

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70n20a-cfnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Description

Signal Name Function		Туре	Active Level	Voltage Reference	Comments
PCK0–PCK2 Programmable Clock Output		Output	_		_
Real Time Clock					
RTCOUT0	Programmable RTC Waveform Output	Output	-	VDDIO	-
RTCOUT1	Programmable RTC Waveform Output	Output	-	-	-
Serial Wire Debug/	JTAG Boundary Scan	I			
SWCLK/TCK	Serial Wire Clock / Test Clock (Boundary scan mode only)	Input	-	VDDIO	-
TDI	Test Data In (Boundary scan mode only)	Input	-	-	_
TDO/TRACESWO	Test Data Out (Boundary scan mode only)	Output	-		-
SWDIO/TMS	Serial Wire Input/ Output / Test Mode Select (Boundary scan mode only)	I/O / Input	-	-	-
JTAGSEL	JTAG Selection	Input	High		_
Trace Debug Port	·	1		1	·
TRACECLK	Trace Clock	Output	-	VDDIO	PCK3 is used for ETM
TRACED0– TRACED3	Trace Data	Output	-		-
Flash Memory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	_
Reset/Test					
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	_
TST	Test Select	Input	-		-
Universal Asynchro	nous Receiver Transceiv	er - UART(>	(=[0:4])		

Reset Controller (RSTC)

Value	Name	Description
3	SOFT_RST	Processor reset required by the software
4	USER_RST	NRST pin detected low
5	-	Reserved
6	-	Reserved
7	-	Reserved

Bit 0 – URSTS User Reset Status

A high-to-low transition of the NRST pin sets the URSTS. This transition is also detected on the MCK rising edge. If the user reset is disabled (URSTEN = 0 in RSTC_MR) and if the interrupt is enabled by RSTC_MR.URSTIEN, URSTS triggers an interrupt. Reading the RSTC_SR resets URSTS and clears the interrupt.

Value	Description
0	No high-to-low edge on NRST happened since the last read of RSTC_SR.
1	At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

Reset Controller (RSTC)

Value	Description
0	The detection of a low level on the NRST pin does not generate a user reset.
1	The detection of a low level on the NRST pin triggers a user reset.

Parallel Input/Output Controller (PIO)

Offset	Name	Bit Pos.								
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0x94	PIO_PPDER	15:8	P15	P14	P13	P12	P11	P10	P9	P8
0,101		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0x98	PIO_PPDSR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0x9C 0x9F	Reserved									
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0.40		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0xA0	PIO_OWER	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xA4 PI	PIO_OWDR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
	PIO_OWDR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xA8	PIO_OWSR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
0740		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
OxAC										
 0xAF	Reserved									
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB0	PIO_AIMER	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB4	PIO_AIMDR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB8	PIO_AIMMR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0xBC 0xBF	Reserved									
0		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xC0	PIO_ESR	15:8	P15	P14	P13	P12	P11	P10	P9	P8

DMA Controller (XDMAC)

Offset	Name	Bit Pos.										
		15:8				NDA[13:6]					
		23:16				NDA[2	1:14]					
		31:24				NDA[2	9:22]					
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE		
0x04AC	XDMAC_CNDC17	15:8										
		23:16										
		31:24										
		7:0				UBLEN	N[7:0]					
0x04B0	XDMAC_CUBC17	15:8				UBLEN	[15:8]					
		23:16				UBLEN	[23:16]					
		31:24										
		7:0				BLEN	[7:0]					
0x04B4	XDMAC_CBC17	15:8						BLEN	N[11:8]			
0.00121		23:16										
		31:24										
		7:0	MEMSET	SWREQ		DSYNC		MBSI	ZE[1:0]	TYPE		
0x04B8	XDMAC_CC17	15:8		DIF	SIF	DWIDT	H[1:0]		CSIZE[2:0]			
0.00 120		23:16	WRIP	RDIP	INITD		DAM	1[1:0]	SAM	I[1:0]		
		31:24					PERID[6:0]					
		7:0	SDS_MSP[7:0]									
0x04BC	XDMAC_CDS_MSP 17	15:8	SDS_MSP[15:8]									
0,0400		23:16	DDS_MSP[7:0]									
		31:24	DDS_MSP[15:8]									
		7:0		SUBS[7:0]								
0x04C0	XDMAC_CSUS17	15:8				SUBS	[15:8]					
		23:16				SUBS[2	23:16]					
		31:24										
		7:0				DUBS						
0x04C4	XDMAC_CDUS17	15:8				DUBS						
		23:16				DUBS[2	23:16]					
		31:24										
0x04C8												
	Reserved											
0x04CF												
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE		
0x04D0	XDMAC_CIE18	15:8										
		23:16										
		31:24										
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID		
0x04D4	XDMAC_CID18	15:8										
		23:16										
		31:24										
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM		
0x04D8	XDMAC_CIM18	15:8										
-		23:16										
		31:24										

