
Microchip Technology - ATSAMS70N21B-CFN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M7

Core Size 32-Bit Single-Core

Speed 300MHz

Connectivity I²C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 75

Program Memory Size 2MB (2M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 384K x 8

Voltage - Supply (Vcc/Vdd) 1.08V ~ 3.6V

Data Converters A/D 10x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-VFBGA

Supplier Device Package 100-VFBGA (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsams70n21b-cfn

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsams70n21b-cfn-4392943
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

19.3.3.1.2 Slot Cycle Limit Arbitration
The MATRIX contains specific logic to break long accesses, such as very long bursts on a very slow
slave (e.g., an external low speed memory). At each arbitration time, a counter is loaded with the value
previously written in the SLOT_CYCLE field of the related Slave Configuration Register (MATRIX_SCFG)
and decreased at each clock cycle. When the counter elapses, the arbiter has the ability to rearbitrate at
the end of the current AHB bus access cycle.

Unless a master has a very tight access latency constraint, which could lead to data overflow or
underflow due to a badly undersized internal FIFO with respect to its throughput, the Slot Cycle Limit
should be disabled (SLOT_CYCLE = 0) or set to its default maximum value in order not to inefficiently
break long bursts performed by some bus masters.

In most cases, this feature is not needed and should be disabled for power saving.

WARNING This feature does not prevent a slave from locking its access indefinitely.

19.3.3.2 Arbitration Priority Scheme
The MATRIX arbitration scheme is organized in priority pools.

Round-robin priority is used in the highest and lowest priority pools, whereas fixed level priority is used
between priority pools and in the intermediate priority pools.

For each slave, each master is assigned to one of the slave priority pools through the priority registers for
slaves (MxPR fields of MATRIX_PRAS and MATRIX_PRBS). When evaluating master requests, this
programmed priority level always takes precedence.

After reset, all the masters except those of the Cortex-M7 belong to the lowest priority pool (MxPR = 0)
and are therefore granted bus access in a true round-robin order.

The highest priority pool must be specifically reserved for masters requiring very low access latency. If
more than one master belongs to this pool, they will be granted bus access in a biased round-robin
manner which allows tight and deterministic maximum access latency from AHB bus requests. In the
worst case, any currently occurring high-priority master request will be granted after the current bus
master access has ended and other high priority pool master requests, if any, have been granted once
each.

The lowest priority pool shares the remaining bus bandwidth between AHB Masters.

Intermediate priority pools allow fine priority tuning. Typically, a moderately latency-critical master or a
bandwidth-only critical master will use such a priority level. The higher the priority level (MxPR value), the
higher the master priority.

All combinations of MxPR values are allowed for all masters and slaves. For example, some masters
might be assigned the highest priority pool (round-robin), and remaining masters the lowest priority pool
(round-robin), with no master for intermediate fix priority levels.

If more than one master requests the slave bus, regardless of the respective masters priorities, no master
will be granted the slave bus for two consecutive runs. A master can only get back-to-back grants so long
as it is the only requesting master.

 SAM E70/S70/V70/V71 Family
Bus Matrix (MATRIX)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 105

3. A number of slow RC oscillator clock periods is counted to cover the startup time of the 32.768 kHz
crystal oscillator. Refer to the section “Electrical Characteristics” for information on the 32.768 kHz
crystal oscillator startup time.

4. The slow clock is switched to the output of the 32.768 kHz crystal oscillator.
5. The slow RC oscillator is disabled to save power.

The switching time may vary depending on the slow RC oscillator clock frequency range. The switch of
the slow clock source is glitch-free. The OSCSEL bit of the SUPC Status register (SUPC_SR) indicates
when the switch sequence is finished.

Reverting to the slow RC oscillator as a slow clock source is only possible by shutting down the VDDIO
power supply.

If the user does not need the 32.768 kHz crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the 32.768 kHz crystal oscillator in Bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of the
XIN32 pin are given in the section “Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS
bit in the Mode register (SUPC_MR) must be set before setting XTALSEL.

Related Links
58. Electrical Characteristics for SAM V70/V71
59. Electrical Characteristics for SAM E70/S70

23.4.3 Core Voltage Regulator Control/Backup Low-power Mode
The SUPC controls the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current.
Refer to the section “Electrical Characteristics”.

The user can switch off the voltage regulator, and thus put the device in Backup mode, by writing a ‘1’ to
SUPC_CR.VROFF.

