

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q19a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 1. Round-robin Arbitration (default)
- 2. Fixed Priority Arbitration

Each algorithm may be complemented by selecting a default master configuration for each slave.

When re-arbitration is required, specific conditions apply. Refer to the "Arbitration Rules" section.

19.3.3.1 Arbitration Rules

Each arbiter has the ability to arbitrate between requests from two or more masters. To avoid burst breaking and to provide maximum throughput for slave interfaces, arbitration should take place during the following cycles:

- Idle cycles: When a slave is not connected to any master or is connected to a master which is not currently accessing it
- Single cycles: When a slave is performing a single access
- End of Burst cycles: When the current cycle is the last cycle of a burst transfer. For a defined length burst, predicted end of burst matches the size of the transfer but is managed differently for undefined length burst. Refer to the "Undefined Length Burst Arbitration" section.
- Slot cycle limit: When the slot cycle counter has reached the limit value indicating that the current master access is too long and must be broken. Refer to the "Slot Cycle Limit Arbitration" section.

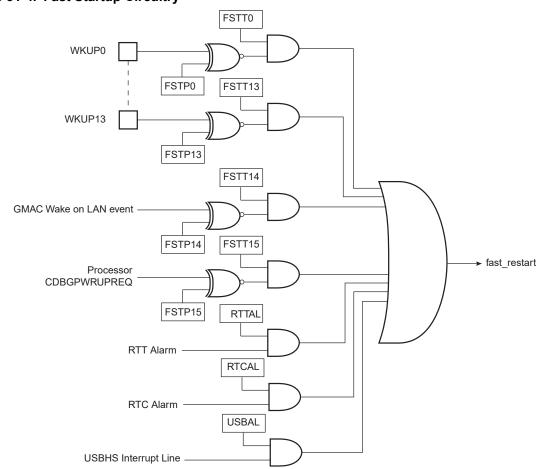
19.3.3.1.1 Undefined Length Burst Arbitration

In order to prevent slave handling during undefined length bursts, the user can trigger the re-arbitration before the end of the incremental bursts. The re-arbitration period can be selected from the following Undefined Length Burst Type (ULBT) possibilities:

- 1. Unlimited: no predetermined end of burst is generated. This value enables 1-Kbyte burst lengths.
- 2. 1-beat bursts: predetermined end of burst is generated at each single transfer during the INCR transfer.
- 3. 4-beat bursts: predetermined end of burst is generated at the end of each 4-beat boundary during INCR transfer.
- 4. 8-beat bursts: predetermined end of burst is generated at the end of each 8-beat boundary during INCR transfer.
- 5. 16-beat bursts: predetermined end of burst is generated at the end of each 16-beat boundary during INCR transfer.
- 6. 32-beat bursts: predetermined end of burst is generated at the end of each 32-beat boundary during INCR transfer.
- 7. 64-beat bursts: predetermined end of burst is generated at the end of each 64-beat boundary during INCR transfer.
- 8. 128-beat bursts: predetermined end of burst is generated at the end of each 128-beat boundary during INCR transfer.

The use of undefined length16-beat bursts, or less, is discouraged since this decreases the overall bus bandwidth due to arbitration and slave latencies at each first access of a burst.

If the master does not permanently and continuously request the same slave or has an intrinsically limited average throughput, the ULBT should be left at its default unlimited value, knowing that the AHB specification natively limits all word bursts to 256 beats and double-word bursts to 128 beats because of its 1-Kbyte address boundaries.


Unless duly needed, the ULBT should be left at its default value of 0 for power saving.

This selection is made through the ULBT field of the Master Configuration Registers (MATRIX_MCFG).

