

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXE

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q20b-cnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12. Event System

The events generated by peripherals (source) are designed to be directly routed to peripherals (destination) using these events without processor intervention. The trigger source can be programmed in the destination peripheral.

12.1 Embedded Characteristics

- Timers, PWM, I/Os and peripherals generate event triggers which are directly routed to destination peripherals, such as AFEC or DACC to start measurement/conversion without processor intervention.
- UART, USART, QSPI, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TC (Capture mode) also generate event triggers directly connected to the DMA Controller for data transfer without processor intervention.
- Parallel capture logic is directly embedded in the PIO and generates trigger events to the DMA Controller to capture data without processor intervention.
- PWM safety events (faults) are in combinational form and directly routed from event generators (AFEC, ACC, PMC, TC) to the PWM module.
- PWM output comparators (OCx) generate events directly connected to the TC.
- PMC safety event (clock failure detection) can be programmed to switch the MCK on reliable main RC internal clock without processor intervention.

12.2 Real-time Event Mapping

Table 12-1. Real-time Event Mapping List

Function	Application	Description	Event Source	Event Destination
Safety	General- purpose	Automatic switch to reliable main RC oscillator in case of main crystal clock failure (see Note 1)	Power Management Controller (PMC)	PMC
	General- purpose, motor control, power factor correction (PFC)	Puts the PWM outputs in Safe mode in case of main crystal clock failure (see Notes 1, 2)	PMC	Pulse Width Modulation 0 and 1 (PWM0 and PWM1)
	Motor control, PFC	Puts the PWM outputs in Safe mode (overcurrent detection, etc.) (see Notes 2, 3)	Analog Comparator Controller (ACC)	PWM0 and PWM1
	Motor control, PFC	mode (overspeed, overcurrent	Analog Front-End Controller (AFEC0)	PWM0 and PWM1
		detection, etc.) (see Notes 2 , 4)	AFEC1	PWM0 and PWM1

Event System

Function	Application	Description	Event Source	Event Destination
			PWM0 Comparator Output OC2	TC2 TIOA8 and TIOB8
			PWM1 Comparator Output OC0	TC3 TIOA9 and TIOB9
			PWM1 Comparator Output OC1	TC3 TIOA10 and TIOB10
Audio clock recovery from Ethernet	Audio	GMAC GTSUCOMP signal adaptation via TC (TC_EMR.TRIGSRCB) in order to drive the clock reference of the external PLL for the audio clock	GMAC GTSUCOMP	TC3 TIOB11
Direct Memory Access	General- purpose	Peripheral trigger event generation to transfer data to/ from system memory (see Note 18)	USART, UART, TWIHS, SPI, QSPI, AFEC, TC (Capture), SSC, HSMCI, DAC, AES, PWM, PIO, I2SC	XDMA

Note:

- 1. Refer to 31.15 Main Crystal Oscillator Failure Detection.
- 2. Refer to 51.5.4 Fault Inputs and 51.6.2.7 Fault Protection.
- 3. Refer to 54.6.4 Fault Mode.
- 4. Refer to 54.5.4 Fault Output.
- 5. Refer to 23.4.9.2 Low-power Tamper Detection and Anti-Tampering and 29.3.1 SYS_GPBRx.
- 6. Refer to 50.6.18 Fault Mode.
- 7. Refer to 51.7.49 PWM_ETRGx.
- 8. Refer to 51.6.5 PWM External Trigger Mode.
- 9. Refer to 52.6.6 Conversion Triggers and 52.7.2 AFEC_MR.
- 10. Refer to 58.10 Temperature Sensor.
- 11. Refer to 27.5.8 Waveform Generation.
- 12. Refer to 51.7.36 PWM_CMPVx and 51.6.4 PWM Event Lines.
- 13. Refer to 53.7.3 DACC_TRIGR.
- 14. Refer to 51.6.3 PWM Comparison Units and 51.6.4 PWM Event Lines.
- 15. Refer to 32.5.14 Parallel Capture Mode.
- 16. Refer to 51.6.2.2 Comparator.
- 17. Refer to 50.6.14 Synchronization with PWM.
- 18. Refer to 36. DMA Controller (XDMAC).

Bit 1 – ALREN Alarm Interrupt Enable

Value	Description
0	No effect.
1	The alarm interrupt is enabled.