This asserts the vddcore_nreset signal after the write resynchronization time, which lasts two slow clock
cycles (worst case). Once the vddcore_nreset signal is asserted, the processor and the peripherals are
stopped one slow clock cycle before the core power supply shuts off.

When the internal voltage regulator is not used and VDDCORE is supplied by an external supply, the
voltage regulator can be disabled by writing a ‘0’ to SUPC_MR.ONREG.

Related Links
58. Electrical Characteristics for SAM V70/V71
59. Electrical Characteristics for SAM E70/S70

23.4.4 Using Backup Batteries/Backup Supply
When backup batteries or, more generally, a separate backup supply is used, only VDDIO is present in
Backup mode. No other external supply is applied.

 SAM E70/S70/V70/V71 Family
Supply Controller (SUPC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 175

26.4.3.2 Backup Reset
A backup reset occurs when the chip exits from Backup mode. While exiting Backup mode, the
vddcore_nreset signal is asserted by the Supply Controller.

Field RSTC_SR.RSTTYP is updated to report a backup reset.

26.4.3.3 Watchdog Reset
The watchdog reset is entered when a watchdog fault occurs. This reset lasts three SLCK cycles.

When in watchdog reset, the processor reset and the peripheral reset are asserted. The NRST line is
also asserted, depending on the value of RSTC_MR.ERSTL. However, the resulting low level on NRST
does not result in a user reset state.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor
reset if WDT_MR.WDRSTEN is written to ‘1’, the Watchdog Timer is always reset after a watchdog reset,
and the Watchdog is enabled by default and with a period set to a maximum.

When WDT_MR.WDRSTEN is written to ‘0’, the watchdog fault has no impact on the RSTC.

After a watchdog overflow occurs, the report on the RSTC_SR.RSTTYP may differ (either WDT_RST or
USER_RST) depending on the external components driving the NRST pin. For example, if the NRST line
is driven through a resistor and a capacitor (NRST pin debouncer), the reported value is USER_RST if
the low to high transition is greater than one SLCK cycle.

Figure 26-4. Watchdog Reset Timing Diagram

0x2 = Watchdog Reset

SLCK

Processor and
Peripherals
Reset Line

NRST
(nrst_out)

MCK Any
Frequency.

RSTTYP XXX

Main RC
Oscillator

3 SLCK cycles + 2 MCK cycles

Active

Active

Inactive

Inactive

Any
Frequency.

Inactive

Inactive

WDT Fault

Min = 2 SLCK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

26.4.3.4 Software Reset
The RSTC offers commands to assert the different reset signals. These commands are performed by
writing the Control register (RSTC_CR) with the following bits at ‘1’:

• RSTC_CR.PROCRST: Writing a ‘1’ to PROCRST resets the processor and all the embedded
peripherals, including the memory system and, in particular, the Remap Command.

• RSTC_CR.EXTRST: Writing a ‘1’ to EXTRST asserts low the NRST pin during a time defined by
the field RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is written to ‘1’ by the software. All these
commands can be performed independently or simultaneously. The software reset lasts three SLCK
cycles.

 SAM E70/S70/V70/V71 Family
Reset Controller (RSTC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 217

31.20.18 PMC Fast Startup Mode Register

Name:  PMC_FSMR
Offset:  0x0070
Reset:  0x00000000
Property:  Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 FFLPM FLPM[1:0] LPM USBAL RTCAL RTTAL

Access
Reset 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FSTT15 FSTT14 FSTT13 FSTT12 FSTT11 FSTT10 FSTT9 FSTT8

Access
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 FSTT7 FSTT6 FSTT5 FSTT4 FSTT3 FSTT2 FSTT1 FSTT0

Access
Reset 0 0 0 0 0 0 0 0

Bit 23 – FFLPM Force Flash Low-power Mode

Value Description
0 The Flash Low-power mode, defined in the FLPM field, is automatically applied when in Wait

mode and released when going back to Active mode.
1 The Flash Low-power mode is user defined by the FLPM field and immediately applied.

Bits 22:21 – FLPM[1:0] Flash Low-power Mode

Value Name Description
0 FLASH_STANDBY Flash is in Standby Mode when system enters Wait Mode
1 FLASH_DEEP_POWERDOWN Flash is in Deep-powerdown mode when system enters

Wait Mode
2 FLASH_IDLE Idle mode

Bit 20 – LPM Low-power Mode

Value Description
0 The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes

the processor enter Sleep mode.
1 The WaitForEvent (WFE) instruction of the processor makes the system enter Wait mode.

