

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q21a-cfn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Configuration Summary

Analog

Analog Comparators DAC (Channels)

Y 2

Y 2

Y 1

	. 07		10		utu	100	(******	/ut	UA		Ξ,		cinct		/////	01)									
		â			Digital Peripherals																				
Device	Flash Memory (KB)	Multi-port SRAM Memory (KE	Pins	Packages	USB (see Note	USART/UART	QSPI	USART/SPI	TWIHS	HSMCI port/bits	CAN-FD	Media LB	Image Sensor Interface (ISI)	SPIO	SPI1	External Bus Interface (EBI)	SDRAM Interface	DMA Channels	ssc	ETM	Timer Counter Channels	Timer Counter Channels I/O	I2SC	I/O Pins	12-bit ADC Channels
SAMV70Q19	512	256	144		це	3/5	v	3	3	1/4	2	v	12 hit	v	v	~	v	24	v	v	12	36	2	11.4	24
SAMV70Q20	1024	384	144	LQIF, II DOA	113	5/5	1	5	5	1/4	2	1	12 -DIL		1	1	1	24	1	1	12	50	2	114	24
SAMV70N19	512	256	100		нς	3/5	v	3	3	1//	2	v	12 -bit	v	N	N	N	24	v	v	12	a	1	75	10
SAMV70N20	1024	384	100	LQIT, ILDOA	110	5/5		5	J	1/4	2		12-51					24			12	5		15	
SAMV70J19	512	256	64		FS	2/3	SPI only	0	2	N	1	N	8 hit	N	N	N	N	24	Y	Y	12	3	0	44	5
SAMV70J20	1024	384	04	2011			C Only	5					5 bit							· ·			Ĵ		Ŭ

Table 1-3. SAM V70 Family Features (Without CAN-FD, Ethernet Control)

Note: HS = High-Speed; FS = Full-Speed.

Table 1-4. SAM S70 Family Features (Without CAN-FD, Ethernet AVB and Media LB)

		â									Dig	jital F	Periph	nerals									Å	Analo	g
Device	Flash Memory (KB)	Multi-port SRAM Memory (KE	Pins	Packages	USB (see Note)	USART/UART	QSPI	USART/SPI	TWIHS	HSMCI port/bits	Image Sensor Interface (ISI)	SPIO	SPI1	External Bus Interface (EBI)	SDRAM Interface	DMA Channels	ssc	ETM	Timer Counter Channels	Timer Counter Channels I/O	I2SC	I/O Pins	12-bit ADC Channels	Analog Comparators	DAC Channels
SAMS70Q19	512	256																							
SAMS70Q20	1024	201	144	LQFP, LFBGA, UFBGA	нs	3/5	Y	3	3	1/4	12 -bit	Y	Y	Y	Y	24	Y	Y	12	36	2	114	24	Y	2
SAMS70Q21	2048	304																							
SAMS70N19	512	256																							
SAMS70N20	1024	201	100	LQFP, TFBGA, VFBGA	нs	3/5	Y	3	3	1/4	12 -bit	Y	N	N	N	24	Y	Y	12	9	1	75	10	Y	2
SAMS70N21	2048	304																							
SAMS70J19	512	256																							
SAMS70J20	1024	384	64	LQFP, QFN	FS	0/5	SPI only	0	2	N	8-bit	N	N	N	N	24	Y	Y	12	3	0	44	5	Y	1
SAMS70J21	2048	564																							

Note: HS = High-Speed; FS = Full-Speed.

Real-time Clock (RTC)

The user can adjust the value of the Main RC oscillator frequency by modifying the trimming values done in production on 8 MHz and 12 MHz. This may be used to compensate frequency drifts due to temperature or voltage. The values stored in the Flash cannot be erased by a Flash erase command or by the ERASE signal. Values written by the user application in the Oscillator Calibration Register (PMC_OCR) are reset after each power-up or peripheral reset.

By default, SEL4/SEL8/SEL12 are cleared, so the Main RC oscillator is driven with the factoryprogrammed Flash calibration bits which are programmed during chip production.

In order to calibrate the oscillator lower frequency, SEL4 must be set to '1' and a valid frequency value must be configured in CAL4. Likewise, SEL8/12 must be set to '1' and a trim value must be configured in CAL8/12 in order to adjust the other frequencies of the oscillator.

It is possible to adjust the oscillator frequency while operating from this oscillator. For example, when running on lowest frequency, it is possible to change the CAL4 value if SEL4 is set in PMC_OCR.