Bus Matrix (MATRIX)

Offset	Name	Bit Pos.					
		31:24					
		7:0				ULBT[2:0]	
0x2C	MATRIX_MCFG11	15:8					
0/120		23:16					
		31:24					
		7:0				ULBT[2:0]	
0x30	MATRIX_MCFG12	15:8					
		23:16					
		31:24					
0x34							
	Reserved						
0x3F							
		7:0		SLOT_CYCLE[6:0]			
0x40	MATRIX_SCFG0	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x44	MATRIX_SCFG1	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
	0x48 MATRIX_SCFG2	7:0		SLOT_CYCLE[6:0]			
0x48		15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]		0.07.0	
0x4C	MATRIX_SCFG3	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x50	MATRIX_SCFG4	15:8					YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFMSTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]			
0x54	MATRIX_SCFG5	15:8			D[2,0]		YCLE[8:7]
		23:16		FIXED_DEFMST	R[3:0]	DEFINISTR	_TYPE[1:0]
		31:24					
		7:0		SLOT_CYCLE[6:0]		SLOT C	
0x58	MATRIX_SCFG6	15:8		FIXED_DEFMST	D[3:0]		YCLE[8:7]
		23:16 31:24		FIXED_DEFINST	N[0.0]	DEFINISTR	_TYPE[1:0]
		7:0		SLOT_CYCLE[6:0]			
		15:8				SLOT O	
0x5C	MATRIX_SCFG7				P[3:0]		YCLE[8:7]
		23:16		FIXED_DEFMST	N[J.U]	DELINGIK	_TYPE[1:0]
		31:24					
0x60	MATRIX_SCFG8	7:0		SLOT_CYCLE[6:0]		SLOT O	
		15:8				SLUI_C	YCLE[8:7]

Power Management Controller (PMC)

Figure 31-4. Fast Startup Circuitry

Each wakeup input pin and alarm can be enabled to generate a fast startup event by setting the corresponding bit in PMC_FSMR.

The user interface does not provide any status for fast startup. The status can be read in the PIO Controller and the status registers of the RTC, RTTand USB Controller.

Related Links

7. Power Considerations

31.14 Startup from Embedded Flash

The inherent startup time of the embedded Flash cannot provide a fast startup of the system.

If system fast startup time is not required, the first instruction after a Wait mode exit can be located in the embedded Flash. Under these conditions, prior to entering Wait mode, the Flash controller must be programmed to perform access in 0 wait-state (refer to the embedded Flash controller section).

The procedure and conditions to enter Wait mode and the circuitry to exit Wait mode are strictly the same as fast startup (see "Fast Startup").

Related Links

22. Enhanced Embedded Flash Controller (EEFC)

© 2018 Microchip Technology Inc.

Power Management Controller (PMC)

Offset	Register	Name	Access	Reset
0x0130	PLL Maximum Multiplier Value Register	PMC_PMMR	Read/Write	0x0000_07FF
0x0134	SleepWalking Enable Register 1	PMC_SLPWK_ER1	Write-only	_
0x0138	SleepWalking Disable Register 1	PMC_SLPWK_DR1	Write-only	_
0x013C	SleepWalking Status Register 1	PMC_SLPWK_SR1	Read-only	0x00000000
0x0140	SleepWalking Activity Status Register 1	PMC_SLPWK_ASR1	Read-only	0x00000000
0x0144	SleepWalking Activity In Progress Register	PMC_SLPWK_AIPR	Read-only	-

Note:

- 1. If an offset is not listed in this table it must be considered as "reserved".
- 2. The reset value depends on factory settings.

Parallel Input/Output Controller (PIO)

	Name: Offset: Property:	PIO_PDSR 0x003C Read-only						
Bit		30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access					1			1
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access				•	•	•		
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Output Data Status

Value	Description
0	The I/O line is at level 0.
1	The I/O line is at level 1.

32.6.1.13 PIO Pin Data Status Register

Parallel Input/Output Controller (PIO)

32.6.1.51 PIO Parallel Capture Interrupt Enable Register

Name:	PIO_PCIER
Offset:	0x0154
Property:	Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					RXBUFF	ENDRX	OVRE	DRDY
Access								
Reset								

Bit 3 – RXBUFF Reception Buffer Full Interrupt Enable

- **Bit 2 ENDRX** End of Reception Transfer Interrupt Enable
- Bit 1 OVRE Parallel Capture Mode Overrun Error Interrupt Enable

Bit 0 - DRDY Parallel Capture Mode Data Ready Interrupt Enable

Static Memory Controller (SMC)

35.16.1.2 SMC Pulse Register

 Name:
 SMC_PULSE[0..3]

 Offset:
 0x00

 Reset:
 0

 Property:
 R/W

This register can only be written if the WPEN bit is cleared in the "SMC Write Protection Mode Register" .

