

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q19a-cn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Input/Output Lines

CCFG_SYSIO Bit Number	Default Function After Reset	Other Function	Constraints for Normal Start	Configuration
12	ERASE	PB12	Low Level at startup (see Note 1)	In Matrix User Interface Registers (Refer to the 19.4.7 CCFG_SYSIO register)
7	TCK/SWCLK	PB7	-	
6	TMS/SWDIO	PB6	-	
5	TDO/ TRACESWO	PB5	-	
4	TDI	PB4	-	
-	PA7	XIN32	-	(see Note 2)
-	PA8	XOUT32	-	
-	PB9	XIN	-	(see Note 3)
_	PB8	XOUT	-	

Table 8-1. System I/O Configuration Pin List

Note:

- 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PB12 into PIO mode.
- 2. Refer to 23.4.2 Slow Clock Generator.
- 3. Refer to 30.5.3 Main Crystal Oscillator.

8.2.1 Serial Wire Debug Port (SW-DP) Pins

The SW-DP pins SWCLK and SWDIO are commonly provided on a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 4-1.

At startup, SW-DP pins are configured in SW-DP mode to allow connection with debugging probe. For more details, refer to 16. Debug and Test Features.

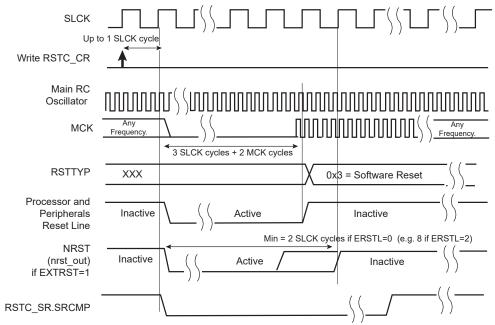
SW-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not needed in the end application. Mode selection between SW-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pulldown resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

The JTAG Debug Port TDI, TDO, TMS and TCK is inactive. It is provided for Boundary Scan Manufacturing Test purpose only.

8.2.2 Embedded Trace Module (ETM) Pins

The Embedded Trace Module (ETM) depends on the Trace Port Interface Unit (TPIU) to export data out of the system.


The TPUI features the following pins:

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to '1', the nrst_out signal is asserted depending on the configuration of RSTC_MR.ERSTL. However, the resulting falling edge on NRST does not lead to a user reset.

If and only if the RSTC_CR.PROCRST is written to '1', the RSTC reports the software status in field RSTC_SR.RSTTYP. Other software resets are not reported in RSTTYP.

As soon as a software operation is detected, RSTC_SR.SRCMP is written to '1'. SRCMP is cleared at the end of the software reset. No other software reset can be performed while SRCMP is written to '1', and writing any value in the RSTC_CR has no effect.

Figure 26-5. Software Reset Timing Diagram

26.4.3.5 User Reset

A user reset is generated when a low level is detected on the NRST pin and RSTC_MR.URSTEN is at '1'. The NRST input signal is resynchronized with SLCK to ensure proper behavior of the system. Thus, the NRST pin must be asserted for at least 1 SLCK clock cycle to ensure execution of a user reset.

The user reset is triggered 2 SLCK cycles after a low level is detected on NRST. The processor reset and the peripheral reset are asserted.

The user reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor startup. The processor clock is reenabled as soon as NRST is confirmed high.

When the processor reset signal is released, RSTC_SR.RSTTYP is loaded with the value '4', indicating a user reset.

The NRST manager guarantees that the NRST line is asserted for External Reset Length SLCK cycles, as configured in RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is driven low externally, the internal reset lines remain asserted until NRST actually rises.