 SAM E70/S70/V70/V71 Family
Power Management Controller (PMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 323

31.20.25 PMC Peripheral Clock Status Register 1

Name:  PMC_PCSR1
Offset:  0x0108
Reset:  0x00000000
Property:  Read-only

Bit 31 30 29 28 27 26 25 24
 PID24 PID23 PID22 PID21 PID20 PID19 PID18 PID17

Access
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 PID16 PID15 PID14 PID13 PID12 PID11 PID10 PID9

Access
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 PID8 PID7 PID6 PID5 PID4 PID3 PID2 PID1

Access
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 PID0

Access
Reset 0

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx 
Peripheral Clock x Status

Value Description
0 The corresponding peripheral clock is disabled.
1 The corresponding peripheral clock is enabled.

Note: “PIDx” refers to identifiers as defined in the section “Peripheral Identifiers”.

 SAM E70/S70/V70/V71 Family
Power Management Controller (PMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 331

Figure 35-6. Standard and “CE don’t care” NAND Flash Application Examples

D[7:0]

ALE

NANDWE
NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

SMC

CE

NAND Flash

PIO

NCSx Not Connected

NANDOE

D[7:0]

ALE

NANDWE
NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

SMC

CE

“CE don’t care”
NAND Flash

NCSx

NANDOE

Related Links
19. Bus Matrix (MATRIX)

35.8 Application Example

35.8.1 Implementation Examples
Hardware configurations are given for illustration only. The user should refer to the manufacturer web site
to check for memory device availability.

For hardware implementation examples, refer to the evaluation kit schematics for this microcontroller,
which show examples of a connection to an LCD module and NAND Flash.

 SAM E70/S70/V70/V71 Family
Static Memory Controller (SMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 467

Figure 35-9.  Standard Read Cycle

A[23:0]

NCS

NRD_SETUP NRD_PULSE NRD_HOLD

MCK

NRD

D[7:0]

NCS_RD_SETUP NCS_RD_PULSE NCS_RD_HOLD

NRD_CYCLE

35.9.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

• nrd_setup— NRD setup time is defined as the setup of address before the NRD falling edge;
• nrd_pulse—NRD pulse length is the time between NRD falling edge and NRD rising edge;
• nrd_hold—NRD hold time is defined as the hold time of address after the NRD rising edge.

35.9.1.2 NCS Waveform
The NCS signal can be divided into a setup time, pulse length and hold time:

• ncs_rd_setup—NCS setup time is defined as the setup time of address before the NCS falling
edge.

• ncs_rd_pulse—NCS pulse length is the time between NCS falling edge and NCS rising edge;
• ncs_rd_hold—NCS hold time is defined as the hold time of address after the NCS rising edge.

35.9.1.3 Read Cycle
The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address
is set on the address bus to the point where address may change. The total read cycle time is defined as:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD,

as well as

NRD_CYCLE = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of Master
Clock cycles. The NRD_CYCLE field is common to both the NRD and NCS signals, thus the timing period
is of the same duration.

NRD_CYCLE, NRD_SETUP, and NRD_PULSE implicitly define the NRD_HOLD value as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE

 SAM E70/S70/V70/V71 Family
Static Memory Controller (SMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 470

Figure 35-21. TDF Period in NRD Controlled Read Access (TDF = 2)

NCS

NRD controlled read operation

tpacc

MCK

NRD

D[7:0]

TDF = 2 clock cycles

A[23:0]

Figure 35-22. TDF Period in NCS Controlled Read Operation (TDF = 3)

MCK

D[7:0]

NCS

NWE

A[23:0]

35.12.2 TDF Optimization Enabled (SMC_MODE.TDF_MODE = 1)
When SMC_MODE.TDF_MODE is set to 1 (TDF optimization is enabled), the SMC takes advantage of
the setup period of the next access to optimize the number of wait states cycle to insert.

The following figure shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

nrd_hold = 4; SMC_MODE.read_mode = 1 (NRD controlled)

nwe_setup = 3; SMC_MODE.write_mode = 1 (NWE controlled)

SMC_MODE.TDF_CYCLES = 6; SMC_MODE.TDF_MODE = 1 (optimization enabled).