Bit	31	30	29	28	27	26	25	24
				NC	S_RD_PULSE[6	5:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
					NRD_PULSE[6:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				NC	S_WR_PULSE[6	3:0]		
Access								
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				I	NWE_PULSE[6:0]		
Access								
Reset		0	0	0	0	0	0	0

Bits 30:24 – NCS_RD_PULSE[6:0] NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In Page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

Bits 22:16 - NRD_PULSE[6:0] NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In Page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

Bits 14:8 – NCS_WR_PULSE[6:0] NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles

	Name: Offset: Reset: Property:	GMAC_TPFC 0x0C4 0x00000000 -	P					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access					1			
Reset								
Bit	15	14	13	12	11	10	9	8
				PQ	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					([7:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

38.8.28 GMAC Transmit PFC Pause Register

Bits 15:8 – PQ[7:0] Pause Quantum

When the Remove FCS bit in the GMAC Network Configuration register (GMAC_NCFGR.RFCS) is written to '1', and one or more bits in this bit field are written to '0', the associated PFC pause frame's pause quantum field value is taken from the Transmit Pause Quantum register (GMAC_TPQ).

For each entry equal to '1' in this bit field, the pause quantum associated with that entry will be zero.

Bits 7:0 – PEV[7:0] Priority Enable Vector

When the Remove FCS bit in the GMAC Network Configuration register (GMAC_NCFGR.RFCS) is written to '1', the priority enable vector of the PFC priority-based pause frame is set to the value stored in this bit field.

38.8.50 GMAC Greater Than 1518 Byte Frames Transmitted Register

Name:	GMAC_GTBFT1518
Offset:	0x130
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24	
	NFTX[31:24]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				NFTX	[23:16]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				NFTX	([15:8]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				NFT	X[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 – NFTX[31:0] Greater than 1518 Byte Frames Transmitted without Error This register counts the number of 1518 or above byte frames successfully transmitted without error i.e., no underrun and not too many retries.

- For a single bank, a NYET handshake is always sent to the host (on Bulk-out transaction) to indicate that the current packet is acknowledged but there is no room for the next one.
- For a double bank, the USBHS responds to the OUT/DATA transaction with an ACK handshake when the endpoint accepted the data successfully and has room for another data payload (the second bank is free).

39.5.2.14 Underflow

This error only exists for isochronous IN/OUT endpoints. It sets the Underflow Interrupt (USBHS_DEVEPTISRx.UNDERFI) bit, which triggers a PEP_x interrupt if the Underflow Interrupt Enable (USBHS_DEVEPTIMRx.UNDERFE) bit is one.

- An underflow can occur during the IN stage if the host attempts to read from an empty bank. A zero-length packet is then automatically sent by the USBHS.
- An underflow cannot occur during the OUT stage on a CPU action, since the user may only read if the bank is not empty (USBHS_DEVEPTISRx.RXOUTI = 1 or USBHS_DEVEPTISRx.RWALL = 1).
- An underflow can also occur during the OUT stage if the host sends a packet while the bank is already full. Typically, the CPU is not fast enough. The packet is lost.
- An underflow cannot occur during the IN stage on a CPU action, since the user may only write if the bank is not full (USBHS_DEVEPTISRx.TXINI = 1or USBHS_DEVEPTISRx.RWALL = 1).

39.5.2.15 Overflow

This error exists for all endpoint types. It sets the Overflow interrupt (USBHS_DEVEPTISRx.OVERFI) bit, which triggers a PEP_x interrupt if the Overflow Interrupt Enable (USBHS_DEVEPTIMRx.OVERFE) bit is one.

- An overflow can occur during the OUT stage if the host attempts to write into a bank which is too small for the packet. The packet is acknowledged and the USBHS_DEVEPTISRx.RXOUTI bit is set as if no overflow had occurred. The bank is filled with all the first bytes of the packet that fit in.
- An overflow cannot occur during the IN stage on a CPU action, since the user may only write if the bank is not full (USBHS_DEVEPTISRx.TXINI = 1 or USBHS_DEVEPTISRx.RWALL = 1).

39.5.2.16 HB Isoln Error

This error only exists for high-bandwidth isochronous IN endpoints.