Bit 0 – ACKEN Acknowledge Update Interrupt Enable

Value	Description
0	No effect.
1	The acknowledge for update interrupt is enabled.

Power Management Controller (PMC)

- e. Program PMC_MCKR.CSS.
- f. Wait for PMC_SR.MCKRDY to be set.

If a new value for PMC_MCKR.CSS corresponds to MAINCK or SLCK:

- a. Program PMC_MCKR.CSS.
- b. Wait for PMC_SR.MCKRDY to be set.
- c. Program PMC_MCKR.PRES.
- d. Wait for PMC_SR.MCKRDY to be set.

If CSS, MDIV or PRES are modified at any stage, the MCKRDY bit goes low to indicate that MCK and HCLK are not yet ready. The user must wait for MCKRDY bit to be set again before using MCK and HCLK.

Note: If PLLA clock was selected as MCK and the user decides to modify it by writing a new value into CKGR_PLLAR, the MCKRDY flag will go low while PLLA is unlocked. Once PLLA is locked again, LOCKA goes high and MCKRDY is set.

While PLLA is unlocked, MCK selection is automatically changed to SLCK for PLLA. For further information, see "Clock Switching Waveforms".

MCK is MAINCK divided by 2.

 Select the Programmable clocks (PCKx): PCKx are controlled via registers PMC_SCER, PMC_SCDR and PMC_SCSR.

PCKx can be enabled and/or disabled via PMC_SCER and PMC_SCDR. Three PCKx can be used. PMC_SCSR indicates which PCKx is enabled. By default all PCKx are disabled.

PMC_PCKx registers are used to configure PCKx.

PMC_PCKx.CSS is used to select the PCKx divider source. Several clock options are available:

- MAINCK
- SLCK
- MCK
- PLLACK
- UPLLCKDIV

SLCK is the default clock source.

PMC_PCKx.PRES is used to control the PCKx prescaler. It is possible to choose between different values (1 to 256). PCKx output is prescaler input divided by PRES. By default, the PRES value is cleared which means that PCKx is equal to Slow clock.

Once PMC_PCKx has been configured, the corresponding PCKx must be enabled and the user must wait for PMC_SR.PCKRDYx to be set. This can be done either by polling PMC_SR.PCKRDYx or by waiting for the interrupt line to be raised if the associated interrupt source (PCKRDYx) has been enabled in PMC_IER. All parameters in PMC_PCKx can be programmed in a single write operation.

If the PMC_PCKx.CSS and PMC_PCKx.PRES parameters are to be modified, the corresponding PCKx must be disabled first. The parameters can then be modified. Once this has been done, the user must re-enable PCKx and wait for the PCKRDYx bit to be set.

9. Enable the peripheral clocks

These additional modes are:

- Rising edge detection
- Falling edge detection
- Low-level detection
- High-level detection

In order to select an additional interrupt mode:

- The type of event detection (edge or level) must be selected by writing in the Edge Select Register (PIO_ESR) and Level Select Register (PIO_LSR) which select, respectively, the edge and level detection. The current status of this selection is accessible through the Edge/Level Status Register (PIO_ELSR).
- The polarity of the event detection (rising/falling edge or high/low-level) must be selected by writing in the Falling Edge/Low-Level Select Register (PIO_FELLSR) and Rising Edge/High-Level Select Register (PIO_REHLSR) which allow to select falling or rising edge (if edge is selected in PIO_ELSR) edge or high- or low-level detection (if level is selected in PIO_ELSR). The current status of this selection is accessible through the Fall/Rise - Low/High Status Register (PIO_FRLHSR).

When an input edge or level is detected on an I/O line, the corresponding bit in the Interrupt Status Register (PIO_ISR) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The interrupt signals of the 32 channels are ORed-wired together to generate a single interrupt signal to the interrupt controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a "level", the interrupt is generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

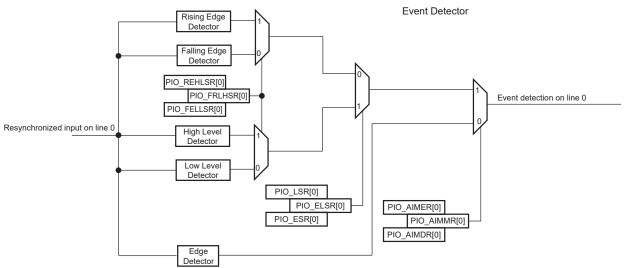


Figure 32-6. Event Detector on Input Lines (Figure Represents Line 0)

