

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70n20b-cn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package and Pinout

LQFP Pin	QFN Pin (11)	Power Rail	I/O Type	Primary		Alternate		PIO Periph	eral A	PIO Periph	eral B	PIO Periph	eral CDir	PIO Periph	eral DDir	Reset State
				Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, PU, PD, HiZ, ST
15	15	VDDIO	CLOCK	PA7	I/O	_{XIN32} (3)	1	-	-	PWMC0_ PWMH3	-	-	-	-	-	PIO, HiZ
16	16	VDDIO	CLOCK	PA8	I/O	хоитз2(3)	0	PWMC1_ PWMH3	0	AFE0_AD TRG	1	-	-	-	-	PIO, HiZ
33	33	VDDIO	GPIO_AD	PA9	I/O	WKUP6/ PIODC3 (2)	I	URXD0	I	ISI_D3	I	PWMC0_ PWM FI0	I	-	-	PIO, I, PU, ST
28	28	VDDIO	GPIO_AD	PA10	I/O	PIODC4 ⁽¹)	I	UTXD0	0	PWMC0_ PWMEXT RG0	1	RD	1	-	-	PIO, I, PU, ST
27	27	VDDIO	GPIO_AD	PA11	I/O	WKUP7/ PIODC5 (2)	1	QCS	0	PWMC0_ PWMH0	0	PWMC1_ PWM L0	0	-	-	PIO, I, PU, ST
29	29	VDDIO	GPIO_AD	PA12	I/O	PIODC6 ⁽¹)	1	QIO1	I/O	PWMC0_ PWMH1	0	PWMC1_ PWM H0	0	-	-	PIO, I, PU, ST
18	18	VDDIO	GPIO_AD	PA13	I/O	PIODC7 ⁽¹)	1	QIO0	I/O	PWMC0_ PWMH2	0	PWMC1_ PWM L1	0	-	-	PIO, I, PU, ST
19	19	VDDIO	GPIO_CL K	PA14	I/O	WKUP8/ PIODCEN 1 (2)	I	QSCK	0	PWMC0_ PWMH3	0	PWMC1_ PWM H1	0	-	-	PIO, I, PU, ST
12	12	VDDIO	GPIO_AD	PA21	I/O	AFE0_AD 1/ PIODCEN 2(7)	I	RXD1	1	PCK1	0	PWMC1_ PWM FI0	I	-	-	PIO, I, PU, ST
17	17	VDDIO	GPIO_AD	PA22	I/O	PIODCCL K(1)	I	RK	I/O	PWMC0_ PWMEXT RG1	1	NCS2	0	-	-	PIO, I, PU, ST
23	23	VDDIO	GPIO_AD	PA24	I/O	-	-	RTS1	0	PWMC0_ PWMH1	0	A20	0	ISI_PCK	1	PIO, I, PU, ST
30	30	VDDIO	GPIO_AD	PA27	I/O	-	-	DTR1	0	TIOB2	I/O	MCDA3	I/O	ISI_D7	1	PIO, I, PU, ST
8	8	VDDIO	GPIO	PB0	I/O	AFE0_AD 10/ RTCOUT 0 (6)	I	PWMC0_ PWMH0	0	-	-	RXD0	I	TF	I/O	PIO, I, PU, ST
7	7	VDDIO	GPIO	PB1	I/O	AFE1_AD 0/ RTCOUT 1 (6)	I	PWMC0_ PWMH1	0	GTSUCO MP	0	TXD0	I/O	тк	I/O	PIO, I, PU, ST
9	9	VDDIO	GPIO	PB2	I/O	AFE0_AD 5 (4)	1	CANTX0	0	-	-	CTS0	1	SPI0_NP CS0	I/O	PIO, I, PU, ST
11	11	VDDIO	GPIO_AD	PB3	I/O	AFE0_AD 2/WKUP 12 (6)	I	CANRX0	1	PCK2	0	RTS0	0	ISI_D2	1	PIO, I, PU, ST
46	46	VDDIO	GPIO_ML B	PB4	I/O	_{TDI} (8)	I	TWD1	I/O	PWMC0_ PWMH2	0	MLBCLK	l -	TXD1	I/O	PIO, I, PD, ST
47	47	VDDIO	GPIO_ML B	PB5	1/0	TDO/ TRACES WO/ WKUP13(8)	0	TWCK1	0	PWMC0_ PWML0	0	MLBDAT -	I/O -	TD	0	O, PU
35	35	VDDIO	GPIO	PB6	I/O	SWDIO/T MS(8)	1	-	-	-	-	-	-	-	-	PIO,I,ST
39	39	VDDIO	GPIO	PB7	I/O	SWCLK/T CK(8)	1	-	-	-	-	-	-	-	-	PIO,I,ST
62	63	VDDIO	CLOCK	PB8	I/O	XOUT ⁽⁹⁾	0	-	-	-	-	-	-	-	-	PIO, HIZ
63	64	VDDIO	CLOCK	PB9	I/O	XIN (9)	1	-	-	-	-	-	-	-	-	PIO, HiZ
38	38	VDDIO	GPIO	PB12	I/O	ERASE(8)	I	PWMC0_ PWML1	0	GTSUCO MP	0	-	-	PCK0	0	PIO, I, PD, ST
1	2	VDDIO	GPIO_AD	PD0	I/O	DAC1(11)	I	GTXCK	I	PWMC1_ PWML0	0	SPI1_NP CS1	I/O	DCD0	I	PIO, I, PU, ST
57	57	VDDIO	GPIO	PD1	I/O	-	-	GTXEN	0	PWMC1_ PWMH0	0	SPI1_NP CS2	I/O	DTR0	0	PIO, I, PU, ST
56	56	VDDIO	GPIO	PD2	I/O	-	-	GTX0	0	PWMC1_ PWML1	0	SPI1_NP CS3	I/O	DSR0	I	PIO, I, PU, ST