 SAM E70/S70/V70/V71 Family
Static Memory Controller (SMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 482

Figure 35-23. TDF Optimization: No TDF wait states are inserted if the TDF period is over when
the next access begins

NCS0

MCK

NRD

NWE

D[7:0]

Read to Write
Wait State

TDF_CYCLES = 6

read access on NCS0 (NRD controlled)

NRD_HOLD= 4

NWE_SETUP= 3

write access on NCS0 (NWE controlled)

35.12.3 TDF Optimization Disabled (SMC_MODE.TDF_MODE = 0)
When optimization is disabled, TDF Wait states are inserted at the end of the read transfer, so that the
data float period is ended when the second access begins. If the hold period of the read1 controlling
signal overlaps the data float period, no additional TDF Wait states will be inserted.

Figure 35-24, Figure 35-25 and Figure 35-26 illustrate the cases:

• read access followed by a read access on another Chip Select,
• read access followed by a write access on another Chip Select,
• read access followed by a write access on the same Chip Select,

with no TDF optimization.

 SAM E70/S70/V70/V71 Family
Static Memory Controller (SMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 483

35.16.1.3 SMC Cycle Register

Name:  SMC_CYCLE[0..3]
Offset:  0x00
Reset:  0
Property:  R/W

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

Bit 31 30 29 28 27 26 25 24
 NRD_CYCLE[8:

8]

Access
Reset 0

Bit 23 22 21 20 19 18 17 16
 NRD_CYCLE[7:0]

Access
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NWE_CYCLE[8

:8]

Access
Reset 0

Bit 7 6 5 4 3 2 1 0
 NWE_CYCLE[7:0]

Access
Reset 0 0 0 0 0 0 0 0

Bits 24:16 – NRD_CYCLE[8:0] Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of
the setup, pulse and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

Bits 8:0 – NWE_CYCLE[8:0] Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of
the setup, pulse and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

 SAM E70/S70/V70/V71 Family
Static Memory Controller (SMC)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 499

38.8.67 GMAC 256 to 511 Byte Frames Received Register

Name:  GMAC_TBFR511
Offset:  0x174
Reset:  0x00000000
Property:  -

Bit 31 30 29 28 27 26 25 24
 NFRX[31:24]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 NFRX[23:16]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 NFRX[15:8]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 NFRX[7:0]

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 31:0 – NFRX[31:0] 256 to 511 Byte Frames Received without Error
This bit fields counts the number of 256 to 511 byte frames successfully received without error. Excludes
pause frames, and is only incremented if the frame is successfully filtered and copied to memory.

 SAM E70/S70/V70/V71 Family
GMAC - Ethernet MAC

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 781

39.6.21 Device Endpoint Interrupt Mask Register (Control, Bulk, Interrupt Endpoints)

Name:  USBHS_DEVEPTIMRx
Offset:  0x01C0 + x*0x04 [x=0..9]
Reset:  0
Property:  Read/Write

This register view is relevant only if EPTYPE = 0x0, 0x2, or 0x3 in ”Device Endpoint x Configuration
Register”.

Bit 31 30 29 28 27 26 25 24

Access
Reset

Bit 23 22 21 20 19 18 17 16
 STALLRQ RSTDT NYETDIS EPDISHDMA

Access
Reset 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 FIFOCON KILLBK NBUSYBKE

Access
Reset 0 0 0

Bit 7 6 5 4 3 2 1 0
 SHORTPACKE

TE
STALLEDE OVERFE NAKINE NAKOUTE RXSTPE RXOUTE TXINE

Access
Reset 0 0 0 0 0 0 0 0

Bit 19 – STALLRQ STALL Request

Value Description
0 Cleared when a new SETUP packet is received or when USBHS_DEVEPTIDRx.STALLRQC

= 0.
1 Set when USBHS_DEVEPTIERx.STALLRQS = 1. This requests to send a STALL

handshake to the host.

Bit 18 – RSTDT Reset Data Toggle
This bit is set when USBHS_DEVEPTIERx.RSTDTS = 1. This clears the data toggle sequence, i.e., sets
to Data0 the data toggle sequence of the next sent (IN endpoints) or received (OUT endpoints) packet.

This bit is cleared instantaneously.

The user does not have to wait for this bit to be cleared.

Bit 17 – NYETDIS NYET Token Disable

 SAM E70/S70/V70/V71 Family
USB High-Speed Interface (USBHS)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 944

Arbitration starts as soon as two or more masters place information on the bus at the same time, and
stops (arbitration is lost) for the master that intends to send a logical one while the other master sends a
logical zero.