26.4.5 Register Summary

Offset	Name	Bit Pos.								
		7:0				EXTRST			PROCRST	
0x00	RSTC_CR	15:8								
0,00	KSTC_CK	23:16								
		31:24	KEY[7:0]							
	RSTC_SR	7:0							URSTS	
0x04		15:8					RSTTYP[2:0]			
0X04		23:16						SRCMP	NRSTL	
		31:24								
		7:0			URSTIEN				URSTEN	
0x08	RSTC_MR	15:8				ERSTL[3:0]				
0,00		23:16								
		31:24			KEY	'[7:0]				

29.3 Register Summary

Offset	Name	Bit Pos.									
		7:0	GPBR_VALUE[7:0]								
0x00	SYS_GPBRx	15:8	GPBR_VALUE[15:8]								
0,000		23:16	GPBR_VALUE[23:16]								
		31:24			GPBR_VA	LUE[31:24]					

34.7.1 SDRAMC Mode Register

Name: Offset: Reset: Property:		SDRAMC_MR 0x00 0x00000000 Read/Write	R					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							MODE[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - MODE[2:0] SDRAMC Command Mode

This field defines the command issued by the SDRAMC when the SDRAM device is accessed.

Value	Name	Description
0	NORMAL	Normal mode. Any access to the SDRAM is decoded normally. To activate this mode, the command must be followed by a write to the SDRAM.
1	NOP	The SDRAMC issues a NOP command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
2	ALLBANKS_PRECHARGE	The SDRAMC issues an "All Banks Precharge" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
3	LOAD_MODEREG	The SDRAMC issues a "Load Mode Register" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
4	AUTO_REFRESH	The SDRAMC issues an "Autorefresh" Command when the SDRAM device is accessed regardless of the cycle. Previously,

DMA Controller (XDMAC)

Offset	Name	Bit Pos.												
		15:8												
		23:16												
		31:24												
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM				
		15:8												
0x05D8	XDMAC_CIM22	23:16												
		31:24												
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS				
		15:8												
0x05DC	XDMAC_CIS22	23:16												
		31:24												
		7:0				SA[7.01							
		15:8		SA[15:8]										
0x05E0	XDMAC_CSA22	23:16												
		31:24		SA[23:16] SA[31:24]										
		7:0				DA								
0x05E4	XDMAC_CDA22	15:8				DA[
		23:16				DA[2								
		31:24												
		7:0	NDA[5:0] NDAIF											
0x05E8	XDMAC_CNDA22	15:8		NDA[13:6]										
		23:16				NDA[2								
		31:24	NDA[29:22]											
	XDMAC_CNDC22	7:0				NDVIE	W[1:0]	NDDUP	NDSUP	NDE				
0x05EC		15:8												
UXUJEC		23:16												
		31:24												
		7:0		1	1	UBLE	N[7:0]							
		15:8	UBLEN[15:8]											
0x05F0	XDMAC_CUBC22	23:16				UBLEN	[23:16]							
		31:24												
		7:0				BLEN	N[7:0]							
		15:8						BLEN	J[11:8]					
0x05F4	XDMAC_CBC22	23:16												
		31:24												
		7:0	MEMSET	SWREQ		DSYNC		MBSI	ZE[1:0]	TYPE				
		15:8	MEMOET	DIF	SIF		ГН[1:0]		CSIZE[2:0]					
0x05F8	XDMAC_CC22	23:16	WRIP	RDIP	INITD	BWID		И[1:0]		[1:0]				
		31:24	WIXII	I COII	INITE		PERID[6:0]	/[1.0]	OAN	[1.0]				
		7:0				SDS_M								
0x05FC	XDMAC_CDS_MSP						SP[15:8]							
	22	23:16				DDS_N								
		31:24				DDS_M								
		7:0				SUB								
0x0600	XDMAC_CSUS22	15:8				SUBS								
		23:16				SUBS	[23:16]							