At the end of the microframe, if at least one packet has been sent to the host and fewer banks than expected have been validated (by clearing the USBHS_DEVEPTIMRx.USBHS_DEVEPTIMRx.FIFOCON) for this microframe, it sets the USBHS_DEVEPTISRx.HBISOINERRORI bit, which triggers a PEP_x interrupt if the High Bandwidth Isochronous IN Error Interrupt Enable (HBISOINERRORE) bit is one.

For example, if the Number of Transactions per MicroFrame for Isochronous Endpoint (NBTRANS) field in USBHS_DEVEPTCFGx is three (three transactions per microframe), only two banks are filled by the CPU (three expected) for the current microframe. Then, the HBISOINERRI interrupt is generated at the end of the microframe. Note that an UNDERFI interrupt is also generated (with an automatic zero-lengthpacket), except in the case of a missing IN token.

39.5.2.17 HB IsoFlush

This error only exists for high-bandwidth isochronous IN endpoints.

At the end of the microframe, if at least one packet has been sent to the host and there is a missing IN token during this microframe, the bank(s) destined to this microframe is/are flushed out to ensure a good data synchronization between the host and the device.

For example, if NBTRANS is three (three transactions per microframe) and if only the first IN token (among three) is well received by the USBHS, the last two banks are discarded.

USB High-Speed Interface (USBHS)

39.6.50 Host Pipe x Clear Register (Isochronous Pipes)

 Name:
 USBHS_HSTPIPICRx (ISOPIPES)

 Offset:
 0x0560 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if PTYPE = 0x1 in "Host Pipe x Configuration Register".

For additional information, see "Host Pipe x Status Register (Isochronous Pipes)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Clears the corresponding bit in USBHS_HSTPIPISRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access			•					
Reset								
Bit	15	14	13	12	11	10	9	8
Access					L			
Reset								
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERRIC	OVERFIC	NAKEDIC		UNDERFIC	TXOUTIC	RXINIC
	TIC							
Access								
Reset	0	0	0	0		0	0	0

Bit 7 - SHORTPACKETIC Short Packet Interrupt Clear

Bit 6 - CRCERRIC CRC Error Interrupt Clear

Bit 5 – OVERFIC Overflow Interrupt Clear

Bit 4 – NAKEDIC NAKed Interrupt Clear

- Bit 2 UNDERFIC Underflow Interrupt Clear
- Bit 1 TXOUTIC Transmitted OUT Data Interrupt Clear

Two-wire Interface (TWIHS)

Bits 22:16 - SADR[6:0] Slave Address

The slave device address is used in Slave mode in order to be accessed by master devices in Read or Write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

Bits 14:8 - MASK[6:0] Slave Address Mask

A mask can be applied on the slave device address in Slave mode in order to allow multiple address answer. For each bit of the MASK field set to 1, the corresponding SADR bit is masked.

If the MASK field value is 0, no mask is applied to the SADR field.

Bit 6 – SCLWSDIS Clock Wait State Disable

Value	Description
0	No effect.
1	Clock stretching disabled in Slave mode, OVRE and UNRE indicate an overrun/underrun.

Bit 3 - SMHH SMBus Host Header

Value	Description
0	Acknowledge of the SMBus host header disabled.
1	Acknowledge of the SMBus host header enabled.

Bit 2 – SMDA SMBus Default Address

Value	Description
0	Acknowledge of the SMBus default address disabled.
1	Acknowledge of the SMBus default address enabled.

Bit 0 – NACKEN Slave Receiver Data Phase NACK enable

Value	Description
0	Normal value to be returned in the ACK cycle of the data phase in Slave Receiver mode.
1	NACK value to be returned in the ACK cycle of the data phase in Slave Receiver mode.

45. Inter-IC Sound Controller (I2SC)

45.1 Description

The Inter-IC Sound Controller (I2SC) provides a 5-wire, bidirectional, synchronous, digital audio link to external audio devices: I2SC_DI, I2SC_DO, I2SC_WS, I2SC_CK, and I2SC_MCK pins.

The I2SC is compliant with the Inter-IC Sound (I²S) bus specification.