Image Sensor Interface (ISI)

37.6.3 ISI Preview Size Register

Name:	ISI_PSIZE
Offset:	0x08
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
							PREV_H	SIZE[9:8]
Access		·					R/W	R/W
Reset							0	0
Bit	23	22	21	20	19	18	17	16
				PREV_H	SIZE[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
							PREV_V	SIZE[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				PREV_V	SIZE[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit Access Reset Bit Access	15 7 	14 6 R/W	13 5 R/W	12 4 PREV_V R/W	11 3 SIZE[7:0] R/W	10 2 R/W	9 PREV_V R/W 0 1 R/W	8 SIZE[9:8] R/W 0 0 R/W

Bits 25:16 – PREV_HSIZE[9:0] Horizontal Size for the Preview Path PREV_HSIZE = Horizontal Preview size - 1 (640 max only in RGB mode).

Bits 9:0 – PREV_VSIZE[9:0] Vertical Size for the Preview Path PREV_VSIZE = Vertical Preview size - 1 (480 max only in RGB mode).

SAM E70/S70/V70/V71 Family GMAC - Ethernet MAC

38.8.32 GMAC 1588 Timer Second Comparison Low Register

GMAC_SCL

0x0E0

Name: Offset:

Reset: Property:		0x00000000 -						
Bit	31	30	29	28	27	26	25	24
				SEC[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				SEC[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				SEC	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SEC	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – SEC[31:0] 1588 Timer Second Comparison Value Value is compared to seconds value bits [31:0] of the TSU timer count value.

38.8.42 GMAC Multicast Frames Transmitted Register

GMAC_MFT

0x110

Name:

Offset:

	Reset: Property:	0x00000000 -						
Bit	31	30	29	28	27	26	25	24
				MFTX	[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				MFTX	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				MFTX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				MFT	X[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – MFTX[31:0] Multicast Frames Transmitted without Error

This register counts the number of multicast frames successfully transmitted without error, i.e., no underrun and not too many retries. Excludes pause frames.

USB High-Speed Interface (USBHS)

Value	Description
0	Frees the endpoint memory.
1	Allocates the endpoint memory. The user should check the USBHS_DEVEPTISRx.CFGOK bit to know whether the allocation of this endpoint is correct.

USB High-Speed Interface (USBHS)

Bit 16 - RWALL Read/Write Allowed

This bit is set for IN endpoints when the current bank is not full, i.e., the user can write further data into the FIFO.

This bit is set for OUT endpoints when the current bank is not empty, i.e., the user can read further data from the FIFO.

This bit is never set in case of error.

This bit is cleared otherwise.

Bits 15:14 - CURRBK[1:0] Current Bank

This field is used to indicate the current bank. It may be updated one clock cycle after the RWALL bit changes, so the user should not poll this field as an interrupt bit.

Value	Name	Description
0	BANK0	Current bank is bank0
1	BANK1	Current bank is bank1
2	BANK2	Current bank is bank2
3	Reserved	

Bits 13:12 – NBUSYBK[1:0] Number of Busy Banks

This field is set to indicate the number of busy banks:

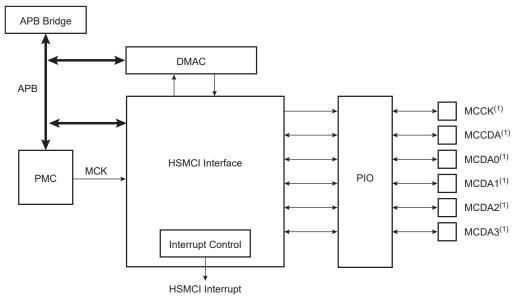
For IN endpoints, it indicates the number of banks filled by the user and ready for IN transfer. When all banks are free, this triggers a PEP_x interrupt if NBUSYBKE = 1.

For OUT endpoints, it indicates the number of banks filled by OUT transactions from the host. When all banks are busy, this triggers a PEP_x interrupt if NBUSYBKE = 1.

When the USBHS_DEVEPTIMRx.FIFOCON bit is cleared (by writing a one to the USBHS_DEVEPTIMRx.FIFOCONC bit) to validate a new bank, this field is updated two or three clock cycles later to calculate the address of the next bank.