The figure below illustrates the organization of the Flash depending on its size.

Figure 11-3. Flash Size

Erasing the memory can be performed:

- by block of 8 Kbytes
- by sector of 128 Kbytes
- by 512-byte page for up to 8 Kbytes within a specific small sector
- Chip Erase

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User Signature page.

Erase memory by page is possible only in a sector of 8 Kbytes.

EWP and EWPL commands can be only used in 8-Kbyte sectors.

11.1.5.2 Enhanced Embedded Flash Controller

Each Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

11.1.5.3 Flash Speed

The user must set the number of wait states depending on the system frequency.

For more details, refer to Embedded Flash Characteristics.

SDRAM Controller (SDRAMC)

34.6.2 SDRAM Controller Read Cycle

The SDRAMC allows burst access, incremental burst of unspecified length or single access. In all cases, the SDRAMC keeps track of the active row in each bank, thus maximizing performance of the SDRAM. If row and bank addresses do not match the previous row/bank address, then the SDRAMC automatically generates a precharge command, activates the new row and starts the read command. To comply with the SDRAM timing parameters, additional clock cycles on SDCK are inserted between precharge and active commands (t_{RP}), and between active and read commands (t_{RCD}). These two parameters are set in the SDRAMC_CR. After a read command, additional wait states are generated to comply with the CAS latency (2 or 3 clock delays specified in the SDRAMC_CR).

For a single access or an incremented burst of unspecified length, the SDRAMC anticipates the next access. While the last value of the column is returned by the SDRAMC on the bus, the SDRAMC anticipates the read to the next column and thus anticipates the CAS latency. This reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads to the best performance. If the burst is broken (border, Busy mode, etc.), the next access is handled as an incrementing burst of unspecified length.

DMA Controller (XDMAC)

