth (BD1 and BD2) for synchronous channels must consider if Multi-Frame per Subbuffer mode is enabled.

Data exchange across the AHB interface can be configured as Little Endian (LE = 1) or Big Endian (LE = 0). The following figure provides an overview of the endian options, chosen by an ADT descriptor field.

Controller Area Network (MCAN)

49.6.14 MCAN Protocol Status Register

Name: Offset: Reset: Property:		MCAN_PSR 0x44 0x00000707 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					TDCV[6:0]			
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		PXE	RFDF	RBRS	RESI		DLEC[2:0]	
Access								
Reset		0	0	0	0	1	1	1
Bit		6	5	4	3	2	1	0
	BO	EW	EP		ACT[1:0]		LEC[2:0]	
Access	R	R	R	R	R			
Reset	0	0	0	0	0	1	1	1

Bits 22:16 – TDCV[6:0] Transmitter Delay Compensation Value 0 to 127: Position of the secondary sample point, in CAN core clock periods, defined by the sum of the measured delay from CANTX to CANRX and MCAN_TDCR.TDCO.

Bit 14 – PXE Protocol Exception Event (cleared on read)

Value	Description
0	No protocol exception event occurred since last read access
1	Protocol exception event occurred

Bit 13 – RFDF Received a CAN FD Message (cleared on read)

This bit is set independently from acceptance filtering.

Value	Description
0	Since this bit was reset by the CPU, no CAN FD message has been received
1	Message in CAN FD format with FDF flag set has been received

Bit 12 – RBRS BRS Flag of Last Received CAN FD Message (cleared on read) This bit is set together with RFDF, independently from acceptance filtering.

Pulse Width Modulation Controller (PWM)

51.7.37 PWM Comparison x Value Update Register

Name:	PWM_CMPVUPDx
Offset:	0x0134 + x*0x10 [x=07]
Reset:	_
Property:	Write-only

This register acts as a double buffer for the CV and CVM values. This prevents an unexpected comparison x match.

Only the first 16 bits (channel counter size) of field CVUPD are significant.

The write of the register PWM_CMPVUPDx must be followed by a write of the register PWM_CMPMUPDx.

Bit	31	30	29	28	27	26	25	24
								CVMUPD
Access								W
Reset								_
Bit	23	22	21	20	19	18	17	16
				CVUPE	0[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CVUP	D[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CVUP	D[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_
	2	-	2	-	3	2	2	

Bit 24 – CVMUPD Comparison x Value Mode Update

Note: This bit is not relevant if the counter of the channel 0 is left-aligned (CALG = 0 in PWM Channel Mode Register)

Value	Description	
0	The comparison x between the counter of the channel 0 and the comparison x value is	
	performed when this counter is incrementing.	
1	The comparison x between the counter of the channel 0 and the comparison x value is	
	performed when this counter is decrementing.	

Bits 23:0 - CVUPD[23:0] Comparison x Value Update

Define the comparison x value to be compared with the counter of the channel 0.

Analog Comparator Controller (ACC)

Value	Description
0	No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.
1	A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

Integrity Check Monitor (ICM)

Value	Description
0	Automatic monitoring mode is disabled.
1	The ICM passes through the Main List once to calculate the message digest of the
	monitored area. When WRAP = 1 in ICM_RCFG, the ICM begins monitoring.

Bits 7:4 – BBC[3:0] Bus Burden Control

This field is used to control the burden of the ICM system bus. The number of system clock cycles between the end of the current processing and the next block transfer is set to 2^{BBC}. Up to 32,768 cycles can be inserted.

Bit 2 – SLBDIS Secondary List Branching Disable

Value	Description
0	Branching to the Secondary List is permitted.
1	Branching to the Secondary List is forbidden. The NEXT field of the ICM_RNEXT structure
	member has no effect and is always considered as zero.

Bit 1 – EOMDIS End of Monitoring Disable

Value	Description
0	End of Monitoring is permitted.
1	End of Monitoring is forbidden. The EOM bit of the ICM_RCFG structure member has no effect.

Bit 0 – WBDIS Write Back Disable

When ASCD is set, WBDIS has no effect.

Value	Description
0	Write Back operations are permitted.
1	Write Back operations are forbidden. Context register CDWBN bit is internally set to one and
	cannot be modified by a linked list element. ICM_RCFG.CDWBN has no effect.