The I2SC consists of a receiver, a transmitter and a common clock generator that can be enabled separately to provide Master, Slave or Controller modes with receiver and/or transmitter active.

DMA Controller channels, separate for the receiver and for the transmitter, allow a continuous high bit rate data transfer without processor intervention to the following:

- Audio CODECs in Master, Slave, or Controller mode
- Stereo DAC or ADC through a dedicated I²S serial interface

The I2SC can use either a single DMA Controller channel for both audio channels or one DMA Controller channel per audio channel.

The 8- and 16-bit compact stereo format reduces the required DMA Controller bandwidth by transferring the left and right samples within the same data word.

In Master mode, the I2SC can produce a 32 f_s to 1024 f_s master clock that provides an over-sampling clock to an external audio codec or digital signal processor (DSP).

45.2 Embedded Characteristics

- Compliant with Inter-IC Sound (I²S) Bus Specification
- Master, Slave, and Controller Modes
 - Slave: Data Received/Transmitted
 - Master: Data Received/Transmitted And Clocks Generated
 - Controller: Clocks Generated
- Individual Enable and Disable of Receiver, Transmitter and Clocks
- Configurable Clock Generator Common to Receiver and Transmitter
 - Suitable for a Wide Range of Sample Frequencies (fs), Including 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, and 192 kHz
 - 32 f_s to 1024 f_s Master Clock Generated for External Oversampling Data Converters
- Support for Multiple Data Formats
 - 32-, 24-, 20-, 18-, 16-, and 8-bit Mono or Stereo Format
 - 16- and 8-bit Compact Stereo Format, with Left and Right Samples Packed in the Same Word to Reduce Data Transfers
- DMA Controller Interfaces the Receiver and Transmitter to Reduce Processor Overhead
 - One DMA Controller Channel for Both Audio Channels, or
 - One DMA Controller Channel Per Audio Channel
- Smart Holding Registers Management to Avoid Audio Channels Mix After Overrun or Underrun

Universal Synchronous Asynchronous Receiver Transc...

46.7.45 USART IC DIFF Register

Name:US_ICDIFFOffset:0x0088Reset:0x0Property:Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						ICDIF	F[3:0]	
Access								
Reset					0	0	0	0

Bits 3:0 - ICDIFF[3:0] IC Differentiator Number

Controller Area Network (MCAN)

Offset	Name	Bit Pos.								
		15:8	TIE15	TIE14	TIE13	TIE12	TIE11	TIE10	TIE9	TIE8
		23:16	TIE23	TIE22	TIE21	TIE20	TIE19	TIE18	TIE17	TIE16
		31:24	TIE31	TIE30	TIE29	TIE28	TIE27	TIE26	TIE25	TIE24
0xE4		7:0	CFIE7	CFIE6	CFIE5	CFIE4	CFIE3	CFIE2	CFIE1	CFIE0
	MCAN TXBCIE	15:8	CFIE15	CFIE14	CFIE13	CFIE12	CFIE11	CFIE10	CFIE9	CFIE8
	MOAN_TABOLE	23:16	CFIE23	CFIE22	CFIE21	CFIE20	CFIE19	CFIE18	CFIE17	CFIE16
		31:24	CFIE31	CFIE30	CFIE29	CFIE28	CFIE27	CFIE26	CFIE25	CFIE24
0xE8										
	Reserved									
0xEF										
		7:0		EFSA[5:0]						
0xF0	MCAN TXEFC	15:8				EFSA	[13:6]			
0110		23:16					EFS	[5:0]		
		31:24					EFWI	M[5:0]		
		7:0					EFFI	_[5:0]		
0xF4	MCAN TXEFS	15:8						EFGI[4:0]		
		23:16						EFPI[4:0]		
		31:24							TEFL	EFF
		7:0						EFAI[4:0]		
0xF8	MCAN TXEFA	15:8								
0,10		23:16								
		31:24								

Pulse Width Modulation Controller (PWM)