GMAC - Ethernet MAC

.									
Offset	Name	Bit Pos.							
		7:0			DMPVAL[7:0]				
0x06E0	GMAC_ST2ER0	15:8		CO	MPVAL[15:8]				
		23:16							
		31:24							
		7:0			DMPVAL[7:0]				
0x06E4	GMAC_ST2ER1	15:8		CO	MPVAL[15:8]				
		23:16							
		31:24							
		7:0			DMPVAL[7:0]				
0x06E8	GMAC_ST2ER2	15:8		CO	MPVAL[15:8]				
		23:16							
		31:24							
		7:0			DMPVAL[7:0]				
0x06EC	GMAC_ST2ER3	15:8		CO	MPVAL[15:8]				
		23:16							
		31:24							
0x06F0									
	Reserved								
0x06FF		7:0							
	0x0700 GMAC_ST2CW00				ASKVAL[7:0]				
0x0700				MASKVAL[15:8] COMPVAL[7:0]					
		23:16							
		31:24		CU	MPVAL[15:8]				
		7:0	OFFSSTRT[0: 0]		OFFSVAL[6:0]				
			5]				OFFSSTRT[1:		
0x0704	GMAC_ST2CW10	15:8					1]		
		23:16					·,		
		31:24							
		7:0		M	ASKVAL[7:0]				
		15:8			SKVAL[15:8]				
0x0708	GMAC_ST2CW01	23:16			DMPVAL[7:0]				
		31:24			MPVAL[15:8]				
		0.1.2.1	OFFSSTRT[0:						
		7:0	0]		OFFSVAL[6:0]				
							OFFSSTRT[1:		
0x070C	GMAC_ST2CW11	15:8					1]		
		23:16							
		31:24							
		7:0		M	ASKVAL[7:0]				
		15:8			SKVAL[15:8]				
0x0710	GMAC_ST2CW02	23:16			DMPVAL[7:0]				
		31:24			MPVAL[15:8]				
			OFFSSTRT[0:						
0x0714	GMAC_ST2CW12	7:0	0]		OFFSVAL[6:0]				
			1						

38.8.26 GMAC IPG Stretch Register

Name: Offset: Reset: Property:		GMAC_IPGS 0x0BC 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Dit	00	00	04	00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Reset								
Bit	15	14	13	12	11	10	9	8
				FL[1	5:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				FL[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - FL[15:0] Frame Length

Bits FL[7:0] are multiplied with the previously transmitted frame length (including preamble), and divided by FL[15:8]+1 (adding 1 to prevent division by zero). RESULT = $\frac{FL[7:0]}{F[15+8]+1}$

If RESULT > 96 and the IP Stretch Enable bit in the Network Configuration Register (GMAC_NCFGR.IPGSEN) is written to '1', RESULT is used for the transmit inter-packet-gap.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		31:24								
	USBHS_HSTPIPID R0 (INTPIPES)	7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0620		15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
	USBHS_HSTPIPID	7:0	SHORTPACK ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0620	R0 (ISOPIPES)	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
	USBHS_HSTPIPID	7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	TXSTPEC	TXOUTEC	RXINEC
0x0624	R1	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0624	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R1 (INTPIPES)	23:16							PFREEZEC	PDISHDMAC
		31:24								
	USBHS_HSTPIPID R1 (ISOPIPES)	7:0	SHORTPACK ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0624		15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	TXSTPEC	TXOUTEC	RXINEC
0x0628	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R2	23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0628	USBHS_HSTPIPID R2 (INTPIPES)	15:8		FIFOCONC		NBUSYBKEC				
		23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	CRCERREC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
0x0628	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R2 (ISOPIPES)	23:16							PFREEZEC	PDISHDMAC
		31:24								
		7:0	SHORTPACK ETIEC	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	TXSTPEC	TXOUTEC	RXINEC
0x062C	USBHS_HSTPIPID	15:8		FIFOCONC		NBUSYBKEC				
	R3	23:16							PFREEZEC	PDISHDMAC
		31:24								