Offset	Name	Bit Pos.											
0x034F													
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE			
00050		15:8											
UXU350	XDIMAC_CIET2	23:16											
		31:24											
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID			
0x0354		15:8											
0,0004	ADMAC_CID12	23:16											
		31:24											
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM			
0x0358		15:8											
0,0000		23:16											
		31:24											
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS			
0x035C	XDMAC CIS12	15:8											
0.0000		23:16											
		31:24											
		7:0				SA[7:0]						
0x0360	XDMAC CSA12	15:8		SA[15:8]									
	XBM/10_00/112	23:16		SA[23:16]									
		31:24		SA[31:24]									
		7:0	DA[7:0]										
0x0364	XDMAC CDA12	15:8	DA[15:8]										
	_	23:16		DA[23:16]									
		31:24	DA[31:24]										
		7:0			NDA	[5:0]				NDAIF			
0x0368	XDMAC_CNDA12	15:8		NDA[13:6]									
	_	23:16		NDA[21:14]									
		31:24				NDA[2	29:22]						
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE			
0x036C	XDMAC CNDC12	15:8											
	_	23:16											
		31:24											
		7:0				UBLE	N[7:0]						
0x0370	XDMAC CUBC12	15:8				UBLEN	N[15:8]						
	_	23:16				UBLEN	[23:16]						
		31:24											
		7:0				BLEN	I [7:0]						
0x0374	XDMAC_CBC12	15:8						BLEN	I[11:8]				
		23:16											
		31:24											
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	2E[1:0]	TYPE			
0x0378	XDMAC_CC12	15:8		DIF	SIF	DWIDT	H[1:0]		CSIZE[2:0]				
		23:16	WRIP	RDIP	INITD		DAN	/[1:0]	SAM	[1:0]			
		31:24					PERID[6:0]						

DMA Controller (XDMAC)

Offset	Name	Bit Pos.											
0x050F													
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE			
0.0540		15:8											
0x0510	XDMAC_CIE19	23:16											
		31:24											
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID			
0v0514		15:8											
0,0014	XDWAC_CID19	23:16											
		31:24											
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM			
0x0518		15:8											
0,0010		23:16											
		31:24											
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS			
0x051C	XDMAC CIS19	15:8											
		23:16											
		31:24											
		7:0				SA[7:0]						
0x0520	XDMAC CSA19	15:8		SA[15:8]									
	, 12 m 10_00 m	23:16	SA[23:16]										
		31:24		SA[31:24]									
		7:0	DA[7:0]										
0x0524	XDMAC CDA19	15:8	DA[15:8]										
	_	23:16		DA[23:16]									
		31:24	DA[31:24]										
		7:0			NDA	[5:0]				NDAIF			
0x0528	XDMAC_CNDA19	15:8		NDA[13:6]									
	_	23:16	NDA[21:14]										
		31:24				NDA[2	29:22]	1					
		7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE			
0x052C	XDMAC_CNDC19	15:8											
		23:16											
		31:24											
		7:0				UBLE	N[7:0]						
0x0530	XDMAC_CUBC19	15:8				UBLEN	V[15:8]						
		23:16				UBLEN	[23:16]						
		31:24					177 01						
		/:0				BLEN	I[7:0]	51 51	1644-03				
0x0534	XDMAC_CBC19	15:8						BLEN	i[11:8]				
		23:16											
		31:24	MEMOET	014/050		DOVALO		MDO	7-[4.0]	TYPE			
		1:0	MEMSEI	SWREQ	OIE	DSYNC		MBSIZ		IYPE			
0x0538	XDMAC_CC19	02:40				DVVID		4[4:0]	CSIZE[2:0]	1[4.0]			
		23:16	WRIP	RUIP	INITD			/[1:0]	SAM	[1:0]			
		31:24					PERID[6:0]						

1 (SWR_CONNECTED): Software request is connected to the peripheral request line.

Bit 4 – DSYNC Channel x Synchronization 0 (PER2MEM): Peripheral-to-memory transfer.

1 (MEM2PER): Memory-to-peripheral transfer.

Bits 2:1 – MBSIZE[1:0] Channel x Memory Burst Size

Value	Name	Description
0	SINGLE	The memory burst size is set to one.
1	FOUR	The memory burst size is set to four.
2	EIGHT	The memory burst size is set to eight.
3	SIXTEEN	The memory burst size is set to sixteen.

Bit 0 – TYPE Channel x Transfer Type

0 (MEM_TRAN): Self-triggered mode (memory-to-memory transfer).

1 (PER_TRAN): Synchronized mode (peripheral-to-memory or memory-to-peripheral transfer).

The Pause Time registers decrement every 512 bit times immediately following the PFC frame reception. For test purposes, the retry test bit can be set (bit 12 in the Network Configuration register) which causes the Pause Time register to decrement every GRXCK cycle once transmission has stopped.

