

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q20b-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Description

Signal Name	Function	Туре	Active Level	Voltage Reference	Comments					
PCK0-PCK2	Programmable Clock Output	Output	_		_					
Real Time Clock										
RTCOUT0	Programmable RTC Waveform Output	Output	_	VDDIO	_					
RTCOUT1	Programmable RTC Waveform Output	Output	_		_					
Serial Wire Debug/	JTAG Boundary Scan									
SWCLK/TCK Serial Wire Clock / Test Clock (Boundary scan mode only)		Input	-	VDDIO	_					
TDI	Test Data In (Boundary scan mode only)	Input	-		_					
TDO/TRACESWO	Test Data Out (Boundary scan mode only)	Output	-		-					
SWDIO/TMS	Serial Wire Input/ Output / Test Mode Select (Boundary scan mode only)	I/O / Input	_		_					
JTAGSEL	JTAG Selection	Input	High		_					
Trace Debug Port										
TRACECLK	Trace Clock	Output	-	VDDIO	PCK3 is used for ETM					
TRACED0– TRACED3	Trace Data	Output	-		_					
Flash Memory										
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	_					
Reset/Test										
NRST	Synchronous Microcontroller Reset	I/O	Low	VDDIO	_					
TST	Test Select	Input	-		-					
Universal Asynchro	Universal Asynchronous Receiver Transceiver - UART(x=[0:4])									

19.4.3 Bus Matrix Priority Registers A For Slaves

Name:	MATRIX_PRASx
Offset:	0x80 + x*0x08 [x=08]
Reset:	0x00000222
Property:	Read/Write

This register can only be written if the WPE bit is cleared in the Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
			M7P	M7PR[1:0]			M6PI	R[1:0]
Access			R/W	R/W		•	R/W	R/W
Reset			0	0			0	0
Bit	23	22	21	20	19	18	17	16
			M5P	R[1:0]			M4PI	R[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	15	14	13	12	11	10	9	8
			M3P	R[1:0]			M2PI	R[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			1	0
Bit	7	6	5	4	3	2	1	0
			M1P	R[1:0]			MOPI	R[1:0]
Access			R/W	R/W			R/W	R/W
Reset			1	0			1	0

Bits 0:1, 4:5, 8:9, 12:13, 16:17, 20:21, 24:25, 28:29 - MxPR Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.

Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See "Arbitration Priority Scheme" for details.

Chip Identifier (CHIPID)

Chip Name	CHIPID_CIDR	CHIPID_EXID
	(see Notes 1 and 2)	
SAMS70N21	0xA112_0E0x	0x0000001
SAMS70N20	0xA112_0C0x	0x0000001
SAMS70N19	0xA11D_0A0x	0x0000001
SAMS70J21	0xA112_0E0x	0x0000000
SAMS70J20	0xA112_0C0x	0x0000000
SAMS70J19	0xA11D_0A0x	0x0000000
SAMV71Q21	0xA122_0E0x	0x0000002
SAMV71Q20	0xA122_0C0x	0x0000002
SAMV71Q19	0xA12D_0A0x	0x0000002
SAMV71N21	0xA122_0E0x	0x0000001
SAMV71N20	0xA122_0C0x	0x0000001
SAMV71N19	0xA12D_0A0x	0x0000001
SAMV71J21	0xA122_0E0x	0x0000000
SAMV71J20	0xA122_0C0x	0x0000000
SAMV71J19	0xA12D_0A0x	0x0000000
SAMV70Q20	0xA132_0C0x	0x0000002
SAMV70Q19	0xA13D_0A0x	0x0000002
SAMV70N20	0xA132_0C0x	0x0000001
SAMV70N19	0xA13D_0A0x	0x0000001
SAMV70J20	0xA132_0C0x	0x0000000
SAMV70J19	0xA13D_0A0x	0x0000000

1. x = 0 for MRL A devices.

2. x = 1 for MRL B devices.

3. When Flash programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the interrupt line of the EEFC is activated.

Three errors can be detected in EEFC_FSR after a programming sequence:

- Command Error: A bad keyword has been written in EEFC_FCR.
- Lock Error: The page to be programmed belongs to a locked region. A command must be run previously to unlock the corresponding region.
- Flash Error: When programming is completed, the WriteVerify test of the Flash memory has failed.