Value	Name	Description
	МСК	Peripheral clock
1	MCK_DIV_2	Peripheral clock/2
2	MCK_DIV_4	Peripheral clock/4
3	MCK_DIV_8	Peripheral clock/8
4	MCK_DIV_16	Peripheral clock/16
5	MCK_DIV_32	Peripheral clock/32
6	MCK_DIV_64	Peripheral clock/64
7	MCK_DIV_128	Peripheral clock/128
8	MCK_DIV_256	Peripheral clock/256
9	MCK_DIV_512	Peripheral clock/512
10	MCK_DIV_1024	Peripheral clock/1024
11	CLKA	Clock A
12	CLKB	Clock B

Advanced Encryption Standard (AES)

57.5.10 AES Initialization Vector Register x

Name:	AES_IVRx
Offset:	0x60 + x*0x04 [x=03]
Reset:	-
Property:	Write-only

Bit	31	30	29	28	27	26	25	24
				IV[3	1:24]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				IV[2	3:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IV[1	5:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IV[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_

Bits 31:0 - IV[31:0] Initialization Vector

The four 32-bit Initialization Vector registers set the 128-bit Initialization Vector data block that is used by some modes of operation as an additional initial input.

AES_IVR0 corresponds to the first word of the Initialization Vector, AES_IVR3 to the last one.

These registers are write-only to prevent the Initialization Vector from being read by another application.

For CBC, OFB and CFB modes, the IV input value corresponds to the initialization vector.

For CTR mode, the IV input value corresponds to the initial counter value.

Note: These registers are not used in ECB mode and must not be written.

Electrical Characteristics for SAM ...

58.8.5 AFE Electrical Characteristics

Table 58-34. AFE INL and DNL, f_{AFE CLOCK} = < 20 MHz Maximum, IBCTL = 10

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
	Differential Mode							
		Gain = 1		±0.7				
INL	Integral Non-Linearity	Gain = 2	-4	±1	4	LSB		
		Gain = 4	-	±1.2				
DNL	Differential Non-Linearity	-	-2	±0.6	2	LSB		
	Single-En	ded Mode						
	Integral Non-Linearity	Gain = 1		±1				
INL		Gain = 2	-6	±1.3	4	LSB		
		Gain = 4		±1.7				
DNL	Differential Non-Linearity	_	-2	±0.6	2	LSB		

Note: INL/DNL given inside the linear range of the AFE: 2% to 98% of VREFP.

Table 58-35. AFE INL and DNL, fAFE CLOCK = > 20 MHz to 40 MHz, IBCTL = 11

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit			
	Differential Mode								
		Gain = 1		±2					
INL	Integral Non-Linearity	Gain = 2	-12	±2.1	12	LSB			
		Gain = 4		±2.5					
DNL	Differential Non-Linearity	-	-6	±2	6	LSB			
	Single-En	ded Mode							
	Integral Non-Linearity	Gain = 1		±2					
INL		Gain = 2	-12	±2.6	12	LSB			
		Gain = 4		±2.7					
DNL	Differential Non-Linearity	_	-6	±2	6	LSB			

Note: INL/DNL given inside the linear range of the AFE: 2% to 98% of VREFP.

Table 58-36. AFE Offset and Gain Error, V_{VREFP} = 1.7V to 3.3V

Symbol	Parameter	Conditions	Min	Typ(1)	Мах	Unit	
Differential Mode							
Eo	Differential Offset Error (see Note 1)	Gain=1	-20	_	35	LSB	
E _G	Differential Gain Error	Gain=1	-0.3	0	0.7	%	