At any time, the user can measure the main RC oscillator output frequency by means of the Main Frequency Counter (refer to "Main Frequency Counter"). Once the frequency measurement is done, the main RC oscillator calibration fields (CALMIN, CALx) can be adjusted accordingly to correct this oscillator output frequency.

Related Links

58. Electrical Characteristics for SAM V70/V71

59. Electrical Characteristics for SAM E70/S70

30.5.3 Main Crystal Oscillator

After reset, the Main crystal oscillator is disabled and is not selected as the source of MAINCK.

As the source of MAINCK, the Main crystal oscillator provides a very precise frequency. The software enables or disables this oscillator in order to reduce power consumption via CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN, PMC_SR.MOSCXTS is automatically cleared, indicating the oscillator is off.

When enabling this oscillator, the user must initiate the startup time counter. The startup time depends on the characteristics of the external device connected to this oscillator.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the PIO lines multiplexed with XIN and XOUT are driven by the Main crystal oscillator. PMC_SR.MOSCXTS is cleared and the counter starts counting down on SLCK divided by 8 from the CKGR_MOR.MOSCXTST value. Since the CKGR_MOR.MOSCXTST value is coded with 8 bits, the startup time can be programmed up to 65536 SLCKperiods, corresponding to about 62 ms when running at 32.768 kHz.

When the startup time counter reaches '0', PMC_SR.MOSCXTS is set, indicating that the oscillator is stabilized. Setting the MOSCXTS bit in the Interrupt Mask Register (PMC_IMR) can trigger an interrupt to the processor.

30.5.4 Main Clock Source Selection

The source of MAINCK can be selected from the following:

- The Main RC oscillator
- The Main crystal oscillator
- An external clock signal provided on the XIN input (Bypass mode of the Main crystal oscillator)

The advantage of the Main RC oscillator is its fast startup time. By default, this oscillator is selected to start the system and it must be selected prior to entering Wait mode.

Power Management Controller (PMC)

Clock Name	Peripheral
PCK5	MCANx
PCK6	TCx
PCK7	TC0

Note: USB, GMAC and MLB do not require PCKx to operate independently of core and bus peripherals.

31.9 Peripheral and Generic Clock Controller

The PMC controls the clocks of the embedded peripherals by means of the Peripheral Control register (PMC_PCR). With this register, the user can enable and disable the different clocks used by the peripherals:

- Peripheral clocks (periph_clk[PID]), routed to every peripheral and derived from the master clock (MCK), and
- Generic clocks (GCLK[PID]), routed to I2SC0 and I2SC1. These clocks are independent of the core and bus clocks (HCLK, MCK and periph_clk[PID]). They are generated by selection and division of the following sources: SLCK, MAINCK, UPLLCKDIV, PLLACK and MCK. Refer to the description of each peripheral for the limitation to be applied to GCLK[PID] compared to periph_clk[PID].

To configure a peripheral's clocks, PMC_PCR.CMD must be written to '1' and PMC_PCR.PID must be written with the index of the corresponding peripheral. All other configuration fields must be correctly set.

To read the current clock configuration of a peripheral, PMC_PCR.CMD must be written to '0' and PMC_PCR.PID must be written with the index of the corresponding peripheral regardless of the values of other fields. This write does not modify the configuration of the peripheral. The PMC_PCR can then be read to know the configuration status of the corresponding PID.

The user can also enable and disable these clocks by configuring the Peripheral Clock Enable (PMC_PCERx) and Peripheral Clock Disable (PMC_PCDRx) registers. The status of the peripheral clock activity can be read in the Peripheral Clock Status registers (PMC_PCSRx).

When a peripheral or a generic clock is disabled, it is immediately stopped. These clocks are disabled after a reset.

To stop a peripheral clock, it is recommended that the system software wait until the peripheral has executed its last programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the system.

The bit number in PMC_PCERx, PMC_PCDRx, and PMC_PCSRx is the Peripheral Identifier defined at the product level. The bit number corresponds to the interrupt source number assigned to the peripheral.

31.10 Asynchronous Partial Wakeup

31.10.1 Description

The asynchronous partial wakeup wakes up a peripheral in a fully asynchronous way when activity is detected on the communication line. The asynchronous partial wakeup function automatically manages the peripheral clock. It reduces overall power consumption of the system by clocking peripherals only when needed.