Example of interrupt generation on following lines:

- Rising edge on PIO line 0
- Falling edge on PIO line 1
- Rising edge on PIO line 2
- Low-level on PIO line 3

DMA Controller (XDMAC)

Offset	Name	Bit Pos.								
		23:16								
		31:24								
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE
00470		15:8		DIF	SIF	DWID	FH[1:0]		CSIZE[2:0]	1
0x0478	XDMAC_CC16	23:16	WRIP	RDIP	INITD		DAN	/[1:0]	SAM	I[1:0]
		31:24			1		PERID[6:0]		1	
		7:0				SDS_M	SP[7:0]			
00470	XDMAC_CDS_MSP	15:8				SDS_M	SP[15:8]			
0x047C	16	23:16				DDS_M	ISP[7:0]			
		31:24				DDS_M	SP[15:8]			
		7:0				SUBS	S[7:0]			
00400		15:8				SUBS	[15:8]			
0x0480	XDMAC_CSUS16	23:16				SUBS	[23:16]			
		31:24								
		7:0				DUB	S[7:0]			
0x0484		15:8				DUBS	[15:8]			
0X0464	XDMAC_CDUS16	23:16				DUBS	[23:16]			
		31:24								
0x0488										
 0x048F	Reserved									
	XDMAC_CIE17	7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE
00400		15:8								
0x0490		23:16								
		31:24								
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID
0x0494		15:8								
0X0494	XDMAC_CID17	23:16								
		31:24								
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM
020409		15:8								
0x0498	XDMAC_CIM17	23:16								
		31:24								
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS
0x049C		15:8								
0x0490	XDMAC_CIS17	23:16								
		31:24								
		7:0				SA[7:0]			
0x04A0	XDMAC_CSA17	15:8				SA[1	15:8]			
0X04A0	ADIVIAC_CSATT	23:16				SA[2	3:16]			
		31:24				SA[3	1:24]			
		7:0				DA[7:0]			
0x04A4		15:8				DA[´	15:8]			
UXU4A4	XDMAC_CDA17	23:16				DA[2	3:16]			
		31:24				DA[3	1:24]			
0x04A8	XDMAC_CNDA17	7:0			NDA	[5:0]				NDAIF

	Name: Offset: Reset: Property:	XDMAC_GS 0x24 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	ST23	ST22	ST21	ST20	ST19	ST18	ST17	ST16
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	ST15	ST14	ST13	ST12	ST11	ST10	ST9	ST8
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ST7	ST6	ST5	ST4	ST3	ST2	ST1	ST0
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

36.9.10 XDMAC Global Channel Status Register

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 – ST XDMAC Channel x Status

Value	Description
0	This bit indicates that the channel x is disabled.
1	This bit indicates that the channel x is enabled. If a channel disable request is issued, this bit
	remains asserted until pending transaction is completed.

GMAC - Ethernet MAC

Offset	Name	Bit Pos.										
		7:0				IP[7:0]					
		15:8				IP[′	15:8]					
0xB8	GMAC_WOL	23:16					MTI	SA1	ARP	MAG		
		31:24					_					
		7:0				FL	[7:0]					
		15:8				FL[15:8]					
0xBC	GMAC_IPGS	23:16										
		31:24										
		7:0				VLAN_T	YPE[7:0]			1		
000		15:8				VLAN_T	YPE[15:8]					
0xC0	GMAC_SVLAN	23:16										
		31:24	ESVLAN									
		7:0				PE\	/[7:0]			1		
0×04		15:8				PQ	[7:0]					
0xC4	GMAC_TPFCP	23:16										
		31:24										
		7:0				ADD	R[7:0]			1		
0xC8		15:8				ADD	R[15:8]					
UXCo	GMAC_SAMB1	23:16				ADDR	[23:16]					
		31:24				ADDR	[31:24]					
		7:0	ADDR[7:0]									
0xCC	GMAC_SAMT1	15:8	ADDR[15:8]									
0,000	GIVIAC_SAIVITT	23:16										
		31:24										
0xD0												
	Reserved											
0xDB		7:0				NANOS	SEC[7:0]					
		15:8					EC[7:0]					
0xDC	GMAC_NSC	23:16				NANUS		EC[21:16]				
		31:24					INANUS					
		7:0				954	C[7:0]					
		15:8					[15:8]					
0xE0	GMAC_SCL	23:16										
		31:24			SEC[23:16] SEC[31:24]							
		7:0					[7:0]					
		15:8					[15:8]					
0xE4	GMAC_SCH	23:16					[10.0]					
		31:24										
		7:0				RII	D[7:0]					
		15:8					[15:8]					
0xE8	GMAC_EFTSH	23:16					[.0.0]					
		31:24										
		7:0				RII	D[7:0]					
0xEC	GMAC_EFRSH	15:8					[15:8]					
		23:16					[.0.0]					
		20.10										