40.14.12 HSMCI Status Register

Name:	HSMCI_SR
Offset:	0x40
Reset:	0xC0E5
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	UNRE	OVRE	ACKRCVE	ACKRCV	XFRDONE	FIFOEMPTY		BLKOVRE
Access								
Reset	0	0	0	0	0	0		0
Bit	23	22	21	20	19	18	17	16
	CSTOE	DTOE	DCRCE	RTOE	RENDE	RCRCE	RDIRE	RINDE
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			CSRCV	SDIOWAIT				SDIOIRQA
Access								
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
			NOTBUSY	DTIP	BLKE	TXRDY	RXRDY	CMDRDY
Access								
Reset			1	0	0	1	0	1

Bit 31 – UNRE Underrun (if FERRCTRL = 1, cleared by writing in HSMCI_CMDR or cleared on read if FERRCTRL = 0)

If FERRCTRL = 1 in HSMCI_CFG, OVRE is cleared on read.

If FERRCTRL = 0 in HSMCI_CFG, OVRE is cleared by writing HSMCI_CMDR.

Value	Description
0	No error.
1	At least one 8-bit data has been sent without valid information (not written).

Bit 30 – OVRE Overrun (if FERRCTRL = 1, cleared by writing in HSMCI_CMDR or cleared on read if FERRCTRL = 0)

If FERRCTRL = 1 in HSMCI_CFG, OVRE is cleared on read.

If FERRCTRL = 0 in HSMCI_CFG, OVRE is cleared by writing HSMCI_CMDR.

Value	Description
0	No error.
1	At least one 8-bit received data has been lost (not read).

Bit 29 – ACKRCVE Boot Operation Acknowledge Error (cleared on read)

Quad Serial Peripheral Interface (QSPI)

Name: Offset: Reset: Property:		QSPI_TDR 0x0C – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				TD[′	15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TD[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-

42.7.4 QSPI Transmit Data Register

Bits 15:0 - TD[15:0] Transmit Data

Data to be transmitted by the QSPI is stored in this register. Information to be transmitted must be written to the Transmit Data register in a right-justified format.

43.7.9 TWIHS Interrupt Enable Register

Name:TWIHS_IEROffset:0x24Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			SMBHHM	SMBDAM	PECERR	TOUT		MCACK
Access			W	W	W	W		W
Reset			-	-	-	-		-
Bit	15	14	13	12	11	10	9	8
					EOSACC	SCL_WS	ARBLST	NACK
Access					W	W	W	W
Reset					-	-	_	_
Bit	7	6	5	4	3	2	1	0
	UNRE	OVRE	GACC	SVACC		TXRDY	RXRDY	TXCOMP
Access	W	W	W	W		W	W	W
Reset	_	-	_	_		-	_	_

Bit 21 – SMBHHM SMBus Host Header Address Match Interrupt Enable

Bit 20 – SMBDAM SMBus Default Address Match Interrupt Enable

- Bit 19 PECERR PEC Error Interrupt Enable
- **Bit 18 TOUT** Timeout Error Interrupt Enable
- Bit 16 MCACK Master Code Acknowledge Interrupt Enable
- Bit 11 EOSACC End Of Slave Access Interrupt Enable
- Bit 10 SCL_WS Clock Wait State Interrupt Enable
- Bit 9 ARBLST Arbitration Lost Interrupt Enable
- Bit 8 NACK Not Acknowledge Interrupt Enable

Inter-IC Sound Controller (I2SC)

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a zone to this bit disables the I2SC clock generation.

Bit 2 – CKEN Clocks Enable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit enables the I2SC clocks generation, if CKDIS is not one.

Bit 1 – RXDIS Receiver Disable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit disables the I2SC receiver. Bit I2SC_SR.RXEN is cleared when the receiver is stopped.

Bit 0 – RXEN Receiver Enable

Value	Description
0	Writing a '0' to this bit has no effect.
1	Writing a '1' to this bit enables the I2SC receiver, if RXDIS is not one. Bit I2SC_SR.RXEN is set when the receiver is activated.