Only one page can be programmed at a time. It is possible to program all the bits of a page (full page programming) or only some of the bits of the page (partial page programming).

Depending on the number of bits to be programmed within the page, the EEFC adapts the write operations required to program the Flash.

When a 'Write Page' (WP) command is issued, the EEFC starts the programming sequence and all the bits written at 0 in the latch buffer are cleared in the Flash memory array.

During programming, i.e., until EEFC_FSR.FDRY rises, access to the Flash is not allowed.

22.4.3.2.1 Full Page Programming

To program a full page, all the bits of the page must be erased before writing the latch buffer and issuing the WP command. The latch buffer must be written in ascending order, starting from the first address of the page. See Figure 22-8.

22.4.3.2.2 Partial Page Programming

To program only part of a page using the WP command, the following constraints must be respected:

- Data to be programmed must be contained in integer multiples of 128-bit address-aligned words.
- 128-bit words can be programmed only if all the corresponding bits in the Flash array are erased (at logical value '1').

See 22.4.3.2.4 Programming Bytes.

22.4.3.2.3 Optimized Partial Page Programming

The EEFC automatically detects the number of 128-bit words to be programmed. If only one 128-bit aligned word is to be programmed in the Flash array, the process is optimized to reduce the time needed for programming.

If several 128-bit words are to be programmed, a standard page programming operation is performed.

See Figure 22-10.

22.4.3.2.4 Programming Bytes

Individual bytes can be programmed using the Partial Page Programming mode.

In this case, an area of 128 bits must be reserved for each byte.

Refer to Figure 22-11

25.3 Block Diagram

Figure 25-1. Reinforced Safety Watchdog Timer Block Diagram

25.4 Functional Description

The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The Main RC oscillator divided clock is selected if the Main RC oscillator is already enabled by the application (CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the Slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the slow clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR). The RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with a typical slow clock of 32.768 kHz).

After a processor reset, the value of RSWDT_MR.WDV is 0xFFF, corresponding to the maximum value of the counter with the external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a default watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be programmed during a period of time of three slow clock periods following the RSWDT_CR write access. Programming a new value in the RSWDT_MR automatically initiates a restart instruction.

© 2018 Microchip Technology Inc.

26.4.5.3 RSTC Mode Register

Name:	RSTC_MR
Offset:	0x08
Reset:	0x00000001
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

Bit	31	30	29	28	27	26	25	24
				KEY	[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						ERST	Ľ[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URSTIEN				URSTEN
Access				R/W				R/W
Reset				0				1

Bits 31:24 - KEY[7:0] Write Access Password

Value	Name	Description
0xA5	PASSWD	Writing any other value in this field aborts the write operation. Always reads as 0.

Bits 11:8 - ERSTL[3:0] External Reset Length

This field defines the external reset length. The external reset is asserted during a time of $2^{(\text{ERSTL+1})}$ SLCK cycles. This allows assertion duration to be programmed between 60 µs and 2 seconds. Note that synchronization cycles must also be considered when calculating the actual reset length as previously described.

Bit 4 – URSTIEN User Reset Interrupt Enable

Value	Description
0	RSTC_SR.USRTS at '1' has no effect on the RSTC interrupt line.
1	RSTC_SR.USRTS at '1' asserts the RSTC interrupt line if URSTEN = 0.

Bit 0 – URSTEN User Reset Enable

DMA Controller (XDMAC)

Peripheral Name	Transfer Type	HW Interface Number (XDMAC_CC.PERID)
12SC0	Receive Left	45
I2SC1	Transmit Left	46
I2SC1	Receive Left	47
12SC0	Transmit Right	48
12SC0	Receive Right	49
I2SC1	Transmit Right	50
I2SC1	Receive Right	51

36.5 Functional Description

36.5.1 Basic Definitions

Source Peripheral: Slave device, memory mapped on the interconnection network, from where the XDMAC reads data. The source peripheral teams up with a destination peripheral to form a channel. A data read operation is scheduled when the peripheral transfer request is asserted.