	Name: Offset: Reset: Property:	GMAC_ROE 0x1A4 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
5.4			0.4	00	10	40	47	10
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
5.4	45		10	10		40	0	0
Bit	15	14	13	12	11	10	9	8
								/R[9:8]
Access							R	R
Reset							0	0
Bit	7	6	5	4	3	2	1	0
					′R[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

38.8.79 GMAC Receive Overruns Register

Bits 9:0 - RXOVR[9:0] Receive Overruns

This bit field counts the number of frames that are address recognized but were not copied to memory due to a receive overrun.

USB High-Speed Interface (USBHS)

							1			1
Offset	Name	Bit Pos.								
		15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDMA
		31:24								
0x01E8 0x01EF	Reserved									
		7:0	SHORTPACK ETES	STALLEDES	OVERFES	NAKINES	NAKOUTES	RXSTPES	RXOUTES	TXINES
0x01F0	USBHS_DEVEPTIE	15:8		FIFOCONS	KILLBKS	NBUSYBKES				
	R0	23:16					STALLRQS	RSTDTS	NYETDISS	EPDISHDMA S
		31:24								
		7:0	SHORTPACK ETES	CRCERRES	OVERFES	HBISOFLUSH ES	HBISOINERR ES	UNDERFES	RXOUTES	TXINES
0x01F0	USBHS_DEVEPTIE	15:8		FIFOCONS	KILLBKS	NBUSYBKES		ERRORTRAN SES	DATAXES	MDATAES
	R0 (ISOENPT)	23:16						RSTDTS		EPDISHDMA S
		31:24								
	USBHS_DEVEPTIE R1	7:0	SHORTPACK ETES	STALLEDES	OVERFES	NAKINES	NAKOUTES	RXSTPES	RXOUTES	TXINES
0x01F4		15:8		FIFOCONS	KILLBKS	NBUSYBKES				
0x01F4		23:16					STALLRQS	RSTDTS	NYETDISS	EPDISHDMA S
		31:24								
		7:0	SHORTPACK ETES	CRCERRES	OVERFES	HBISOFLUSH ES	HBISOINERR ES	UNDERFES	RXOUTES	TXINES
0x01F4	USBHS_DEVEPTIE	15:8		FIFOCONS	KILLBKS	NBUSYBKES		ERRORTRAN SES	DATAXES	MDATAES
	R1 (ISOENPT)	23:16						RSTDTS		EPDISHDMA S
		31:24								
		7:0	SHORTPACK ETES	STALLEDES	OVERFES	NAKINES	NAKOUTES	RXSTPES	RXOUTES	TXINES
0x01F8	USBHS_DEVEPTIE	15:8		FIFOCONS	KILLBKS	NBUSYBKES				
0.011 0	R2	23:16					STALLRQS	RSTDTS	NYETDISS	EPDISHDMA S
		31:24								
		7:0	SHORTPACK ETES	CRCERRES	OVERFES	HBISOFLUSH ES	HBISOINERR ES	UNDERFES	RXOUTES	TXINES
0x01F8	USBHS_DEVEPTIE	15:8		FIFOCONS	KILLBKS	NBUSYBKES		ERRORTRAN SES	DATAXES	MDATAES
	R2 (ISOENPT)	23:16						RSTDTS		EPDISHDMA S
		31:24								

USB High-Speed Interface (USBHS)

Value	Description
0	No channel register is loaded after the end of the channel transfer.
1	The channel controller loads the next descriptor after the end of the current transfer, i.e.,
	when the USBHS_DEVDMASTATUS.CHANN_ENB bit is reset.