Asynchronous partial wakeup can be enabled in Wait mode (SleepWalking), or in Active mode.

Power Management Controller (PMC)

Value	Name	Description
3	CLK_8	Selected clock divided by 8
4	CLK_16	Selected clock divided by 16
5	CLK_32	Selected clock divided by 32
6	CLK_64	Selected clock divided by 64
7	CLK_3	Selected clock divided by 3

Bits 1:0 – CSS[1:0] Master Clock Source Selection

Value	Name	Description
0	SLOW_CLK	SLCK is selected
1	MAIN_CLK	MAINCK is selected
2	PLLA_CLK	PLLACK is selected
3	UPLL_CLK	UPPLLCKDIV is selected

Power Management Controller (PMC)

Value	Description
0	Default value stored in Flash memory.
1	Value written by user in CAL4 field of this register.

Bits 6:0 – CAL4[6:0] Main RC Oscillator Calibration Bits for 4 MHz Calibration bits applied to the RC Oscillator when SEL4 is set.

Parallel Input/Output Controller (PIO)

32.6.1.24 PIO Peripheral ABCD Select Register 1

Name:	PIO_ABCDSR1
Offset:	0x0070
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access		•	•			•	•	
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		•					•	,
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								,
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Peripheral Select

If the same bit is set to '0' in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral B function.

If the same bit is set to '1' in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral C function.

1: Assigns the I/O line to the Peripheral D function.

Image Sensor Interface (ISI)

Using this technique, several frame buffers can be configured through the linked list. The following figure illustrates a typical three-frame buffer application. Frame n is mapped to frame buffer 0, frame n+1 is mapped to frame buffer 1, frame n+2 is mapped to frame buffer 2 and further frames wrap. A codec request occurs, and the full-size 4:2:2 encoded frame is stored in a dedicated memory space.

37.5.5 Codec Path

37.5.5.1 Color Space Conversion

Depending on user selection, this module can be bypassed so that input YCrCb stream is directly connected to the format converter module. If the RGB input stream is selected, this module converts RGB to YCrCb color space with the formulas given below:

	Name: Offset: Reset: Property:	GMAC_NSR 0x008 0x000001X0 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						IDLE	MDIO	
Access						R	R	
Reset						0	0	

38.8.3 GMAC Network Status Register

Bit 2 – IDLE PHY Management Logic Idle The PHY management logic is idle (i.e., has completed).

Bit 1 – MDIO MDIO Input Status

Returns status of the MDIO pin.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.							
		7:0		l	INRC	Q[7:0]	l	l	
0.0070	USBHS_HSTPIPIN	15:8							INMODE
0x0670	RQ8	23:16							
		31:24							
		7:0		:	INRC	Q[7:0]			
0x0674	USBHS_HSTPIPIN	15:8							INMODE
0,007 1	RQ9	23:16							
		31:24							
0x0678									
	Reserved								
0x067F		7.0	001101		00040	TIMEOUT	DID	DATADID	DATATO
		15.9	COUNT	ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
0x0680		23:16							
		31.24							
		7:0	COUNT	FR[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGI
	USBHS HSTPIPER	15:8						Brin ti iB	Di li li CE
0x0684	R1	23:16							
		31:24							
		7:0	COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
	USBHS_HSTPIPER	15:8							
0x0688	0x0688 R2	23:16							
		31:24							
		7:0	COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
0×0680	USBHS_HSTPIPER	15:8							
0x008C	R3	23:16							
		31:24							
		7:0	COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
0x0690	USBHS_HSTPIPER	15:8							
	R4	23:16							
		31:24							
		7:0	COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
0x0694	USBHS_HSTPIPER	15:8							
	Ro	23:16							
		7:0	COUNT		CPC16	TIMEOUT	חום		DATATO
	USBHS HSTDIDER	15.8	COONT		CIKCIO	TIMEOUT		DAIAIID	DAIAIOL
0x0698	R6	23.16							
		31:24							
		7:0	COUNT	ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
	USBHS_HSTPIPER	15:8							-
0x069C		23:16							
		31:24							
		7:0	COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
0x06A0		15:8							
	R8	23:16							

USB High-Speed Interface (USBHS)

39.6.44 Host Pipe x Configuration Register (High-speed Bulk-out or High-speed Control Pipe)

Name:	USBHS_HSTPIPCFGx (HSBOHSCP)
Offset:	0x0500 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

This configuration is relevant only if PTYPE = 0x0 or 0x2 in "Host Pipe x Configuration Register".