A PEP_x interrupt is triggered if:

Value	Name	Description
0	0_BUSY	0 busy bank (all banks free)
1	1_BUSY	1 busy bank
2	2_BUSY	2 busy banks
3	3_BUSY	3 busy banks • For IN endpoint, USBHS_DEVEPTIMRx.NBUSYBKE = 1 and all the banks are free. • For OUT endpoint, USBHS_DEVEPTIMRx.NBUSYBKE = 1 and all the banks are busy.

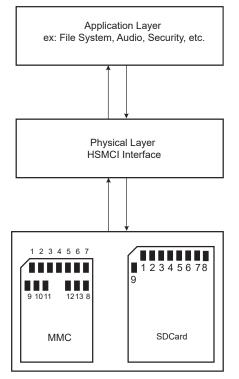

Bit 10 – ERRORTRANS High-bandwidth Isochronous OUT Endpoint Transaction Error Interrupt This bit is set when a transaction error occurs during the current microframe (the data toggle sequencing is not compliant with the USB 2.0 standard). This triggers a PEP_x interrupt if USBHS_DEVEPTIMRx.ERRORTRANSE = 1.

This bit is set as long as the current bank (CURRBK) belongs to the bad n-transactions (n = 1, 2 or 3) transferred during the microframe. It is cleared by software by clearing (at least once) the

© 2018 Microchip Technology Inc.

40.3 Block Diagram

Figure 40-1. Block Diagram (4-bit configuration)



Note:

1. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA, MCDAy to HSMCIx_DAy.

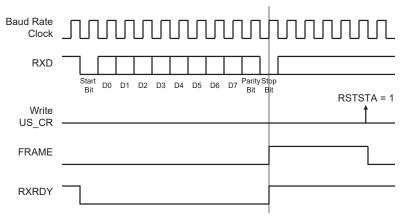

40.4 Application Block Diagram

Figure 40-2. Application Block Diagram

Universal Synchronous Asynchronous Receiver Transc...

Figure 46-24. Framing Error Status

46.6.3.13 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the TXD line low during at least one complete character. It appears the same as a 0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing a '1' to US_CR.STTBRK. This can be performed at any time, either while the transmitter is empty (no character in either the Shift register or in US_THR) or when a character is being transmitted. If a break is requested while a character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested, further STTBRK commands are ignored until the end of the break is completed.

The break condition is removed by writing a '1' to US_CR.STPBRK. If the STPBRK is requested before the end of the minimum break duration (one character, including start, data, parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e., the STTBRK and STPBRK commands are processed only if US_CSR. TXRDY = 1 and the start of the break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with both STTBRK and STPBRK bits to '1' can lead to an unpredictable result. All STPBRK commands requested without a previous STTBRK command are ignored. A byte written into US_THR while a break is pending, but not started, is ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the start of the next character. If the timeguard is programmed with a value higher than 12, the TXD line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

The following figure illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on the TXD line.

NACT(slave1)=PUBLISH

NACT(slave2)=SUBSCRIBE

• Data transfer from the slave2 to the master and to the slave1:

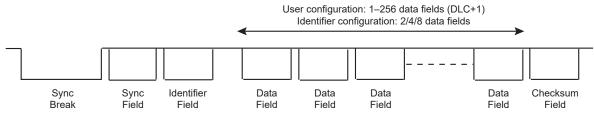
NACT(master)=SUBSCRIBE

NACT(slave1)=SUBSCRIBE

NACT(slave2)=PUBLISH

46.6.9.11 Response Data Length

The LIN response data length is the number of data fields (bytes) of the response excluding the checksum.


The response data length can either be configured by the user or be defined automatically by bits 4 and 5 of the Identifier (compatibility to LIN Specification 1.1). The user can choose between these two modes using the US_LINMR.DLM:

- DLM = 0: The response data length is configured by the user via US_LINMR.DLC. The response data length is equal to (DLC + 1) bytes. DLC can be programmed from 0 to 255, so the response can contain from 1 data byte up to 256 data bytes.
- DLM = 1: The response data length is defined by the Identifier (US_LINIR.IDCHR) according to the table below. The US_LINMR.DLC is discarded. The response can contain 2 or 4 or 8 data bytes.