55.6.10 ICM Hash Area Start Address Register

Name:	ICM_HASH
Offset:	0x34
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
	HASA[24:17]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				HASA	[16:9]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	HASA[8:1]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HASA[0:0]							
Access	R/W							

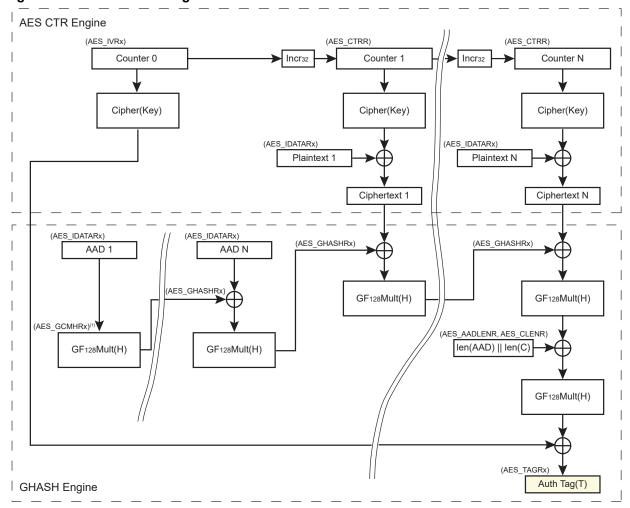
Reset 0

Bits 31:7 - HASA[24:0] Hash Area Start Address

This field points at the Hash memory location. The address must be a multiple of 128 bytes.

57.4.4 Galois/Counter Mode (GCM)

57.4.4.1 Description


GCM comprises the AES engine in CTR mode along with a universal hash function (GHASH engine) that is defined over a binary Galois field to produce a message authentication tag (the AES CTR engine and the GHASH engine are depicted in the figure below.

The GHASH engine processes data packets after the AES operation. GCM assures the confidentiality of data through the AES Counter mode of operation for encryption. Authenticity of the confidential data is assured through the GHASH engine. GCM can also provide assurance of data that is not encrypted. Refer to the NIST Special Publication 800-38D for more complete information.

GCM can be used with or without the DMA master. Messages may be processed as a single complete packet of data or they may be broken into multiple packets of data over time.

GCM processing is computed on 128-bit input data fields. There is no support for unaligned data. The AES key length can be whatever length is supported by the AES module.

The recommended programming procedure when using DMAPDC is described in the section GCM Processing.

Figure 57-5. GCM Block Diagram

Note: 1. Optional

Advanced Encryption Standard (AES)

Bit 15 – LOD Last Output Data Mode

Awarning In DMA mode, reading to the Output Data registers before the last data encryption/decryption process may lead to unpredictable results.

Value	Description
0	No effect.
	After each end of encryption/decryption, the output data are available either on the output data registers (Manual and Auto modes) or at the address specified in the Channel Buffer Transfer Descriptor for DMA mode.
	In Manual and Auto modes, the DATRDY flag is cleared when at least one of the Output Data registers is read.
1	The DATRDY flag is cleared when at least one of the Input Data Registers is written. No more Output Data Register reads are necessary between consecutive encryptions/ decryptions (see Last Output Data Mode).

Bits 14:12 – OPMOD[2:0] Operating Mode

For CBC-MAC operating mode, set OPMOD to CBC and LOD to 1.

Value	Name	Description
0	ECB	ECB: Electronic Codebook mode
1	CBC	CBC: Cipher Block Chaining mode
2	OFB	OFB: Output Feedback mode
3	CFB	CFB: Cipher Feedback mode
4	CTR	CTR: Counter mode (16-bit internal counter)
5	GCM	GCM: Galois/Counter mode

Bits 11:10 - KEYSIZE[1:0] Key Size

Value	Name	Description
0	AES128	AES Key Size is 128 bits
1	AES192	AES Key Size is 192 bits
2	AES256	AES Key Size is 256 bits

Bits 9:8 - SMOD[1:0] Start Mode

If a DMA transfer is used, configure SMOD to 2. See DMA Mode for more details.

Value	Name	Description
0	MANUAL_START	Manual Mode
1	AUTO_START	Auto Mode
2	IDATAR0_START	AES_IDATAR0 access only Auto Mode (DMA)

Bits 7:4 – PROCDLY[3:0] Processing Delay

Processing Time = $N \times (PROCDLY + 1)$

where

• N = 10 when KEYSIZE = 0