As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to detect a
stop. When the stop is detected, the master that has lost arbitration may put its data on the bus by
respecting arbitration.

Arbitration is illustrated in Arbitration Cases.

43.6.4.2 Different Multimaster Modes
Two Multimaster modes may be distinguished:

1. The TWIHS is considered as a master only and is never addressed.
2. The TWIHS may be either a master or a slave and may be addressed.

Note:  Arbitration in supported in both Multimaster modes.

43.6.4.2.1 TWIHS as Master Only
In this mode, the TWIHS is considered as a master only (MSEN is always at one) and must be driven like
a master with the ARBLST (Arbitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the user must reinitiate the data transfer.

If starting a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the TWIHS
automatically waits for a STOP condition on the bus to initiate the transfer (see User Sends Data While
the Bus is Busy).

Note:  The state of the bus (busy or free) is not indicated in the user interface.

43.6.4.2.2 TWIHS as Master or Slave
The automatic reversal from master to slave is not supported in case of a lost arbitration.

Then, in the case where TWIHS may be either a master or a slave, the user must manage the pseudo
Multimaster mode described in the steps below:

1. Program the TWIHS in Slave mode (SADR + MSDIS + SVEN) and perform a slave access (if
TWIHS is addressed).

2. If the TWIHS has to be set in Master mode, wait until TXCOMP flag is at 1.
3. Program the Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START + Write in

THR).
4. As soon as the Master mode is enabled, the TWIHS scans the bus in order to detect if it is busy or

free. When the bus is considered free, the TWIHS initiates the transfer.
5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration becomes

relevant and the user must monitor the ARBLST flag.
6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWIHS in Slave mode in

case the master that won the arbitration needs to access the TWIHS.
7. If the TWIHS has to be set in Slave mode, wait until the TXCOMP flag is at 1 and then program the

Slave mode.

Note:  If the arbitration is lost and the TWIHS is addressed, the TWIHS does not acknowledge, even if it
is programmed in Slave mode as soon as ARBLST is set to 1. Then the master must repeat SADR.

 SAM E70/S70/V70/V71 Family
Two-wire Interface (TWIHS)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1199

MediaLB Devices are encouraged to support dynamic configuration, where a preset DeviceAddress is
used to assign the ChannelAddresses for each logical channel. Dynamic configuration avoids collisions of
ChannelAddresses on different Devices.

To minimize collisions of DeviceAddresses, programmable Devices should assign the DeviceAddress via
firmware. For non-programmable Devices, it is strongly recommended to have only the upper bits fixed,
and have the lower bits configurable via pins on the Device. Having the lower bits configurable via pins
minimizes collisions with other manufacturer’s Devices, as well as allows multiple instances of the same
Device to coexist on the same MediaLB bus.

Table 48-4. DeviceAddress Grouping

Device Addresses Range Device Type

0x0002..0x017E – Reserved

0x0180..0x0186 4 External Host Controller Processors

0x0188..0x018E 4 General Processors

0x0190..0x0196 – Reserved

0x0198..0x019E – Reserved

0x01A0..0x01A6 4 Digital Signal Processors

0x01A8..0x01AE – Reserved

0x01B0..0x01B6 4 Decoder Chips

0x01B8..0x01BE – Reserved

0x01C0..0x01C6 4 Encoder Chips

0x01C8..0x01CE – Reserved

0x01D0..0x01DE 8 Digital-to-Analog Converters (DACs)

0x01E0..0x01E6 – Reserved

0x01E8..0x01EE – Reserved

0x01F0..0x01FC 7 Analog-to-Digital Converters (ADCs)

48.6.1.3 Command Bytes
The MediaLB Command field is eight-bits wide and all odd values are reserved; therefore, the LSB of
Command is always zero.

Transmitting MediaLB Devices (including the Controller) place Command on the MLBS line to indicate the
type of data being transmitted on the MLBD line.

Two types of MediaLB commands are defined: Normal and System. Normal commands are those sent by
the transmitting MediaLB Device (or Controller) in non-System Channels. System commands are those
sent by the MediaLB Controller in the System Channel.