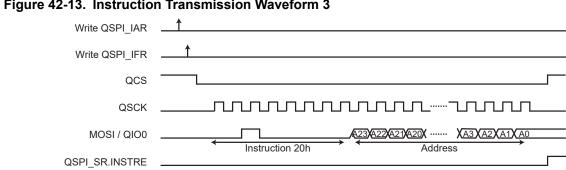
Bit 0 – CHANN_ENB Channel Enable Command

Value	Description
0	The DMA channel is disabled at end of transfer and no transfer occurs upon request. This bit is also cleared by hardware when the channel source bus is disabled at end of buffer.
	If the LDNXT_DSC bit has been cleared by descriptor loading, the firmware must set the corresponding CHANN_ENB bit to start the described transfer, if needed.
	If the LDNXT_DSC bit is cleared, the channel is frozen and the channel registers may then be read and/or written reliably as soon as both USBHS_DEVDMASTATUS.CHANN_ENB and CHANN_ACT flags read as 0.
	If a channel request is currently serviced when this bit is cleared, the DMA FIFO buffer is drained until it is empty, then the USBHS_DEVDMASTATUS.CHANN_ENB bit is cleared.
	If the LDNXT_DSC bit is set at or after this bit clearing, then the currently loaded descriptor is skipped (no data transfer occurs) and the next descriptor is immediately loaded.
1	The USBHS_DEVDMASTATUS.CHANN_ENB bit is set, thus enabling the DMA channel data transfer. Then, any pending request starts the transfer. This may be used to start or resume any requested transfer.

High-Speed Multimedia Card Interface (HSMCI)

	Name: Offset: Reset: Property:	HSMCI_WPS 0xE8 0x0 Read-only	R					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				WPVSF	RC[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPVS	RC[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
	_	_	_			_		
Bit	7	6	5	4	3	2	1	0
								WPVS
Access								
Reset								0

40.14.19 HSMCI Write Protection Status Register


Bits 23:8 - WPVSRC[15:0] Write Protection Violation Source

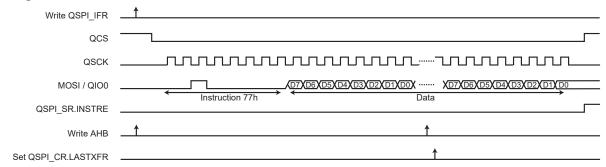
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bit 0 – WPVS Write Protection Violation Status

Value	Description
0	No write protection violation has occurred since the last read of the HSMCI_WPSR.
1	A write protection violation has occurred since the last read of the HSMCI_WPSR. If this
	violation is an unauthorized attempt to write a protected register, the associated violation is
	reported into field WPVSRC.

Quad Serial Peripheral Interface (QSPI)

Figure 42-13. Instruction Transmission Waveform 3


Example 4:

Instruction in Single-bit SPI, without address, without option, with data write in Single-bit SPI.

Command: SET BURST (77h)

- Write 0x0000 0077 in QSPI ICR.
- Write 0x0000 2090 in QSPI IFR.
- Read QSPI_IFR (dummy read) to synchronize system bus accesses.
- Write data in the system bus memory space (0x8000000). The address of system bus write accesses is not used.
- Write a '1' to QSPI CR.LASTXFR.
- Wait for QSPI SR.INSTRE to rise.

Figure 42-14. Instruction Transmission Waveform 4

Example 5:

Instruction in Single-bit SPI, with address in Dual SPI, without option, with data write in Dual SPI.

Command: BYTE/PAGE PROGRAM (02h)

- Write 0x0000 0002 in QSPI ICR.
- Write 0x0000 30B3 in QSPI IFR.
- Read QSPI IFR (dummy read) to synchronize system bus accesses.
- Write data in the QSPI system bus memory space (0x8000000). The address of the first system bus write access is sent in the instruction frame. The address of the next system bus write accesses is not used.
- Write a '1' to QSPI CR.LASTXFR.
- Wait for QSPI_SR.INSTRE to rise.

Quad Serial Peripheral Interface (QSPI)

	Name: Offset: Reset: Property:	QSPI_RDR 0x08 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					15:8]			
Access		R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RD	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

42.7.3 QSPI Receive Data Register

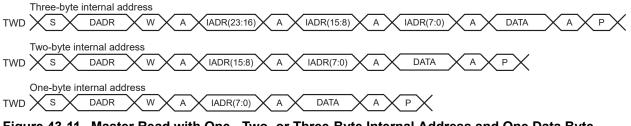
Bits 15:0 - RD[15:0] Receive Data

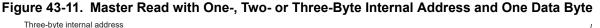
Data received by the QSPI is stored in this register right-justified. Unused bits read zero.