Destination Peripheral: Slave device, memory mapped on the interconnection network, to which the XDMAC writes. A write data operation is scheduled when the peripheral transfer request is asserted.

Channel: The data movement between source and destination creates a logical channel.

Transfer Type: The transfer is hardware-synchronized when it is paced by the peripheral hardware request, otherwise the transfer is self-triggered (memory to memory transfer).

36.5.2 Transfer Hierarchy Diagram

XDMAC Master Transfer: The Master Transfer is composed of a linked list of blocks. The channel address, control and configuration registers can be modified at the inter block boundary. The descriptor structure modifies the channel registers conditionally. Interrupts can be generated on a per block basis or when the end of linked list event occurs.

XDMAC Block: An XDMAC block is composed of a programmable number of microblocks. The channel configuration registers remain unchanged at the inter microblock boundary. The source and destination addresses are conditionally updated with a programmable signed number.

XDMAC Microblock: The microblock is composed of a programmable number of data. The channel configuration registers remain unchanged at the data boundary. The data address may be fixed (a FIFO location, a peripheral transmit or receive register), incrementing (a memory-mapped area) by a programmable signed number.

XDMAC Burst and Incomplete Burst: In order to improve the overall performance when accessing dynamic external memory, burst access is mandatory. Each data of the microblock is considered as a part of a memory burst. The programmable burst value indicates the largest memory burst allowed on a per channel basis. When the microblock length is not an integral multiple of the burst size, an incomplete burst is performed to read or write the last trailing bytes.

XDMAC Chunk and Incomplete Chunk: When a peripheral synchronized transfer is activated, the microblock splits into a number of data chunks. The chunk size is programmable. The larger the chunk is,

GMAC - Ethernet MAC

Offset	Name	Bit Pos.								
		7:0				TCKE	R[7:0]			
		15:8								
0x01AC	GMAC_TCE	23:16								
		31:24								
		7:0				UCKE	R[7:0]			
		15:8								
0x01B0	GMAC_UCE	23.16								
		31.24								
0x01B4										
	Reserved									
0x01BB										
		7:0				LSBTI	R[7:0]			
		15:8	L SBTIR[15:8]							
0x01BC	GMAC_TISUBN	23:16								
		31.24								
		7:0				TCS	[7·0]			
		15.8				TCSI	15.81			
0x01C0	GMAC_TSH	23.16					10.0]			
		31.24								
0x01C4		01.24								
0,0104	Reserved									
0x01CE	Reserved									
		7:0								
		15.8								
0x01D0	GMAC_TSL	23.16				TCSI	23.161			
		31.24		TOS[23.10]						
		7:0				TNS	[7·0]			
		15.8								
0x01D4	GMAC_TN	23.16				TNSI	23:16]			
		31.24					TNS	29.241		
		7:0								
		15.8				ושח	[15:8]			
0x01D8	GMAC_TA	23.16					23.161			
		31.24	AD.I					29.241		
	<u> </u>	7:0				CNS	[7:0]			
		15:8				ACNS	5[7:0]			
0x01DC	GMAC_TI	23.16				NITI	7.01			
		31.24								
		7:0				RUD	[7:0]			
		15.8				RIIN	15:81			
0x01E0	GMAC_EFTSL	23.16				וסטי	23.161			
		31.24				יזחוופ	31.241			
		7.0				יועסאי	[7·0]			
		1.0					[/ .0] .15-91			
0x01E4	GMAC_EFTN	10:0				RUD	10.0J			
		23:10				KUD[2	23:10]	20.241		
		31:24					RUD[29:24]		

	Name: Offset: Reset: Property:	GMAC_JR 0x18C 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
							JRX	[9:8]
Access							R	R
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				JRX	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

38.8.73 GMAC Jabbers Received Register

Bits 9:0 - JRX[9:0] Jabbers Received

This bit field counts the number of frames received exceeding 1518 Bytes in length (1536 Bytes if GMAC_NCFGR.MAXFS is written to '1') and have either a CRC error, an alignment error or a receive symbol error.