Controller Area Network (MCAN)

_												
Offset	Name	Bit Pos.										
		7:0			FLSS	A[5:0]						
0x84	MCAN_SIDFC	15:8		FLSSA[13:6]								
0,04		23:16		LSS[7:0]								
		31:24										
		7:0			FLES	A[5:0]						
0x88	MCAN_XIDFC	15:8		FLESA[13:6]								
0x00		23:16					LSE[6:0]					
		31:24										
0x8C												
	Reserved											
0x8F												
		7:0					Л[7:0]					
0x90	MCAN XIDAM	15:8					I[15:8]					
	_	23:16			1	EIDM	[23:16]	EIDM[28:24] BIDX[5:0]				
		31:24										
		7:0		[1:0]				<[5:0]				
0x94	MCAN_HPMS	15:8	FLST				FIDX[6:0]					
		23:16										
		31:24										
	MCAN_NDAT1	7:0	ND7	ND6	ND5	ND4	ND3	ND2	ND1	ND0		
0x98		15:8	ND15	ND14	ND13	ND12	ND11	ND10	ND9	ND8		
		23:16	ND23	ND22	ND21	ND20	ND19	ND18	ND17	ND16		
		31:24	ND31	ND30	ND29	ND28	ND27	ND26	ND25	ND24		
		7:0	ND39	ND38	ND37	ND36	ND35	ND34	ND33	ND32		
0x9C	MCAN_NDAT2	15:8	ND47	ND46	ND45	ND44	ND43	ND42	ND41	ND40		
		23:16	ND55	ND54	ND53	ND52	ND51	ND50	ND49	ND48		
		31:24	ND63	ND62	ND61	ND60	ND59	ND58	ND57	ND56		
		7:0	F0SA[5:0]									
0xA0	MCAN_RXF0C	15:8	F0SA[13:6]									
		23:16		F0S[6:0]								
		31:24	F0OM				F0WM[6:0]					
		7:0 15:8					F0FL[6:0]	1(5.0)				
0xA4	MCAN_RXF0S							I[5:0]				
		23:16					FUP	I[5:0]	RF0L	F0F		
		31:24 7:0					EOA	1(5:0)	REUL	FUF		
		15:8					FUA	I[5:0]				
0xA8	MCAN_RXF0A	23:16										
		31:24										
		7:0			RBC	A[5:0]						
		15:8			100		A[13:6]					
0xAC	MCAN_RXBC	23:16				ND3F	ų io.oj					
		31:24										
		7:0			F19	A[5:0]						
0xB0	MCAN_RXF1C	15:8			110/		[13:6]					
0,00		23:16				1134	F1S[6:0]					
		20.10					1 10[0.0]					

Controller Area Network (MCAN)

49.6.35 MCAN Tx Buffer Configuration

Name:	MCAN_TXBC
Offset:	0xC0
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

The sum of TFQS and NDTB may not exceed 32. There is no check for erroneous configurations. The Tx Buffers section in the Message RAM starts with the dedicated Tx Buffers.

Bit	31	30	29	28	27	26	25	24
		TFQM			TFQS	S[5:0]		
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
					NDTE	B[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TBSA	[13:6]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			TBS	A[5:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		

Bit 30 – TFQM Tx FIFO/Queue Mode

Value	Description
0	Tx FIFO operation.
1	Tx Queue operation.

Bits 29:24 - TFQS[5:0] Transmit FIFO/Queue Size

Value	Description	
0	No Tx FIFO/Queue.	
1-32	Number of Tx Buffers used for Tx FIFO/Queue.	
>32	Values greater than 32 are interpreted as 32.	

Bits 21:16 - NDTB[5:0] Number of Dedicated Transmit Buffers

Value	Description	
0	No dedicated Tx Buffers.	
1-32	lumber of dedicated Tx Buffers.	
>32	Values greater than 32 are interpreted as 32.	