The interrupt (bit 13 in the Interrupt Status register) is asserted whenever the Pause Time register decrements to zero (assuming it has been enabled by bit 13 in the Interrupt Mask register). This interrupt is also set when a zero quantum pause frame is received.

38.6.17.2 PFC Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit priority-based pause frame bit of the Network Control register. If bit 17 of the Network Control register is written with logic 1, a PFC pause frame will be transmitted providing full duplex is selected in the Network Configuration register and the transmit block is enabled in the Network Control register. When bit 17 of the Network Control register is set, the fields of the priority-based pause frame will be built using the values stored in the Transmit PFC Pause register.

Pause frame transmission will happen immediately if transmit is inactive or if transmit is active between the current frame and the next frame due to be transmitted.

Transmitted pause frames comprise the following:

- A destination address of 01-80-C2-00-00-01
- A source address taken from Specific Address register 1
- A type ID of 88-08 (MAC control frame)
- A pause opcode of 01-01
- A priority enable vector taken from Transmit PFC Pause register
- 8 pause quantum registers
- Fill of 00 to take the frame to minimum frame length
- Valid FCS

The pause quantum registers used in the generated frame will depend on the trigger source for the frame as follows:

- If bit 17 of the Network Control register is written with a one, then the priority enable vector of the priority-based pause frame will be set equal to the value stored in the Transmit PFC Pause register [7:0]. For each entry equal to zero in the Transmit PFC Pause register [15:8], the pause quantum field of the pause frame associated with that entry will be taken from the transmit pause quantum register. For each entry equal to one in the Transmit PFC Pause register [15:8], the pause quantum associated with that entry will be zero.
- The Transmit Pause Quantum register resets to a value of 0xFFFF giving maximum pause quantum as default.

After transmission, a pause frame transmitted interrupt will be generated (bit 14 of the Interrupt Status register) and the only statistics register that will be incremented will be the Pause Frames Transmitted register.

PFC Pause frames can also be transmitted by the MAC using normal frame transmission methods.

38.6.18 Energy Efficient Ethernet Support

Features

- Energy Efficient Ethernet according to IEEE 802.3az
- A system's transmit path can enter a low power mode if there is nothing to transmit.

USB High-Speed Interface (USBHS)

- 10 Pipes/Endpoints
- 4096 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
- Up to 3 Memory Banks per Pipe/Endpoint (not for Control Pipe/Endpoint)
- Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
- On-chip UTMI Transceiver including Pull-ups/Pull-downs

39.3 Block Diagram

The USBHS provides a hardware device to interface a USB link to a data flow stored in a dual-port RAM (DPRAM).

In normal operation (SPDCONF = 0), the UTMI transceiver requires the UTMI PLL (480 MHz). In case of full-speed or low-speed only, for a lower consumption (SPDCONF = 1), the UTMI transceiver only requires 48 MHz.

- 5. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCND set to BOOTREQ, TRDIR set to READ and TRCMD set to "start data transfer".
- 6. DMA controller copies the boot partition to the memory.
- 7. When DMA transfer is completed, host processor shall terminate the boot stream by writing the HSMCI_CMDR with SPCMD field set to BOOTEND.

40.12 HSMCI Transfer Done Timings

40.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

40.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in the following figure.

Figure 40-11. XFRDONE During a Read Access

40.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in the following figure.

Universal Synchronous Asynchronous Receiver Transc...

46.6.3.6 Synchronous Receiver

In Synchronous mode (US_MR.SYNC = 1), the receiver samples the RXD signal on each rising edge of the baud rate clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode operations provide a high-speed transfer capability.

Configuration fields and bits are the same as in Asynchronous mode.

The following figure illustrates a character reception in Synchronous mode.

Figure 46-19. Synchronous Mode Character Reception

46.6.3.7 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding register (US_RHR) and US_CSR.RXRDY rises. If a character is completed while RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing a '1' to US_CR.RSTSTA.

Universal Synchronous Asynchronous Receiver Transc...

LIN Specification	Baud Rate	Timeout period	US_RTOR.TO
2.0	1,000 bit/s	4 s	4,000
	2,400 bit/s		9,600
	9,600 bit/s		38,400
	19,200 bit/s		76,800
	20,000 bit/s		80,000
1.3	-	25,000 t _{bit}	25,000

Table 46-14. Receiver Timeout Programming

46.6.10 LON Mode

The LON mode provides connectivity to the local operating network (LON).