38.8.103 GMAC Receive Buffer Queue Base Address Register Priority Queue x

Name:	GMAC_RBQBAPQx
Offset:	0x0480 + x*0x04 [x=04]
Reset:	0x0000000
Property:	Read/Write

These registers hold the start address of the receive buffer queues (receive buffers descriptor lists) for the additional queues used when priority queues are employed.

Bit	31	30	29	28	27	26	25	24
				RXBQB	A[29:22]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	10	18	17	16
	25	22	21	20	13	10	17	
				RXBQB	A[21:14]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				RXBQE	3A[13:6]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			RXBQ	BA[5:0]				
Access								
Reset	0	0	0	0	0	0		

Bits 31:2 – RXBQBA[29:0] Receive Buffer Queue Base Address Holds the address of the start of the receive queue.

USB High-Speed Interface (USBHS)

Bit 9 – RESET Send USB Reset

This bit is cleared when the USB Reset has been sent.

It may be useful to write a zero to this bit when a device disconnection is detected (USBHS_HSTISR.DDISCI = 1) whereas a USB Reset is being sent.

Value	Description
0	No effect.
1	Generates a USB Reset on the USB bus.

Bit 8 – SOFE Start of Frame Generation Enable

This bit is set when a USB reset is requested or an upstream resume interrupt is detected (USBHS_HSTISR.TXRSMI).

Value	Description
0	Disables the SOF generation and leaves the USB bus in idle state.
1	Generates SOF on the USB bus in Full- or High-speed mode and sends "keep alive" signals
	in Low-speed mode.

USB High-Speed Interface (USBHS)

39.6.58 Host Pipe x Disable Register (Interrupt Pipes)

 Name:
 USBHS_HSTPIPIDRx (INTPIPES)

 Offset:
 0x0620 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if PTYPE = 0x3 in "Host Pipe x Configuration Register".

For additional information, see "Host Pipe x Mask Register (Interrupt Pipes)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Clears the corresponding bit in USBHS_HSTPIPIMRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							PFREEZEC	PDISHDMAC
Access								
Reset							0	0
Bit	15	14	13	12	11	10	9	8
		FIFOCONC		NBUSYBKEC				
Access								
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	RXSTALLDEC	OVERFIEC	NAKEDEC	PERREC	UNDERFIEC	TXOUTEC	RXINEC
	TIEC							
Access		•		•		•		
Reset	0	0	0	0	0	0	0	0

Bit 17 – PFREEZEC Pipe Freeze Disable

Bit 16 – PDISHDMAC Pipe Interrupts Disable HDMA Request Disable

- Bit 14 FIFOCONC FIFO Control Disable
- Bit 12 NBUSYBKEC Number of Busy Banks Disable
- Bit 7 SHORTPACKETIEC Short Packet Interrupt Disable
- Bit 6 RXSTALLDEC Received STALLed Interrupt Disable

Two-wire Interface (TWIHS)

Figure 43-24. TWIHS Read Operation with Multiple Data Bytes with or without Internal Address with PEC

46.6.10.8.2 Beta1 Tx/Rx

Beta1 is the period immediately following the end of a packet cycle (see Figure 46-59). A node attempting to transmit monitors the state of the channel, and if it detects no transmission during the Beta1 period, it determines the channel to be idle.

The Beta1 value is different depending on the previous packet type (received packet or transmitted packet).

Beta1Rx and Beta1Tx length can be configured respectively through the USART LON Beta1 Rx register (US_LONB1RX) and the USART LON Beta1 Tx register (US_LONB1TX). Note that a length of '0' is not allowed.

46.6.10.8.3 Pcycle Timer

The packet cycle timer is reset to its initial value whenever the backlog is changed. It is started (begins counting down at its current value) whenever the MAC layer becomes idle. An idle MAC layer is defined as:

- Not receiving
- Not transmitting
- Not waiting to transmit
- Not timing Beta1
- Not waiting for priority slots, and not waiting for the first Wbase randomizing window to complete

On transition from idle to either transmit or receive, the packet cycle timer is halted.

The pcycle timer value can be configured in US_TTGR. Note that '0' value is not allowed.

