

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	384K × 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q21a-cnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SAM-BA Boot is in ROM at address 0x0 when the bit GPNVM1 is set to 0.

11.1.5.10 General-purpose NVM (GPNVM) Bits

All SAM E70/S70/V70/V71 devices feature nine general-purpose NVM (GPNVM) bits that can be cleared or set, through the "Clear GPNVM Bit" and "Set GPNVM Bit" commands of the EEFC User Interface.

The GPNVM0 bit is the security bit.

The GPNVM1bit is used to select the Boot mode (Boot always at 0x00) on ROM or Flash.

Table 11-4.	General-purpose	Non volatile	Memory Bits
-------------	-----------------	--------------	--------------------

Function
Security bit
Boot mode selection 0: ROM (default) 1: Flash
Free
Reserved
TCM configuration 00: 0 Kbytes DTCM + 0 Kbytes ITCM (default) 01: 32 Kbytes DTCM + 32 Kbytes ITCM 10: 64 Kbytes DTCM + 64 Kbytes ITCM 11: 128 Kbytes DTCM + 128 Kbytes ITCM Note: After programming, a user reboot must be done.

11.1.6 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed using GPNVM bits.

A GPNVM bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set, respectively, through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting the bit GPNVM1 selects boot from the Flash. Clearing it selects boot from the ROM. Asserting ERASE resets the bit GPNVM1 and thus selects boot from ROM.

11.2 External Memories

The SAM E70/S70/V70/V71 features one External Bus Interface to provide an interface to a wide range of external memories and to any parallel peripheral.

Power Management Controller (PMC)

31.20.18 PMC Fast Startup Mode Register

Name:	PMC_FSMR
Offset:	0x0070
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Γ								
Access		•	•	•	•			•
Reset								
Bit	23	22	21	20	19	18	17	16
	FFLPM	FLPN	И[1:0]	LPM		USBAL	RTCAL	RTTAL
Access		•		•		•		
Reset	0	0	0	0		0	0	0
Bit	15	14	13	12	11	10	9	8
Γ	FSTT15	FSTT14	FSTT13	FSTT12	FSTT11	FSTT10	FSTT9	FSTT8
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ	FSTT7	FSTT6	FSTT5	FSTT4	FSTT3	FSTT2	FSTT1	FSTT0
Access								
Reset	0	0	0	0	0	0	0	0

Bit 23 – FFLPM Force Flash Low-power Mode

Value	Description
0	The Flash Low-power mode, defined in the FLPM field, is automatically applied when in Wait
	mode and released when going back to Active mode.
1	The Flash Low-power mode is user defined by the FLPM field and immediately applied.

Bits 22:21 - FLPM[1:0] Flash Low-power Mode

Value	Name	Description
0	FLASH_STANDBY	Flash is in Standby Mode when system enters Wait Mode
1	FLASH_DEEP_POWERDOWN	Flash is in Deep-powerdown mode when system enters
		Wait Mode
2	FLASH_IDLE	Idle mode

Bit 20 - LPM Low-power Mode

Value	Description
0	The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes
	the processor enter Sleep mode.
1	The WaitForEvent (WFE) instruction of the processor makes the system enter Wait mode.

36.9.24 XDMAC Channel x Next Descriptor Address Register [x = 0..23]

Name:	XDMAC_CNDA
Offset:	0x68 + n*0x40 [n=023]
Reset:	0x0000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
Γ				NDA[29:22]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Γ				NDA[21:14]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				NDA	[13:6]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ			NDA	[5:0]				NDAIF
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bits 31:2 - NDA[29:0] Channel x Next Descriptor Address

The 30-bit width of the NDA field represents the next descriptor address range 31:2. The descriptor is word-aligned and the two least significant register bits 1:0 are ignored.

Bit 0 – I	NDAIF	Channel >	Next	Descriptor	Interface
-----------	-------	-----------	------	------------	-----------

Value	Description
0	The channel descriptor is retrieved through system interface 0.
1	The channel descriptor is retrieved through system interface 1.

USB High-Speed Interface (USBHS)

39.6.35 Host Global Interrupt Mask Register

	Name: Offset: Reset: Property:	USBHS_HST 0x0410 0x00000000 Read-only	IMR					
Bit	31	30	29	28	27	26	25	24
	DMA_6	DMA_5	DMA_4	DMA_3	DMA_2	DMA_1	DMA_0	
Access				1	•			1
Reset	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16
							PEP_9	PEP_8
Access								
Reset							0	0
Bit	15	14	13	12	11	10	9	8
	PEP_7	PEP_6	PEP_5	PEP_4	PEP_3	PEP_2	PEP_1	PEP_0
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		HWUPIE	HSOFIE	RXRSMIE	RSMEDIE	RSTIE	DDISCIE	DCONNIE
Access			1	1	1		1	
Reset		0	0	0	0	0	0	0

Bits 25, 26, 27, 28, 29, 30, 31 – DMA_ DMA Channel x Interrupt Enable

Value	Description
0	Cleared when the corresponding bit in USBHS_HSTIDR = 1. This disables the DMA
	Channel x Interrupt (USBHS_HSTISR.DMA_x).
1	Set when the corresponding bit in USBHS_HSTIER = 1. This enables the DMA Channel x
	Interrupt (USBHS_HSTISR.DMA_x).