 SAM E70/S70/V70/V71 Family
Media Local Bus (MLB)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1487

6. If MLB_ACTL.SCE = 1, write the results of step 5 back to MLB_ACSR0 and MLB_ACSR1 to clear
the interrupt.

7. Select a logical channel (N = 0–63) with an interrupt to service.
8. Read the ADT entry for channel N

8.1. Determine the active page (ping or pong) via the PG bit.
8.2. Determine which page(s) are done via the DNEn bits.
8.3. Determine which channels encountered an AHB error via the ERRn bit.
8.4. Determine which asynchronous and control Rx channel pages contain a packet start via

the PSn bit (extract the PML).
9. Reprogram the expired or broken AHB page(s) via steps 3 and 4 in Section “Program the AHB

Block DMAs”.
10. Repeat steps 6–9 for all channels with pending interrupts.
11. Repeat steps 4–10 while there are active channels.

Note:  Channels that receive an AHB error response are disabled (CE = 0) by hardware.

Servicing the MediaLB Interrupts

1. Select the MediaLB Channel Status Register (MSn) to be cleared by software, writing a ‘0’ to the
appropriate bits.

2. Program MLB_MIEN to enable protocol error interrupts for all active MediaLB channels
(MLB_MIEN.CTX_PE = 1, MLB_MIEN.CRX_PE = 1, MLB_MIEN.ATX_PE = 1,
MLB_MIEN.ARX_PE = 1, MLB_MIEN.SYNC_PE = 1, and MLB_MIEN.ISOC_PE = 1)

3. Wait for an interrupt on the mlb_int signal.
4. Read the MSn registers to determine which channel(s) are causing the interrupt.
5. Read RSTS/WSTS of the appropriate CDT(s) to determine the interrupt type.
6. Clear RSTS/WSTS errors to resume channel operation.

6.1. For synchronous channels: WSTS[3] = 0
6.2. For isochronous channels: WSTS[2:1] = 00
6.3. For asynchronous and control channels: RSTS[4]/WSTS[4] = 0 and RSTS[2]/ WSTS[2] = 0

Polling for MediaLB System Commands

The MLB supports the MediaLB System Commands (e.g. MlbScan, MlbReset, MOST_Unlock). The
MediaLB System Status (MLB_MSS) Register is used to detect a System Command received from the
MediaLB Controller. The MLB automatically sends the appropriate system response to the MediaLB
Controller.

The procedure for the application is:

1. The application periodically polls the MLB_MSS register.
2. Clear by writing a ‘0’ to the appropriate bit in MLB_MSS register after the application finishes the

service.
3. If MLB_MSS.SWSYSCMD = 1, read the MLB_MSD register to receive the system data sent from

MediaLB Controller.

48.6.4.3 Low Power Mode
MLB does not provide dedicated low power mode features.

In case the clocks of digital IP need to shut down to save power, the following operations are
recommended before entering low power mode:

 SAM E70/S70/V70/V71 Family
Media Local Bus (MLB)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1530

49.5.6 FIFO Acknowledge Handling
The Get Indices of Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO are controlled by writing to the
corresponding FIFO Acknowledge Index in the registers MCAN_RXF0A, MCAN_RXF1A and
MCAN_TXEFA. Writing to the FIFO Acknowledge Index will set the FIFO Get Index to the FIFO
Acknowledge Index plus one and thereby updates the FIFO Fill Level. There are two use cases:

When only a single element has been read from the FIFO (the one being pointed to by the Get Index),
this Get Index value is written to the FIFO Acknowledge Index.

When a sequence of elements has been read from the FIFO, it is sufficient to write the FIFO
Acknowledge Index only once at the end of that read sequence (value: Index of the last element read), to
update the FIFO’s Get Index.

Due to the fact that the processor has free access to the MCAN’s Message RAM, special care has to be
taken when reading FIFO elements in an arbitrary order (Get Index not considered). This might be useful
when reading a High Priority Message from one of the two Rx FIFOs. In this case the FIFO’s
Acknowledge Index should not be written because this would set the Get Index to a wrong position and
also alters the FIFO’s Fill Level. In this case some of the older FIFO elements would be lost.

Note:  The application has to ensure that a valid value is written to the FIFO Acknowledge Index. The
MCAN does not check for erroneous values.

49.5.7 Message RAM

49.5.7.1 Message RAM Configuration
The Message RAM has a width of 32 bits. The MCAN module can be configured to allocate up to 4352
words in the Message RAM. It is not necessary to configure each of the sections listed in the figure
below, nor is there any restriction with respect to the sequence of the sections.