46.6.10.8.4 Wbase

The wbase timer represents the base windows size. Its duration, derived from Beta2, equals 16 Beta2 slots.

46.6.10.8.5 Priority Slots

On a channel by channel basis, the protocol supports optional priority. Priority slots, if any, follow immediately after the Beta1 period that follows the transmission of a packet (see Figure 46-59). The number of priority slots per channel ranges from 0 to 127.

The number of priority slots in the LON network configuration is defined through the PSNB field of the USART LON Priority register (US_LONPRIO). And the priority slot affected to the LON node, if any, is defined through US_LONPRIO.NPS.

46.6.10.8.6 Indeterminate Time

See "comm_type".

Like Beta1, the IDT value is different depending on what was the previous frame (transmitted or received frame).

IDTRx and IDTTx can be configured respectively through the USART LON IDT Rx register (US_LONIDTRX) and the USART LON IDT Tx register (US_LONIDTTX).

46.6.10.8.7 End of Frame Condition

The USART configured in LON mode terminates the frame with a 3 t_{bit} long Manchester code violation. After sending the last CRC bit, it maintains the data transitionless during three bit periods.

While receiving data the USART configured in LON mode will detect an end of frame condition after a t_{eof} transitionless Manchester code violation. US_LONMR.EOFS can configure t_{eof}.

Universal Synchronous Asynchronous Receiver Transc...

46.7.14 USART Interrupt Mask Register (SPI_MODE)

 Name:
 US_IMR (SPI_MODE)

 Offset:
 0x0010

 Reset:
 0x0

 Property:
 Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

Bit 19 - NSSE NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Mask

Bit 10 – UNRE SPI Underrun Error Interrupt Mask

Bit 9 – TXEMPTY TXEMPTY Interrupt Mask

Bit 5 – OVRE Overrun Error Interrupt Mask

Bit 1 - TXRDY TXRDY Interrupt Mask

Bit 0 – RXRDY RXRDY Interrupt Mask

Universal Synchronous Asynchronous Receiver Transc...

46.7.19 USART Channel Status Register (LIN_MODE)

Name:	US_CSR (LIN_MODE)
Offset:	0x0014
Reset:	0x0
Property:	Read-only

This configuration is relevant only if USART_MODE = 0xA or 0xB in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Γ	LINHTE	LINSTE	LINSNRE	LINCE	LINIPE	LINISFE	LINBE	
Access		•						
Reset	0	0	0	0	0	0	0	
			.		10	10	<i>.</i> _	10
Bit	23	22	21	20	19	18	1/	16
	LINBLS							
Access								
Reset	0							
Bit	15	14	13	12	11	10	9	8
Γ	LINTC	LINID	LINBK				TXEMPTY	TIMEOUT
Access								
Reset	0	0	0				0	0
Bit	7	6	5	4	3	2	1	0
	PARE	FRAME	OVRE				TXRDY	RXRDY
Access								
Reset	0	0	0				0	0

Bit 31 – LINHTE LIN Header Timeout Error (cleared by writing a one to bit US_CR.RSTSTA)

Value	Description
0	No LIN header timeout error has been detected since the last RSTSTA.
1	A LIN header timeout error has been detected since the last RSTSTA.

Bit 30 – LINSTE LIN Synch Tolerance Error (cleared by writing a one to bit US_CR.RSTSTA)

Value	Description
0	No LIN synch tolerance error has been detected since the last RSTSTA.
1	A LIN synch tolerance error has been detected since the last RSTSTA.

Bit 29 – LINSNRE LIN Slave Not Responding Error (cleared by writing a one to bit US_CR.RSTSTA)

Value	Description
0	No LIN slave not responding error has been detected since the last RSTSTA.
1	A LIN slave not responding error has been detected since the last RSTSTA.

Bit 28 – LINCE LIN Checksum Error (cleared by writing a one to bit US_CR.RSTSTA)

Universal Synchronous Asynchronous Receiver Transc...

Value	Description
0	Detect collisions after CRC has been sent but prior end of transmission in LON comm_type
	= 1 mode.
1	Ignore collisions after CRC has been sent but prior end of transmission in LON comm_type =
	1 mode.