Bit	31	30	29	28	27	26	25	24
				BINTER	VAL[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				PINGEN		PEPNU	JM[3:0]	
Access	L							
Reset				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			PTYP	E[1:0]		AUTOSW	PTOK	EN[1:0]
Access								
Reset			0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			PSIZE[2:0]		PBI	<[1:0]	ALLOC	
Access								
Reset		0	0	0	0	0	0	

Bits 31:24 – BINTERVAL[7:0] bInterval Parameter for the Bulk-Out/Ping Transaction This field contains the Ping/Bulk-out period.

• If BINTERVAL > 0 and PINGEN = 1, one PING token is sent every bInterval microframe until it is ACKed by the peripheral.

• If BINTERVAL = 0 and PINGEN = 1, multiple consecutive PING tokens are sent in the same microframe until they are ACKed.

• If BINTERVAL > 0 and PINGEN = 0, one OUT token is sent every blnterval microframe until it is ACKed by the peripheral.

• If BINTERVAL = 0 and PINGEN = 0, multiple consecutive OUT tokens are sent in the same microframe until they are ACKed.

This value must be in the range from 0 to 255.

Bit 20 – PINGEN Ping Enable

This bit is relevant for High-speed Bulk-out transaction only (including the control data stage and the control status stage).

This bit is cleared upon sending a USB reset.

USB High-Speed Interface (USBHS)

39.6.64 Host Pipe x Error Register

Name:	USBHS_HSTPIPERRx
Offset:	0x0680 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

Writing a zero in a bit/field in this register clears the bit/field. Writing a one has no effect.

Bit	31	30	29	28	27	26	25	24
Access			•			•	•	
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
		COUNT	[ER[1:0]	CRC16	TIMEOUT	PID	DATAPID	DATATGL
Access		1		1	1	1	1]
Reset		0	0	0	0	0	0	0

Bits 6:5 - COUNTER[1:0] Error Counter

This field is incremented each time an error occurs (CRC16, TIMEOUT, PID, DATAPID or DATATGL).

This field is cleared when receiving a USB packet free of error.

When this field reaches 3 (i.e., 3 consecutive errors), this pipe is automatically frozen (USBHS_HSTPIPIMRx.PFREEZE is set).

Bit 4 – CRC16 CRC16 Error

Value	Description
0	No CRC16 error occurred since last clear of this bit.
1	This bit is automatically set when a CRC16 error has been detected.

Bit 3 - TIMEOUT Time-Out Error

Value	Description
0	No Time-Out error occurred since last clear of this bit.
1	This bit is automatically set when a Time-Out error has been detected.

Bit 2 - PID PID Error

SAM E70/S70/V70/V71 Family High-Speed Multimedia Card Interface (HSMCI)

40.14.20 HSMCI FIFOx Memory Aperture

Name:	HSMCI_FIFOx [x=0255]
Offset:	0x00
Reset:	0
Property:	R/W

Bit	31	30	29	28	27	26	25	24
				DATA	[31:24]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DATA	[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	\ [7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - DATA[31:0] Data to Read or Data to Write

42.7.8 QSPI Interrupt Mask Register

Name:	QSPI_IMR
Offset:	0x1C
Reset:	0x00000000
Property:	Read-only

The following configuration values are valid for all listed bit names of this register:

- 0: The corresponding interrupt is not enabled.
- 1: The corresponding interrupt is enabled.

Bit 10 - INSTRE Instruction End Interrupt Mask

- Bit 9 CSS Chip Select Status Interrupt Mask
- Bit 8 CSR Chip Select Rise Interrupt Mask
- Bit 3 OVRES Overrun Error Interrupt Mask
- Bit 2 TXEMPTY Transmission Registers Empty Mask
- **Bit 1 TDRE** Transmit Data Register Empty Interrupt Mask
- Bit 0 RDRF Receive Data Register Full Interrupt Mask

Universal Synchronous Asynchronous Receiver Transc...