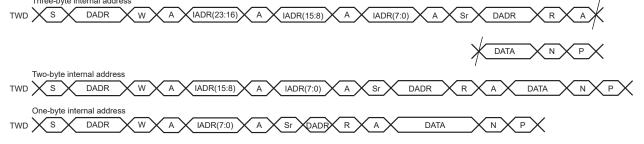
Two-wire Interface (TWIHS)

See Master Write with One-, Two- or Three-Byte Internal Address and One Data Byte and Internal Address Usage for the master write operation with internal address.

The three internal address bytes are configurable through TWIHS_MMR.


If the slave device supports only a 7-bit address, i.e., no internal address, IADRSZ must be set to 0.


The table below shows the abbreviations used in the figures below.


 Table 43-4.
 Abbreviations

Abbreviation	Definition
S	Start
Sr	Repeated Start
Р	Stop
W	Write
R	Read
A	Acknowledge
NA	Not Acknowledge
DADR	Device Address
IADR	Internal Address

Figure 43-10. Master Write with One-, Two- or Three-Byte Internal Address and One Data Byte

43.6.3.5.2 10-bit Slave Addressing

For a slave address higher than seven bits, configure the address size (IADRSZ) and set the other slave address bits in the Internal Address register (TWIHS_IADR). The two remaining internal address bytes, IADR[15:8] and IADR[23:16], can be used the same way as in 7-bit slave addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

- 1. Program IADRSZ = 1,
- 2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

A byte-wide value sent by the receiving (Rx) MediaLB Device on the MLBS line, after Command is sent. This status response provides a hardware handshaking mechanism and signals other control information, such as transmission errors, back to the sender.

Data:

The physical channel contains Data and is sent by the Tx MediaLB Device during the same physical channel in which Command is sent. This physical channel data must be transmitted left-justified, MSB first, most significant byte first. Note the Rx Device might return a status of busy, wherein the Tx Device must retransmit the same data in the next physical channel associated with the logical channel.

To dynamically configure ChannelAddresses for logical channels, a DeviceAddress can be pre-defined for MediaLB Devices. The DeviceAddress is a 16-bit address used in the System Channel with the MLBScan command to detect which MediaLB Devices exist.

48.6.1.1 Channel Addresses

A MediaLB logical channel is defined as all physical channels associated with a single ChannelAddress. A logical channel on MediaLB is unidirectional; therefore, a single MediaLB Device sends data on a logical channel to one or more receiving Devices. If two Devices require bidirectional communication, then two MediaLB logical channels are required.

A ChannelAddress is 16-bits wide. Of the 16-bits, ChannelAddress (CA) bits 15 through 9 and the LSB are always zero. Only the eight bits CA[8:1] vary. A delay of one physical channel exists between the occurrence of the ChannelAddress and the actual physical channel granted. The 0x01FE ChannelAddress is defined as the FRAMESYNC pattern, where the end of the pattern determines the byte boundary, the physical channel boundary, and indicates that the MediaLB frame starts one physical channel later (PC0). The 0x0000 ChannelAddress is defined as the BusIdle state, which indicates that the corresponding physical channel is not assigned and not used by any Device. All odd ChannelAddresses are reserved; therefore, the LSB of a valid ChannelAddress is always zero. The MLBS line is in a consistent known state when not driven by any Device. For 3-pin MediaLB, this is achieved with the required weak pull-down.

ChannelAddress (1)	Description
0x0000	BusIdle - Indicates that the physical channel is not being used, not assigned.
0x00020x007E	63 ChannelAddresses - defines the logical channels used in normal operation (3- pin MediaLB)
0x00800x01FC	Reserved
0x01FE	FRAMESYNC - MediaLB frame alignment and System Channel ChannelAddress
0x02000xFFFF	Reserved

Table 48-3. MediaLB ChannelAddresses

Note: 1. All odd ChannelAddresses are reserved (LSB must be zero for valid ChannelAddresses).

48.6.1.2 Device Addresses

DeviceAddresses are 16-bits wide, must be pre-assigned, and must be unique for each MediaLB Device. Of the 16-bits, DeviceAddress (DA) bits 15 through 9 and the LSB are always zero. Only the eight bits DA[8:1] vary. At the request of the EHC, DeviceAddresses can be scanned for by the MediaLB Controller to dynamically determine which Devices exist on MediaLB. DeviceAddresses are only used with the MLBScan command in the System Channel and are never assigned to physical channels. Once a Device is found, the ChannelAddresses used in normal operation can be assigned.