When operated in CAN FD mode, the required Message RAM size depends on the element size
configured for Rx FIFO0, Rx FIFO1, Rx Buffers, and Tx Buffers via MCAN_RXESC.F0DS,
MCAN_RXESC.F1DS, MCAN_RXESC.RBDS, and MCAN_TXESC.TBDS.

Figure 49-12. Message RAM Configuration

Rx FIFO 0

Rx FIFO 1

Tx Buffers

Tx Event FIFO

11-bit Filter

29-bit Filter

max. 4352 words

0 to 64 elements / 0 to 1152 words

0 to 64 elements / 0 to 1152 words

0 to 32 elements / 0 to 576 words

0 to 32 elements / 0 to 64 words

0 to 128 elements / 0 to 128 words

0 to 64 elements / 0 to 128 words

32 bits

MCAN_RXF0C.F0SA

MCAN_RXF1C.F1SA

MCAN_TXBC.TBSA

MCAN_TXEFC.EFSA

MCAN_SIDFC.FLSSA

MCAN_XIDFC.FLESA

Start Address

Rx Buffers 0 to 64 elements / 0 to 1152 words
MCAN_RXBC.RBSA

 SAM E70/S70/V70/V71 Family
Controller Area Network (MCAN)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1592

49.6.25 MCAN New Data 1

Name:  MCAN_NDAT1
Offset:  0x98
Reset:  0x00000000
Property:  Read/Write

Bit 31 30 29 28 27 26 25 24
 ND31 ND30 ND29 ND28 ND27 ND26 ND25 ND24

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 ND23 ND22 ND21 ND20 ND19 ND18 ND17 ND16

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 ND15 ND14 ND13 ND12 ND11 ND10 ND9 ND8

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 ND7 ND6 ND5 ND4 ND3 ND2 ND1 ND0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31 – NDx New Data
The register holds the New Data flags of Receive Buffers 0 to 31. The flags are set when the respective
Receive Buffer has been updated from a received frame. The flags remain set until the processor clears
them. A flag is cleared by writing a ‘1’ to the corresponding bit position. Writing a ‘0’ has no effect. A hard
reset will clear the register.

Value Description
0 Receive Buffer not updated
1 Receive Buffer updated from new message

 SAM E70/S70/V70/V71 Family
Controller Area Network (MCAN)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1646

49.6.38 MCAN Transmit Buffer Request Pending

Name:  MCAN_TXBRP
Offset:  0xCC
Reset:  0x00000000
Property:  Read-only

MCAN_TXBRP bits which are set while a Tx scan is in progress are not considered during this particular
Tx scan. In case a cancellation is requested for such a Tx Buffer, this Add Request is cancelled
immediately, the corresponding MCAN_TXBRP bit is reset.

Bit 31 30 29 28 27 26 25 24
 TRP31 TRP30 TRP29 TRP28 TRP27 TRP26 TRP25 TRP24

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 16
 TRP23 TRP22 TRP21 TRP20 TRP19 TRP18 TRP17 TRP16

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8
 TRP15 TRP14 TRP13 TRP12 TRP11 TRP10 TRP9 TRP8

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 TRP7 TRP6 TRP5 TRP4 TRP3 TRP2 TRP1 TRP0

Access R R R R R R R R
Reset 0 0 0 0 0 0 0 0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31 – TRPx Transmission Request Pending for Buffer x
Each Tx Buffer has its own Transmission Request Pending bit. The bits are set via register
MCAN_TXBAR. The bits are reset after a requested transmission has completed or has been cancelled
via register MCAN_TXBCR.

TXBRP bits are set only for those Tx Buffers configured via MCAN_TXBC. After a MCAN_TXBRP bit has
been set, a Tx scan (see Tx Handling) is started to check for the pending Tx request with the highest
priority (Tx Buffer with lowest Message ID).

A cancellation request resets the corresponding transmission request pending bit of register
MCAN_TXBRP. In case a transmission has already been started when a cancellation is requested, this is
done at the end of the transmission, regardless whether the transmission was successful or not. The
cancellation request bits are reset directly after the corresponding TXBRP bit has been reset.

After a cancellation has been requested, a finished cancellation is signalled via MCAN_TXBCF.

• after successful transmission together with the corresponding MCAN_TXBTO bit.

• when the transmission has not yet been started at the point of cancellation.