Timer Counter (TC)

Value	Name	Description
0	UP	UP mode without automatic trigger on RC Compare
1	UPDOWN	UPDOWN mode without automatic trigger on RC Compare
2	UP_RC	UP mode with automatic trigger on RC Compare
3	UPDOWN_RC	UPDOWN mode with automatic trigger on RC Compare

Bit 12 – ENETRG External Event Trigger Enable

Whatever the value programmed in ENETRG, the selected external event only controls the TIOAx output and TIOBx if not used as input (trigger event input or other input used).

Value	Description
0	The external event has no effect on the counter and its clock.
1	The external event resets the counter and starts the counter clock.

Bits 11:10 – EEVT[1:0] External Event Selection

Signal selected as external event.

Value	Name	Description	TIOB Direction
0	TIOB	TIOB	Input
1	XC0	XC0	Output
2	XC1	XC1	Output
3	XC2	XC2	Output

Note: If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subsequently no IRQs.

Bits 9:8 – EEVTEDG[1:0] External Event Edge Selection

Value	Name	Description
0	NONE	None
1	RISING	Rising edge
2	FALLING	Falling edge
3	EDGE	Each edge

Bit 7 – CPCDIS Counter Clock Disable with RC Compare

Value	Description
0	Counter clock is not disabled when counter reaches RC.
1	Counter clock is disabled when counter reaches RC.

Bit 6 – CPCSTOP Counter Clock Stopped with RC Compare

Value	Description
0	Counter clock is not stopped when counter reaches RC.
1	Counter clock is stopped when counter reaches RC.

Bits 5:4 – BURST[1:0] Burst Signal Selection

Pulse Width Modulation Controller (PWM)

51.7.25 PWM Fault Status Register

Name:	PWM_FSR		
Offset:	0x60		
Reset:	0x00000000		
Property:	Read-only		

Refer to Fault Inputs for details on fault generation.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				FS[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				FIV	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - FS[7:0] Fault Status

For each bit y of FS, where y is the fault input number:

0: The fault y is not currently active.

1: The fault y is currently active.

Bits 7:0 - FIV[7:0] Fault Input Value

For each bit y of FIV, where y is the fault input number:

0: The current sampled value of the fault input y is 0 (after filtering if enabled).

1: The current sampled value of the fault input y is 1 (after filtering if enabled).

not fully deactivated while no conversion is requested, thereby providing lower power savings but faster wakeup.

The conversion sequencer allows automatic processing with minimum processor intervention and optimized power consumption. Conversion sequences are performed periodically using a Timer/Counter output or the PWM event line.

The DMA can automatically process the periodic acquisition of several samples without processor intervention.

The sequence can be customized by programming the Channel Sequence registers AFEC_SEQ1R and AFEC_SEQ2R and setting AFEC_MR.USEQ. The user selects a specific order of channels and can program up to 12 conversions by sequence. The user may create a personal sequence by writing channel numbers in AFEC_SEQ1R and AFEC_SEQ2R. Channel numbers can be written in any order and repeated several times. Only enabled USCHx fields are converted. Thus, to program a 15-conversion sequence, the user disables AFEC_CHSR.CH15, thus disabling AFEC_SEQ2R.USCH15.

Note: The reference voltage pins always remain connected in Normal mode as in Sleep mode.

Related Links

58. Electrical Characteristics for SAM V70/V71

52.6.8 Comparison Window

The AFEC features automatic comparison functions. It compares converted values to a low threshold, a high threshold or both, depending on the value of AFEC_EMR.CMPMODE. The comparison can be done on all channels or only on the channel specified in AFEC_EMR.CMPSEL. To compare all channels, AFEC_EMR.CMPALL must be set.

Moreover, a filtering option can be set by writing the number of consecutive comparison errors needed to raise the flag. This number can be written and read in AFEC_EMR.CMPFILTER.