46.7.36 USART LON Preamble Register

Name:US_LONPROffset:0x0064Reset:0x0Property:Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

DIL	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Bit	15	14	13	12	11 LONPI	10 _[13:8]	9	8
Bit [Access	15	14	13	12	11 LONPI	10 _[13:8]	9	8
Bit Access Reset	15	14	13 0	12	11 LONPI	10 _[13:8] 0	9	8
Bit Access Reset	15	14	13 0	12 0	11 LONPI 0	10 _[13:8] 0	9	8
Bit Access Reset Bit	15	6	13 0 5	12 0 4	11 LONPI 0 3	10 _[13:8] 0 2	9	8 0 0
Bit Access Reset Bit	15 7	6	13 0 5	12 0 4 LONF	11 LONP 0 3 PL[7:0]	10 _[13:8] 0 2	9 0 1	8 0 0
Bit Access Reset Bit Access	15 7	6	13 0 5	12 0 4 LONF	11 LONP 0 3 PL[7:0]	10 _[13:8] 0 2	9 0 1	8 0 0

Bits 13:0 – LONPL[13:0] LON Preamble Length

Value	Description
1-16383	LON preamble length in t _{bit} (without byte-sync).

48.7.25 AHB Control Register

Name:	MLB_ACTL
Offset:	0x3C0
Reset:	0x00000000
Property:	Read/Write

The AHB Control (MLB_ACTL) register is written by the HC to configure the AHB block for channel interrupts. MLB_ACTL contains three configuration fields, one is used to select the DMA mode, one is used to multiplex channel interrupts onto a single interrupt signal, and the last selects the method of clearing channel interrupts (either software or hardware).

Bit 4 – MPB DMA Packet Buffering Mode 0 (SINGLE_PACKET): Single-packet mode

1 (MULTIPLE_PACKET): Multiple-packet mode

Bit 2 – DMA_MODE DMA Mode

Value	Description
0	DMA Mode 0
1	DMA Mode 1

Bit 1 - SMX AHB Interrupt Mux Enable

Value	Description
0	MLB_ACSR0 generates an interrupt on MediaLB IRQ0; MLB_ACSR1 generates an interrupt
	on MediaLB IRQ1
1	MLB_ACSR0 and MLB_ACSR1 generate an interrupts on MediaLB IRQ0 only

Bit 0 – SCE Software Clear Enable

52.7 Register Summary

Offset	Name	Bit Pos.										
		7:0							START	SWRST		
0.00		15:8										
0000	AFEC_CR	23:16										
		31:24										
		7:0	FREERUN	FWUP	SLEEP			TRGSEL[2:0]		TRGEN		
0×04	AFEC MR	15:8				PRESC	SCAL[7:0]					
0X04	AFEC_WIK	23:16	ONE									
		31:24	USEQ		TRANS	FER[1:0]		TRACK	TIM[3:0]			
		7:0			CMPSEL[4:0]				CMPMC	DDE[1:0]		
0×08		15:8			CMPFIL	TER[1:0]			CMPALL			
0,00	AI LO_LIVIN	23:16							RES[2:0]			
		31:24			SIGNM	ODE[1:0]			STM	TAG		
		7:0		USCH	11[3:0]			USCH	10[3:0]			
0x0C	AFEC SEO1R	15:8		USCH	13[3:0]			USCH	12[3:0]			
0,000	AILO_OLQIIK	23:16		USCH	15[3:0]			USCH	14[3:0]			
		31:24		USCH	17[3:0]			USCH	l6[3:0]			
		7:0		USCH	19[3:0]			USCH	18[3:0]			
0x10	AFEC SEO2R	15:8		USCH	11[3:0]							
0,10	AILO_OLQ2I	23:16										
		31:24										
	AFEC_CHER	7:0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0		
0x14		15:8					CH11	CH10	CH9	CH8		
		23:16										
		31:24										
	AFEC_CHDR	7:0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0		
0x18		15:8					CH11	CH10	CH9	CH8		
		23:16										
		31:24										
		7:0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0		
0x1C	AFEC CHSR	15:8					CH11	CH10	CH9	CH8		
	_	23:16										
		31:24										
		7:0				LDAT	A[7:0]					
0x20	AFEC LCDR	15:8				LDAT	A[15:8]					
	_	23:16										
		31:24					CHN	IB[3:0]	1			
		7:0	EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0		
0x24	AFEC_IER	15:8					EOC11	EOC10	EOC9	EOC8		
	_	23:16										
		31:24		TEMPCHG				COMPE	GOVRE	DRDY		
		7:0	EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0		
0x28	AFEC_IDR	15:8					EOC11	EOC10	EOC9	EOC8		
		23:16										

True Random Number Generator (TRNG)

	Name: Offset: Reset: Property:	TRNG_IER 0x10 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
5.4		22	0.1	00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
A								
Access								
Resei								
Bit	15	14	13	12	11	10	9	8
	-		-			-	-	-
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								DATRDY
Access								W
Reset								-

56.6.2 TRNG Interrupt Enable Register

Bit 0 – DATRDY Data Ready Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{XIN_IL}	V _{XIN} Input Low-level Voltage	(see Note)	Min of V _{IL} for CLOCK pad	_	Max of V _{IL} for CLOCK pad	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(see Note)	Min of V _{IH} for CLOCK pad	_	Max of V _{IH} for CLOCK pad	V

Note: These characteristics apply only when the 32.768 kHz crystal oscillator is in Bypass mode.