Table 46-13.	Response	Data I	Length	if DLM = 1
--------------	----------	--------	--------	------------

IDCHR[5]	IDCHR[4]	Response Data Length [Bytes]
0	0	2
0	1	2
1	0	4
1	1	8

46.6.9.12 Checksum

The last field of a frame is the checksum. The checksum contains the inverted 8-bit sum with carry, over all data bytes or all data bytes and the protected identifier. Checksum calculation over the data bytes only is called classic checksum and it is used for communication with LIN 1.3 slaves. Checksum calculation over the data bytes and the protected identifier byte is called enhanced checksum and it is used for communication with LIN 2.0 slaves.

The USART can be configured to:

- Send/Check an Enhanced checksum automatically (CHKDIS = 0 & CHKTYP = 0)
- Send/Check a Classic checksum automatically (CHKDIS = 0 & CHKTYP = 1)

Universal Synchronous Asynchronous Receiver Transc...

46.7.37 USART LON Data Length Register

Name:	US_LONDL
Offset:	0x0068
Reset:	0x0
Property:	Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access	L	•	•			•	•	
Reset								
Bit	23	22	21	20	19	18	17	16
Access		1						
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				LOND	DL[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - LONDL[7:0] LON Data Length

Value	Description
0-255	LON data length is LONDL+1 bytes.

Universal Synchronous Asynchronous Receiver Transc...

46.7.38 USART LON L2HDR Register

Name:	US_LONL2HDR
Offset:	0x006C
Reset:	0x0
Property:	Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit		6	5	4	3	2	1	0
	PB	ALTP			BLI	[5:0]		
Access								
Reset	0	0	0	0	0	0	0	0

Bit 7 – PB LON Priority Bit

Value	Description
0	LON priority bit reset.
1	LON priority bit set.

Bit 6 – ALTP LON Alternate Path Bit

Value	Description
0	LON alternate path bit reset.
1	LON alternate path bit set.

Bits 5:0 - BLI[5:0] LON Backlog Increment

	Value	Description
(0-63	LON backlog increment to be generated as a result of delivering the LON frame.

Controller Area Network (MCAN)

49.6.17 MCAN Interrupt Enable Register

Name:	MCAN_IE
Offset:	0x54
Reset:	0x00000000
Property:	Read/Write

The following configuration values are valid for all listed bit names of this register:

- 0: Disables the corresponding interrupt.
- 1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
			ARAE	PEDE	PEAE	WDIE	BOE	EWE
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	EPE	ELOE			DRXE	TOOE	MRAFE	TSWE
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TEFLE	TEFFE	TEFWE	TEFNE	TFEE	TCFE	TCE	HPME
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RF1LE	RF1FE	RF1WE	RF1NE	RF0LE	RF0FE	RF0WE	RF0NE
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 29 – ARAE Access to Reserved Address Enable

- Bit 28 PEDE Protocol Error in Data Phase Enable
- **Bit 27 PEAE** Protocol Error in Arbitration Phase Enable
- Bit 26 WDIE Watchdog Interrupt Enable
- Bit 25 BOE Bus_Off Status Interrupt Enable
- Bit 24 EWE Warning Status Interrupt Enable
- Bit 23 EPE Error Passive Interrupt Enable
- Bit 22 ELOE Error Logging Overflow Interrupt Enable
- Bit 19 DRXE Message stored to Dedicated Receive Buffer Interrupt Enable

Integrity Check Monitor (ICM)

Value	Name	Description
0		The ICM_ISR.REC[i] flag is set when the descriptor with the EOM bit set is
		processed.
1		The ICM_ISR.REC[i] flag remains cleared even if the setting condition is met.

Bit 7 – WCIEN Wrap Condition Interrupt Disable (Default Enabled)

Value	Name	Description
0		The ICM_ISR.RWC[i] flag is set when the WRAP bit is set in a descriptor of the main
		list.
1		ICM_ISR.RWC[i] flag remains cleared even if the setting condition is met.

Bit 6 – BEIEN Bus Error Interrupt Disable (Default Enabled)

Value	Name	Description
0		The flag is set when an error is reported on the system bus by the bus matrix.
1		The flag remains cleared even if the setting condition is met.

Bit 5 – DMIEN Digest Mismatch Interrupt Disable (Default Enabled)

Value	Name	Description
0		The ICM_ISR.RBE[i] flag is set when the hash value just calculated from the
		processed region differs from expected hash value.
1		The ICM_ISR.RBE[i] flag remains cleared even if the setting condition is met.

Bit 4 – RHIEN Region Hash Completed Interrupt Disable (Default Enabled)

Value	Name	Description
0		The ICM_ISR.RHC[i] flag is set when the field NEXT = 0 in a descriptor of the main
		or second list.
1		The ICM_ISR.RHC[i] flag remains cleared even if the setting condition is met.