The LON standard covers all seven layers of the OSI (Open Systems Interconnect) reference model from the physical interfaces such as wired, power line, RF, and IP to the application layer and all layers in between. It was designed from the bottom up as a controls communication platform.

The LON mode enables the transmission and reception of Physical Protocol Data Unit (PPDU) frames with minimum intervention from the microprocessor.

The USART configured in LON mode is a full-layer 2 implementation including standard timings handling, framing (transmit and receive PPDU frames), backlog estimation and other features. At the frame encoding/decoding level, differential Manchester encoding is used (also known as CDP). When configured in LON mode, there is no embedded digital line filter, thus the optimal usage is node-to-node communication.

© 2018 Microchip Technology Inc.

50.7.14 TC Extended Mode Register

Name:	TC_EMRx
Offset:	0x30 + x*0x40 [x=02]
Reset:	0x0000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access						-		
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								NODIVCLK
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
			TRIGSF	RCB[1:0]			TRIGSF	RCA[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0

Bit 8 – NODIVCLK No Divided Clock

Value	Description
0	The selected clock is defined by field TCCLKS in TC_CMRx.
1	The selected clock is peripheral clock and TCCLKS field (TC_CMRx) has no effect.

Bits 5:4 - TRIGSRCB[1:0] Trigger Source for Input B

Value	Name	Description
0	EXTERNAL_TIOBx	The trigger/capture input B is driven by external pin TIOBx
1	PWMx	For TC0 to TC10: The trigger/capture input B is driven internally by the comparator output (see Synchronization with PWM) of the PWMx. For TC11: The trigger/capture input B is driven internally by the GTSUCOMP signal of the Ethernet MAC (GMAC).

Bits 1:0 - TRIGSRCA[1:0] Trigger Source for Input A

Value	Name	Description
0	EXTERNAL_TIOAx	The trigger/capture input A is driven by external pin TIOAx
1	PWMx	The trigger/capture input A is driven internally by PWMx

Pulse Width Modulation Controller (PWM)

Figure 51-17. Recoverable Fault Management

51.6.2.8 Spread Spectrum Counter

The PWM macrocell includes a spread spectrum counter allowing the generation of a constantly varying duty cycle on the output PWM waveform (only for the channel 0). This feature may be useful to minimize electromagnetic interference or to reduce the acoustic noise of a PWM driven motor.

This is achieved by varying the effective period in a range defined by a spread spectrum value which is programmed by the field SPRD in the PWM Spread Spectrum Register (PWM_SSPR). The effective

Pulse Width Modulation Controller (PWM)

51.7.44 PWM Channel Period Update Register

Name:	PWM_CPRDUPDx
Offset:	0x0210 + x*0x20 [x=03]
Reset:	_
Property:	Write-only

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the CPRD value. This prevents an unexpected waveform when modifying the waveform period.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
			0 (10	10	-	10
Bit	23	22	21	20	19	18	17	16
	CPRDUPD[23:16]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CPRDUPD[15:8]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CPRDUPD[7:0]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_

Only the first 16 bits (channel counter size) are significant.

Bits 23:0 - CPRDUPD[23:0] Channel Period Update

If the waveform is left-aligned, then the output waveform period depends on the channel counter source clock and can be calculated:

- By using the PWM peripheral clock divided by a given prescaler value "X" (where X = 2^{PREA} is 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula is:

$(X \times CPRDUPD)$

 $f_{\text{peripheral clock}}$

- By using the PWM peripheral clock divided by a given prescaler value "X" (see above) and by either the DIVA or the DIVB divider. The formula becomes, respectively:

 $\frac{(X \times \text{CPRDUPD} \times \text{DIVA})}{f_{\text{peripheral clock}}} \text{ or } \frac{(X \times \text{CPRDUPD} \times \text{DIVB})}{f_{\text{peripheral clock}}}$

If the waveform is center-aligned, then the output waveform period depends on the channel counter source clock and can be calculated:

- By using the PWM peripheral clock divided by a given prescaler value "X" (where $X = 2^{PREA}$ is 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula is:

 $(2 \times X \times CPRDUPD)$

f peripheral clock

- By using the PWM peripheral clock divided by a given prescaler value "X" (see above) and by either the DIVA or the DIVB divider. The formula becomes, respectively:

 $\frac{(2 \times X \times \text{CPRDUPD} \times \text{DIVA})}{f_{\text{peripheral clock}}} \text{ or } \frac{(2 \times X \times \text{CPRDUPD} \times \text{DIVB})}{f_{\text{peripheral clock}}}$

55.3 Block Diagram

Figure 55-2. Integrity Check Monitor Block Diagram

55.4 Product Dependencies

55.4.1 Power Management

The peripheral clock is not continuously provided to the ICM. The programmer must first enable the ICM clock in the Power Management Controller (PMC) before using the ICM.

55.4.2 Interrupt Sources

The ICM interface has an interrupt line connected to the Interrupt Controller.

Handling the ICM interrupt requires programming the interrupt controller before configuring the ICM.

Advanced Encryption Standard (AES)

Encryption or Decryption Process

If the user does not want to read AES_ODATARx between each encryption/decryption, the DATRDY flag will not be cleared. If the DATRDY flag is not cleared, the user cannot know the end of the following encryptions/decryptions.

57.4.3.1.2 If AES_MR.LOD = 1

This mode is optimized to process AES CBC-MAC operating mode.

The DATRDY flag is cleared when at least one AES_IDATAR is written (see the figure below). No additional AES_ODATAR reads are necessary between consecutive encryptions/decryptions.

Figure 57-2. Manual and Auto Modes with AES_MR.LOD = 1

Encryption or Decryption Process

57.4.3.2 DMA Mode

57.4.3.2.1 If AES_MR.LOD = 0

This mode may be used for all AES operating modes except CBC-MAC where AES_MR.LOD = 1 mode is recommended.

The end of the encryption/decryption is indicated by the end of DMA transfer associated to AES_ODATARx (see the figure below). Two DMA channels are required: one for writing message blocks to AES_IDATARx and one to obtain the result from AES_ODATARx.

Figure 57-3. DMA Transfer with AES_MR.LOD = 0

Enable DMA Channels associated to AES_IDATARx and AES_ODATARx

Multiple Encryption or Decryption Processes

DMA Buffer transfer
complete flag
/channel m

DMA Buffer transfer
complete flag
/channel n

Message fully processed
(cipher or decipher) last
block can be read

- 7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the fragment ends in *AAD* phase), then read AES_GHASHRx.GHASH to obtain the value of the hash after the last processed data and finally read AES_CTR.CTR to obtain the value of the CTR encryption counter (not needed when the fragment ends in AAD phase).
- Next fragment (or last fragment):
- 1. Set AES_MR.OPMOD to GCM and AES_MR.GTAGEN to '0'.
- 2. Set the AES Key Register and wait until AES_ISR.DATRDY is set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in AES_GCMHRx. See Key Writing and Automatic Hash Subkey Calculation.
- 3. Set AES_IVRx.IV as follows:
 - If the first block of the fragment is a block of Additional Authenticated data, set AES_IVRx.IV with the J_0 initial value
 - If the first block of the fragment is a block of Plaintext data, set AES_IVRx.IV with a value constructed as follows: 'LSB96(J_0) || CTR' value, (96 bit LSB of J_0 concatenated with saved CTR value from previous fragment).
- 4. Configure AES_AADLENR.AADLEN and AES_CLENR.CLEN according to the length of the current fragment, or set the fields with the remaining message length, both configurations work.
- 5. Fill AES_GHASHRx.GHASH with the value stored after the previous fragment.
- 6. Fill AES_IDATARx.IDATA with the current fragment of the message to process (aligned on 16 byte boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed (however, no output data are generated when processing *AAD*).
- 7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the fragment ends in AAD phase), then read AES_GHASHRx.GHASH to obtain the value of the hash after the last processed data and finally read AES_CTR.CTR to obtain the value of the CTR encryption counter (not needed when the fragment ends in *AAD* phase).

Note: Step 1 and 2 are required only if the value of the concerned registers has been modified.