Figure 59-9. 32.768 kHz Crystal Oscillator Schematics

 $C_{\text{LEXT}} = 2 \times (C_{\text{CRYSTAL}} - C_{\text{PARA}} - C_{\text{PCB}})$

where C_{PCB} is the capacitance of the printed circuit board (PCB) track layout from the crystal to the pin.

59.4.4 32.768 kHz Crystal Characteristics

Table 59-21. 32.768 kHz Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor	Crystal at 32.768 kHz	-	50	100	kOhm
C _M	Motional Capacitance	Crystal at 32.768 kHz	2	-	4	fF
C _{SHUNT}	Shunt Capacitance	Crystal at 32.768 kHz	0.6	-	2	pF
C _{CRYSTAL}	Allowed Crystal Capacitance Load	From crystal specification	6	-	12.5	pF
P _{ON}	Drive Level	-	-	-	0.2	μW

59.4.5 XIN32 Clock Characteristics in Bypass Mode Table 59-22. XIN32 Clock Characteristics in Bypass Mode

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
1/(t _{CPXIN})	XIN32 Clock Frequency	(see Note)	-	-	32	kHz
t _{CHXIN}	XIN32 Clock High Half- period	(see Note)	15	_	_	ns
t _{CLXIN}	XIN32 Clock Low Half- period	(see Note)	15	_	_	ns
V _{XIN_IL}	V _{XIN} Input Low-level Voltage	(see Note)	Min of V _{IL} for CLOCK pad	_	Max of V _{IL} for CLOCK pad	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(see Note)	Min of V _{IH} for CLOCK pad	_	Max of V _{IH} for CLOCK pad	V

© 2018 Microchip Technology Inc.

Revision History

Date	Comments
	Corrected CKx typo in Figure 58-36 "SSC Transmitter, TK and TF in Input".
	Section 59. "Mechanical Characteristics"
	All sections: Modified JEDEC classification to J-STD-609 from JESD97.
	Section 60. "Schematic Checklist"
	Added note following Figure 60-4 "Schematic Example with a 16 Mb/16-bit SDRAM (1)".
cont'd	
01-June-16	Section 62. "Ordering Information"
	Updated Table 62-1 "Ordering Codes for SAM V71 Devices".
	Section 63. "Errata"
	Added
	- Section 63.1.1 "AFE Controller (AFEC)": "AFE max sampling frequency is 1.74 Msps" and "Changing AFEC_COCR.AOFF during conversions is not safe" .
	- Section 63.1.5 "Boundary Scan Mode": "Boundary Scan Mode"
	- Section 63.1.8 "Ethernet MAC (GMAC)": "Error in number of queues"
	- Section 63.1.10 "Master CAN-FD Controller (MCAN)": "Timestamping issue with external clock"
	- Section 63.1.11 "Parallel Input/Output (PIO)": "PIO line configuration for AFEC and DACC analog inputs"
	- Section 63.1.12 "Power Management Controller (PMC)": "PMC_OCR does not report the Main RC oscillator manufacturing calibration value"
	- Section 63.1.14 "SDRAM Controller (SDRAMC)": "Limitation to scrambling/unscrambling use"
	Added Section 63.2 "Revision B Parts".
End	

Table 62-4. SAM E70/S70/V70/V71 Datasheet Rev. 44003C – Revision History

Date	Changes
08-Feb-16	Added TFBGA144 package to features, configuration summary, package and pinout, mechanical drawings, ordering information and AMR.
	Deleted LFBGA144 package from features, configuration summary, package and pinout, mechanical drawings, ordering information and AMR.
	Deleted TFBGA64 package from features, configuration summary, package and pinout, mechanical drawings, ordering information and AMR.
	Deleted QFN64 package from features, configuration summary, package and pinout, mechanical drawings, ordering information and AMR.