Bit 2 – TCOL Terminate Frame upon Collision Notification

Value	Description
0	Do not terminate the frame in LON comm_type = 1 mode upon collision detection.
1	Terminate the frame in LON comm_type = 1 mode upon collision detection if possible.

Bit 1 – COLDET LON Collision Detection Feature

Value	Description
0	LON collision detection feature disabled.
1	LON collision detection feature enabled.

Bit 0 – COMMT LON comm_type Parameter Value

Value	Description
0	LON comm_type = 1 mode.
1	LON comm_type = 2 mode.

Pulse Width Modulation Controller (PWM)

51.7.42 PWM Channel Duty Cycle Update Register

 Name:
 PWM_CDTYUPDx

 Offset:
 0x0208 + x*0x20 [x=0..3]

 Reset:

 Property:
 Write-only

This register acts as a double buffer for the CDTY value. This prevents an unexpected waveform when modifying the waveform duty-cycle.

29 Bit 31 30 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 CDTYUPD[23:16] W w W W W W W W Access 0 0 0 0 0 0 0 0 Reset Bit 14 13 12 10 9 8 15 11 CDTYUPD[15:8] W W W W W W W Access W Reset 0 0 0 0 0 0 0 0 7 6 5 4 2 0 Bit 3 1 CDTYUPD[7:0] W w W W w W W W Access 0 Reset 0 0 0 0 0 0 _

Only the first 16 bits (channel counter size) are significant.

Bits 23:0 - CDTYUPD[23:0] Channel Duty-Cycle Update

Defines the waveform duty-cycle. This value must be defined between 0 and CPRD (PWM_CPRDx).

Analog Comparator Controller (ACC)

	Name: Offset: Reset: Property:	ACC_IMR 0x2C 0x00000000 Read-only						
Bit	31	30	20	28	27	26	25	24
Dit	51	30	23	20	21	20	23	24
Access Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset		-						
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								CE
Access								R
Reset								0
Bit 0 – CE Comparison Edge								

 Value
 Description

 0
 The interrupt is disabled.

 1
 The interrupt is enabled.

54.7.5 ACC Interrupt Mask Register

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _S	VTEMP Settling Time	When V _{TEMP} is sampled by the AFEC, the required track-and-hold time to ensure 1°C accurate settling	_	_	1	μs
-	Temperature Accuracy	After offset calibration over T_A range [-40°C : +105°C]	-10	-	10	°C
t _{START}	Startup Time	_	_	_	30	μs
I _{VDDIN}	Current Consumption	_	-	130	270	μA

Note: AFE Gain Error and Offset error considered calibrated. This calibration at ambient temperature is not a feature of the product and is performed by the user's application.

58.11 12-bit DAC Characteristics

Table 58-43. Analog Power Supply Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
I _{VDDIN}	Current Consumption	Sleep mode (Clock OFF)	_	10	_	μA	
		Normal mode with one output on,	_	200	800		
		DACC_ACR.IBCTLCHx =3 (see Note 1)					
		FS = 1 MSps, no R_{LOAD} , V_{DDIN} = 3.3V					
		Normal mode with one output on,	_	100	400		
		DACC_ACR.IBCTLCHx =1 (see Note 1)					
		FS = 500 KSps, no R_{LOAD} , V_{DDIN} = 3.3V					
		Bypass mode (output buffer off) with one output on,	-	10	30		
		DACC_ACR.IBCTLCHx =0 (see Note 1)					
		FS = 500 KSps, no R_{LOAD} , V_{DDIN} = 3.3V					
PSRR	Power Supply RejectionRatio (V _{DDIN})	V _{DDIN} ±10 mV	_	70	_	dB	
		Up to 10 kHz					

Note:

1. The maximum conversion rate versus the configuration of DACC_ACR.IBCTL is shown in the following table.

Table 58-44. Maximum Conversion Rate vs. Configuration of DACC_ACR.IBCTL

DACC_ACR.IBCTLCHx	Maximum Conversion Rate
0	Bypass
1	500 ks/s