 SAM E70/S70/V70/V71 Family
Controller Area Network (MCAN)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1665

Figure 51-34. Synchronized Period, Duty-Cycle and Dead-Time Update

PWM_CPRDUPDx Value

PWM_CPRDx PWM_CDTYx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 -> End of PWM period and UPDULOCK = 1

User's Writing

PWM_DTUPDx Value

User's Writing

PWM_DTx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 - If UPDM = 0
 -> End of PWM period and UPDULOCK = 1
 - If UPDM = 1 or 2
 -> End of PWM period and end of Update Period

PWM_CDTYUPDx Value

User's Writing

51.6.6.4 Changing the Update Period of Synchronous Channels
It is possible to change the update period of synchronous channels while they are enabled. See Method
2: Manual write of duty-cycle values and automatic trigger of the update and Method 3: Automatic write of
duty-cycle values and automatic trigger of the update .

To prevent an unexpected update of the synchronous channels registers, the user must use the PWM
Sync Channels Update Period Update Register (PWM_SCUPUPD) to change the update period of
synchronous channels while they are still enabled. This register holds the new value until the end of the
update period of synchronous channels (when UPRCNT is equal to UPR in PWM_SCUP) and the end of
the current PWM period, then updates the value for the next period.

Note: 
1. If the update register PWM_SCUPUPD is written several times between two updates, only the last

written value is taken into account.
2. Changing the update period does make sense only if there is one or more synchronous channels

and if the update method 1 or 2 is selected (UPDM = 1 or 2 in PWM Sync Channels Mode
Register).

 SAM E70/S70/V70/V71 Family
Pulse Width Modulation Controller (PWM)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 1782

6. Fill AES_IDATARx.IDATA with the message to process according to the SMOD configuration used.
If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been
processed (however, no output data are generated when processing AAD).

7. Wait for TAGRDY to be set (use interrupt if needed), then read AES_TAGRx.TAG to obtain the
authentication tag of the message.

57.4.4.3.2 Processing a Complete Message without Tag Generation
Processing a message without generating the Tag can be used to customize the Tag generation, or to
process a fragmented message. To manually generate the GCM Tag, see Manual GCM Tag Generation.

To process a complete message without Tag generation, the sequence is as follows:

1. Set AES_MR.OPMOD to GCM and AES_MR.GTAGEN to ‘0’.
2. Set the AES Key Register and wait until AES_ISR.DATRDY is set (GCM hash subkey generation

complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM
hash subkey can be read or overwritten with specific value in AES_GCMHRx. See Key Writing and
Automatic Hash Subkey Calculation.

3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV) = 96 and
J0 = GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. See Processing a Message with only AAD
(GHASHH) for J0 generation example when len(IV) ≠ 96.

4. Set AES_IVRx.IV with inc32(J0) (J0 + 1 on 32 bits).
5. Configure AES_AADLENR.AADLEN and AES_CLENR.CLEN.
6. Fill AES_IDATARx.IDATA with the message to process according to the SMOD configuration used.

If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been
processed (however, no output data are generated when processing AAD).

7. Make sure the last output data have been read if AES_CLENR.CLEN ≠ 0 (or wait for DATRDY),
then read AES_GHASHRx.GHASH to obtain the hash value after the last processed data.

57.4.4.3.3 Processing a Fragmented Message without Tag Generation
If needed, a message can be processed by fragments, in such case automatic GCM Tag generation is
not supported.

To process a message by fragments, the sequence is as follows:

• First fragment:

1. Set AES_MR.OPMOD to GCM and AES_MR.GTAGEN to ‘0’.
2. Set the AES Key Register and wait for AES_ISR.DATRDY to be set (GCM hash subkey generation

complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM
hash subkey can be read or overwritten with specific value in AES_GCMHRx. See Key Writing and
Automatic Hash Subkey Calculation.

3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV) = 96 and
J0 = GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. See Processing a Message with only AAD
(GHASHH) for J0 generation example when len(IV) ≠ 96.

4. Set AES_IVRx.IV with inc32(J0) (J0 + 1 on 32 bits).
5. Configure AES_AADLENR.AADLEN and AES_CLENR.CLEN according to the length of the first

fragment, or set the fields with the full message length (both configurations work).
6. Fill AES_IDATARx.IDATA with the first fragment of the message to process (aligned on 16-byte

boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used the
DATRDY bit indicates when the data have been processed (however, no output data are generated
when processing AAD).

 SAM E70/S70/V70/V71 Family
Advanced Encryption Standard (AES)

© 2018 Microchip Technology Inc. Datasheet DS60001527B-page 2011