The flag can be read on AFEC_ISR.COMPE and can trigger an interrupt.

The high threshold and the low threshold can be read/written in the Compare Window Register (AFEC_CWR).

Depending on the sign of the conversion, chosen by setting the SIGNMODE bit in the AFEC Extended Mode Register, the high threshold and low threshold values must be signed or unsigned to maintain consistency during the comparison. If the conversion is signed, both thresholds must also be signed; if the conversion is unsigned, both thresholds must be unsigned. If comparison occurs on all channels, the SIGNMODE bit must be set to ALL_UNSIGNED or ALL_SIGNED and thresholds must be set accordingly.

52.6.9 Differential Inputs

The AFE can be used either as a single-ended AFE (AFEC_DIFFR.DIFF = 0) or as a fully differential AFE (AFEC_DIFFR.DIFF = 1). By default, after a reset, the AFE is in Single-ended mode.

The AFEC can apply a different mode on each channel.

The same inputs are used in Single-ended or Differential mode.

Depending on the AFE mode, the analog multiplexer selects one or two inputs to map to a channel. The table below provides input mapping for both modes.

Analog Front-End Controller (AFEC)

V	/alue	Description	
0		Clears CHNB in AFEC_LCDR.	
1		Appends the channel number to the conversion result in AFEC_LCDR.	

Bits 18:16 - RES[2:0] Resolution

Value	Name	Description
0	NO_AVERAGE	12-bit resolution, AFE sample rate is maximum (no averaging).
1	LOW_RES	10-bit resolution, AFE sample rate is maximum (no averaging).
2	OSR4	13-bit resolution, AFE sample rate divided by 4 (averaging).
3	OSR16	14-bit resolution, AFE sample rate divided by 16 (averaging).
4	OSR64	15-bit resolution, AFE sample rate divided by 64 (averaging).
5	OSR256	16-bit resolution, AFE sample rate divided by 256 (averaging).

Bits 13:12 - CMPFILTER[1:0] Compare Event Filtering

Number of consecutive compare events necessary to raise the flag = CMPFILTER+1.

When programmed to '0', the flag rises as soon as an event occurs.

Bit 9 – CMPALL Compare All Channels

Value	Description		
0	Only the channel indicated in CMPSEL field is compared.		
1	All channels are compared.		

Bits 7:3 – CMPSEL[4:0] Comparison Selected Channel

If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

Bits 1:0 – CMPMODE[1:0] Comparison Mode

Value	Name	Description
0	LOW	Generates an event when the converted data is lower than the low threshold of the window.
1	HIGH	Generates an event when the converted data is higher than the high threshold of the window.
2	IN	Generates an event when the converted data is in the comparison window.
3	OUT	Generates an event when the converted data is out of the comparison window.

53. Digital-to-Analog Converter Controller (DACC)

53.1 Description

The Digital-to-Analog Converter Controller (DACC) offers up to two single-ended analog outputs or one differential analog output, making it possible for the digital-to-analog conversion to drive up to two independent analog lines.

The DACC supports 12-bit resolution.

The DACC operates in Free-running mode, Max speed mode, Trigger mode or Interpolation mode.

The DACC integrates a Bypass mode which minimizes power consumption in case of a limited sampling rate conversion.

Each channel connects with a separate DMA channel. This feature reduces both power consumption and processor intervention.

53.2 Embedded Characteristics

- Up to Two Independent Single-Ended Analog Outputs or One Differential Analog Output
- 12-bit Resolution
- Integrated Interpolation Filter with 2×, 4×, 8×, 16× or 32× Oversampling Ratio (OSR)
- Reduced Number of System Bus Accesses (Word Transfer Mode)
- Individual Control of Each Analog Channel
- Hardware Triggers
 - One Trigger Selection Per Channel
 - External trigger pin
 - Internal events
- DMA Support
- One Internal FIFO per Channel
- Register Write Protection