- Finish any active MLB transfer
- Disable MLB (clear the MLBEN and MLBPEN bits in MLB_MLBC0)
- Disable HBI (clear all bits in MLB_HCMR0 and MLB_HCMR1, clear EN bit in MLB_HCTL)
- Mask AHB interrupts (clear all bits in MLB_ACMR0 and MLB_ACMR1)

For information on configuring the MLB IP if the clocks are re-enabled, see Section "Configure the Hardware".

Pulse Width Modulation Controller (PWM)

51.7.9 PWM Sync Channels Mode Register

Name:	PWM_SCM
Offset:	0x20
Reset:	0x00000000
Property:	Read/Write

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
		PTRCS[2:0]		PTRM			UPD	V[1:0]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					SYNC3	SYNC2	SYNC1	SYNC0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 23:21 – PTRCS[2:0] DMA Controller Transfer Request Comparison Selection Selection of the comparison used to set the flag WRDY and the corresponding DMA Controller transfer request.

Bit 20 – PTRM	DMA Controller	Transfer Request Mode
		Transier Request Mode

UPDM	PTRM	WRDY Flag and DMA Controller Transfer Request
0	x	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are never set to '1'.
1	x	The WRDY flag in PWM Interrupt Status Register 2 is set to '1' as soon as the update period is elapsed, the DMA Controller transfer request is never set to '1'.
2	0	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are set to '1' as soon as the update period is elapsed.
	1	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are set to '1' as soon as the selected comparison matches.

Bits 17:16 – UPDM[1:0] Synchronous Channels Update Mode

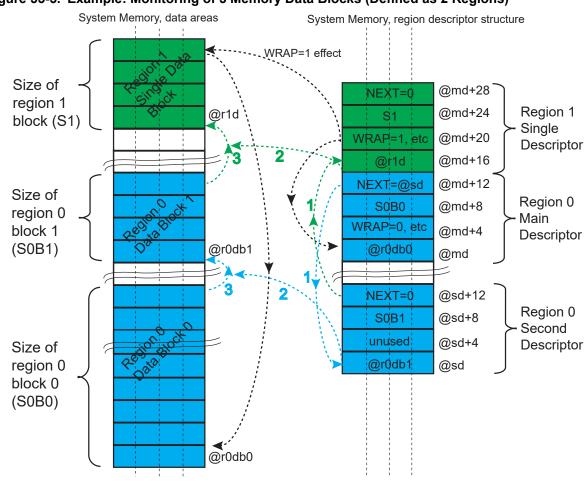
Pulse Width Modulation Controller (PWM)

51.7.31 PWM Spread Spectrum Update Register

Name:PWM_SSPUPOffset:0xA4Reset:-Property:Write-only

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the SPRD value. This prevents an unexpected waveform when modifying the spread spectrum limit value.


Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				SPRDU	P[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				SPRDU	JP[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SPRDUP[7:0]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_

Only the first 16 bits (channel counter size) are significant.

Bits 23:0 - SPRDUP[23:0] Spread Spectrum Limit Value Update

The spread spectrum limit value defines the range for the spread spectrum counter. It is introduced in order to achieve constant varying period for the output waveform.

Integrity Check Monitor (ICM)

Figure 55-5. Example: Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

55.5.2 ICM Region Descriptor Structure

The ICM Region Descriptor Area is a contiguous area of system memory that the controller and the processor can access. When the ICM is activated, the controller performs a descriptor fetch operation at *(ICM_DSCR) address. If the Main List contains more than one descriptor (i.e., more than one region is to be monitored), the fetch address is *(ICM_DSCR) + (RID<<4) where RID is the region identifier.

Table 55-1.	Region	Descriptor	Structure	(Main List)
-------------	--------	------------	-----------	-------------

Offset	Structure Member	Name
ICM_DSCR+0x000+RID*(0x10)	ICM Region Start Address	ICM_RADDR
ICM_DSCR+0x004+RID*(0x10)	ICM Region Configuration	ICM_RCFG
ICM_DSCR+0x008+RID*(0x10)	ICM Region Control	ICM_RCTRL
ICM_DSCR+0x00C+RID*(0x10)	ICM Region Next Address	ICM_RNEXT