Bit 2 – EOM End Of Monitoring

Value	Name	Description
0		The current descriptor does not terminate the monitoring.
1		The current descriptor terminates the Main List. WRAP value has no effect.

Bit 1 – WRAP Wrap Command

Value	Name	Description
0		The next region descriptor address loaded is the current region identifier descriptor
		address incremented by 0x10.
1		The next region descriptor address loaded is ICM_DSCR.

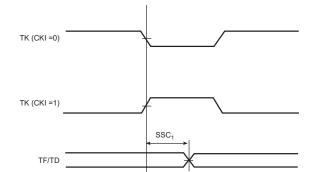
Bit 0 – CDWBN Compare Digest or Write Back Digest

Value	Name	Description
0		The digest is written to the Hash area.
1		The digest value is compared to the digest stored in the Hash area.

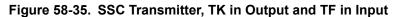
56.6.1 TRNG Control Register

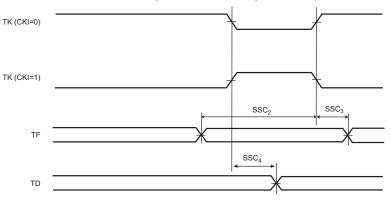
Name:	TRNG_CR
Offset:	0x00
Reset:	_
Property:	Write-only

Bit	31	30	29	28	27	26	25	24		
	WAKEY[23:16]									
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
	WAKEY[15:8]									
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				WAKI	EY[7:0]					
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	_		
Bit	7	6	5	4	3	2	1	0		
								ENABLE		
Access								W		
Reset								-		


Bits 31:8 - WAKEY[23:0] Register Write Access Key

Value	Name	Description
0x524E4	PASSWD	Writing any other value in this field aborts the write operation.
7		


Bit 0 - ENABLE Enables the TRNG to Provide Random Values


Value	Description			
0	Disables the TRNG.			
1	Enables the TRNG if 0x524E47 ("RNG" in ASCII) is written in KEY field at the same time.			

Electrical Characteristics for SAM ...

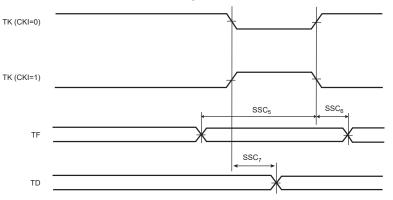


Figure 58-34. SSC Transmitter, TK in Input and TF in Output

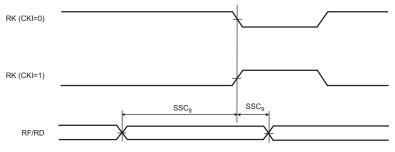


Figure 58-36. SSC Transmitter, TK and TF in Input

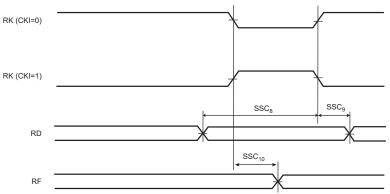
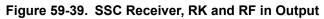
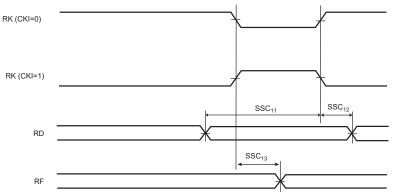
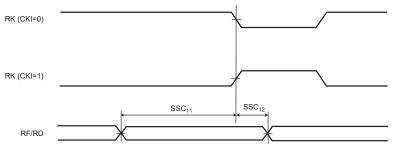


Figure 58-37. SSC Receiver RK and RF in Input




© 2018 Microchip Technology Inc.

Electrical Characteristics for SAM E70/S70



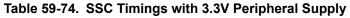

Figure 59-38. SSC Receiver, RK in Input and RF in Output

Figure 59-40. SSC Receiver, RK in Output and RF in Input

Symbol	Parameter	Condition	Min	Мах	Unit				
Transmit	Insmitter								
SSC ₀	TK edge to TF/TD (TK output, TF output)	-	-3.9 ⁽¹⁾	4.0 (1)	ns				
SSC ₁	TK edge to TF/TD (TK input, TF output)	-	3.1 ⁽¹⁾	12.7 ⁽¹⁾	ns				
SSC ₂	TF setup time before TK edge (TK output)	-	13.6	-	ns				
SSC ₃	TF hold time after TK edge (TK output)	_	0	_	ns				

© 2018 Microchip Technology Inc.