Once the last fragment has been processed, the GHASH value will allow manual generation of the GCM tag. See Manual GCM Tag Generation.

57.4.4.3.4 Manual GCM Tag Generation

This section describes the last steps of the GCM Tag generation.

The Manual GCM Tag Generation is used to complete the GCM Tag Generation when the message has been processed without Tag Generation.

Note: The Message Processing without Tag Generation must be finished before processing the Manual GCM Tag Generation.

To generate a GCM Tag manually, the sequence is as follows:

Processing S = GHASH_H (AAD || 0v || C || 0u || [len(AAD)]64 || [len(C)]64):

- 1. Set AES_MR.OPMOD to GCM and AES_MR.GTAGEN to '0'.
- 2. Set the AES Key Register and wait for AES_ISR.DATRDY to be set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in AES_GCMHRx. See Key Writing and Automatic Hash Subkey Calculation.

Electrical Characteristics for SAM ...

Figure 58-13. Gain and Offset Errors in Differential Mode

where:

- Full-scale error E_{FS} =(E_{FS+})-(E_{FS-}), unit is LSB code
- Offset error E_O is the offset error measured for V_{IN}=0V
- Gain error E_G =100 × E_{FS} /4096, unit in %

The error values in the tables below include the sample-and-hold error as well as the PGA gain error.

58.8.4.4.2 Single-ended Mode

The figure below illustrates the AFE output code relative to an input voltage V_{IN} between 0V (Ground) and V_{VREFP} . The AFE is configured in Single-ended mode by connecting internally the negative differential input to $V_{VREFP}/2$. As the AFE continues to work internally in Differential mode, the offset is measured at $V_{VREFP}/2$. The offset at V_{INP} =0 can be computed using the transfer function and the corresponding E_G and E_O .

Figure 58-14. Gain and Offset Errors in Single-ended Mode

where:

- Full-scale error $E_{FS} = (E_{FS+})-(E_{FS-})$, unit is LSB code
- Offset error E_O is the offset error measured for V_{REFP/2}= 0V
- Gain error E_G =100 x E_{FS} /4096, unit in %

The error values in the tables below include the DAC, the sample-and-hold error as well as the PGA gain error.

© 2018 Microchip Technology Inc.

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Мах	Unit
		1.8V domain	0.8	-	ns
SPI ₁₂	NPCS setup to SPCK rising (slave)	3.3V domain	3.9	_	ns
		1.8V domain	4.4	_	ns
SPI ₁₃	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns
		1.8V domain	0	_	ns
SPI ₁₄	NPCS setup to SPCK falling (slave)	3.3V domain	4.0	_	ns
		1.8V domain	4.1	_	ns
SPI ₁₅	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns
		1.8V domain	0	_	ns

Timings are given for the 3.3V domain, with V_{DDIO} from 2.85V to 3.6V, maximum external capacitor = 40 pF.

Table 58-57. SPI Timings

Symbol	Parameter	Conditions	Min	Мах	Unit
SPI0	MISO Setup time before SPCK rises (master)	3.3V domain	12.4	-	ns
SPI ₁	MISO Hold time after SPCK rises (master)	3.3V domain	0	_	ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain	-3.7	2.2	ns
SPI3	MISO Setup time before SPCK falls (master)	3.3V domain	12.6	_	ns
SPI4	MISO Hold time after SPCK falls (master)	3.3V domain	0	_	ns
SPI5	SPCK falling to MOSI Delay (master)	3.3V domain	-3.6	2.0	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain	3.0	11.9	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain	1.2	_	ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain	0.6	_	ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain	3.0	12.0	ns
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain	1.2	_	ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain	0.6	_	ns
SPI ₁₂	NPCS setup to SPCK rising (slave)	3.3V domain	3.9	_	ns
SPI ₁₃	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns
SPI ₁₄	NPCS setup to SPCK falling (slave)	3.3V domain	4.0	_	ns
SPI ₁₅	NPCS hold after SPCK falling (slave)	3.3V domain	0	_	ns

Note that in SPI master mode, the device does not sample the data (MISO) on the opposite edge where the data clocks out (MOSI), but the same edge is used. See Figure 58-19 and Figure 58-20.