Revision History

Date	Changes
	- Section 38.6.6 "Device Global Interrupt Status Register"
	- Section 38.6.9 "Device Global Interrupt Mask Register"
	- Section 38.6.10 "Device Global Interrupt Disable Register"
	- Section 38.6.11 "Device Global Interrupt Enable Register"
	- Section 38.6.32 "Host Global Interrupt Status Register"
	- Section 38.6.35 "Host Global Interrupt Mask Register"
	- Section 38.6.36 "Host Global Interrupt Disable Register"
	- Section 38.6.37 "Host Global Interrupt Enable Register"
08-Feb-16	Section 39. "Ethernet MAC (GMAC)" Updated Section 39.1 "Description".
	Section 39.5.2 "Power Management": deleted reference to PMC_PCER.
	Section 39.5.3 "Interrupt Sources": deleted reference to 'Advanced Interrupt Controller'. Replaced by 'interrupt controller'. Added information on interrupt sources and priority queues.
	Section 39.6.14 "IEEE 1588 Support": Removed reference to 'output pins' in 2nd paragraph. Deleted reference to GMAC_TSSx.
	Section 39.6.15 "Time Stamp Unit" added information on GTSUCOMP signal in last paragraph.
	Updated register index range for:
	- Section 39.8.106 "GMAC Interrupt Status Register Priority Queue x"
	- Section 39.8.107 "GMAC Transmit Buffer Queue Base Address Register Priority Queue x"
	- Section 39.8.108 "GMAC Receive Buffer Queue Base Address Register Priority Queue x"
	- Section 39.8.109 "GMAC Receive Buffer Size Register Priority Queue x"
	- Section 39.8.115 "GMAC Interrupt Enable Register Priority Queue x"
	- Section 39.8.116 "GMAC Interrupt Disable Register Priority Queue x"
	- Section 39.8.117 "GMAC Interrupt Mask Register Priority Queue x"
	Section 39.8.117 "GMAC Interrupt Mask Register Priority Queue x": inverted bit value definitions ('0' means enabled, '1' means disabled.
	Section 41. "Serial Peripheral Interface (SPI)" Section 41.8.1 "SPI Control Register": added bits FIFODIS, FIFOEN, RXFCLR, TXFCLR and REQCLR.
	Section 42. "Quad SPI Interface (QSPI)"
	Section 42.7.2 "QSPI Mode Register": updated equations and NBBITS description.
	Section 42.7.5 "QSPI Status Register": updated RDRF, TDRE, TXEMPTY, and OVRES field descriptions.

Revision History

Date	Changes
	Section 18.12.10 "Write Protection Status Register": in WPVS bit description, replaced two instances of "since the last read of the MATRIX_WPSR" with "since the last write of the MATRIX_WPMR".
	Section 21. "Enhanced Embedded Flash Controller (EEFC)" Section 21.4.3.2 "Write Commands": added information on DMA write accesses.
	Section 30. "Power Management Controller (PMC)" Section 30.9 "Asynchronous Partial Wake-up": inserted new sub-section "Asynchronous Partial Wake-up in Wait Mode (SleepWalking)" to better describe SleepWalking.
	Section 30.10 "Free-Running Processor Clock": removed reference to MCK.
	Section 31. "Parallel Input/Output Controller (PIO)" Section 31.2 "Embedded Characteristics": added bullet on Programmable I/O Drive.
	Added Section 31.5.12 "Programmable I/O Drive".
	Section 31.5.15.4 "Programming Sequence": "With DMA": in fifth step, replaced reference to BTCx with 'DMA status flag to indicate that the buffer transfer is complete'
	Table 31-5 "Register Mapping": added PIO_DRIVER register at offset 0x0118 and added Section 31.6.49 "PIO I/O Drive Register".
	Section 35. "DMA Controller (XDMAC)" Added Section 35.3 "DMA Controller Peripheral Connections".
	Section 37. "USB High-Speed Interface (USBHS)" Table 37-1 "Description of USB Pipes/Endpoints"; corrected data in columns 'DMA' and 'High Bandwidth'.
	Modified signal names to HSDM/DM and HSDP/DP in Figure 37-1 "USBHS Block Diagram" and Table 37-2 "Signal Description". Updated descriptions.
	Removed Section 37.3.1 "Application Block Diagram" and Figures 37-2, 37-3 and 37-4.
	Removed Section 37.4.1 "I/O Lines".
	Modified Section 37.5.3.3 "Device Detection".
	Section 37.6.2 "General Status Register", Section 37.6.3 "General Status Clear Register", Section 37.6.4 "General Status Set Register": removed bit VBUSRQ and bit description. Bit 9 now reserved in these registers.
24-Feb-15	Section 38. "Ethernet MAC (GMAC)" Section 38.8.13 "GMAC Interrupt Mask Register": corrected general bit description (swapped definitions provided for 0: and 1:)
	Section 40. "Quad SPI Interface (QSPI)" Section 40.5.4 "Direct Memory Access Controller (DMA)": added Note on 32-bit aligned DMA write accesses.
	Figure 40-9 "Instruction Transmission Flow Diagram": modified text if TFRTYP = 0