Bits 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 – PEP_ Pipe x Interrupt Enable

Value	Description
0	Cleared when $PEP_x = 1$. This disables the Pipe x Interrupt (PEP_x).
1	Set when the corresponding bit in USBHS_HSTIER = 1. This enables the Pipe x Interrupt
	(USBHS_HSTISR.PEP_x).

Bit 6 – HWUPIE Host Wakeup Interrupt Enable

Value	Description
0	Cleared when USBHS_HSTIDR.HWUPIEC = 1. This disables the Host Wakeup Interrupt
	(USBHS_HSTISR.HWUPI).
1	Set when USBHS_HSTIER.HWUPIES = 1. This enables the Host Wakeup Interrupt (USBHS_HSTISR.HWUPI).

Serial Peripheral Interface (SPI)

	Name: Offset: Reset: Property:	SPI_WPSR 0xE8 0x0 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
				WPVSI	RC[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Accors								VVPV5
Resot								к 0
Nesel								U

41.8.11 SPI Write Protection Status Register

Bits 15:8 - WPVSRC[7:0] Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bit 0 – WPVS Write Protection Violation Status

Value	Description
0	No write protection violation has occurred since the last read of SPI_WPSR.
1	A write protection violation has occurred since the last read of SPI_WPSR. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC

Quad Serial Peripheral Interface (QSPI)

	Name: Offset: Reset: Property:	QSPI_ICR 0x34 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				OPT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
	_		_			_		
Bit	7	6	5	4	3	2	1	0
				INST	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

42.7.11 QSPI Instruction Code Register

Bits 23:16 – OPT[7:0] Option Code Option code to send to the serial Flash memory.

Bits 7:0 - INST[7:0] Instruction Code

Instruction code to send to the serial Flash memory.

Two-wire Interface (TWIHS)

Note:

- 1. When SVACC is low, the state of SVREAD becomes irrelevant.
- 2. RXRDY is set when data has been transmitted from the internal shifter to TWIHS_RHR and reset when this data is read.

43.6.5.4.3 General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of general call, decode the commands that follow.

In case of a WRITE command, decode the programming sequence and program a new SADR if the programming sequence matches.

The figure below describes the general call access.

Figure 43-33. Master Performs a General Call

Note: This method enables the user to create a personal programming sequence by choosing the programming bytes and their number. The programming sequence has to be provided to the master.

43.6.5.4.4 Clock Stretching

In both Read and Write modes, it may occur that TWIHS_THR/TWIHS_RHR buffer is not filled/emptied before the transmission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock stretching mechanism is implemented.

Note: Clock stretching can be disabled by setting TWIHS_SMR.SCLWSDIS. In that case the UNRE and OVRE flags indicate an underrun (when TWIHS_THR is not filled on time) or an overrun (when TWIHS_RHR is not read on time).

Clock Stretching in Read Mode

The clock is tied low if the internal shifter is empty and if a STOP or REPEATED START condition was not detected. It is tied low until the internal shifter is loaded.

The figure below describes the clock stretching in Read mode.

Synchronous Serial Controller (SSC)

Value	Name	Description
0	CONTINUOUS	Continuous, as soon as the receiver is enabled, and immediately after the
		end of transfer of the previous data.
1	TRANSMIT	Transmit start
2	RF_LOW	Detection of a low level on RF signal
3	RF_HIGH	Detection of a high level on RF signal
4	RF_FALLING	Detection of a falling edge on RF signal
5	RF_RISING	Detection of a rising edge on RF signal
6	RF_LEVEL	Detection of any level change on RF signal
7	RF_EDGE	Detection of any edge on RF signal
8	CMP_0	Compare 0

Bits 11:8 – START[3:0] Receive Start Selection

Bits 7:6 – CKG[1:0] Receive Clock Gating Selection

Value	Name	Description
0	CONTINUOUS	None
1	EN_RF_LOW	Receive Clock enabled only if RF Low
2	EN_RF_HIGH	Receive Clock enabled only if RF High

Bit 5 – CKI Receive Clock Inversion

CKI affects only the Receive Clock and not the output clock signal.

Value	Description
0	The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge.
	The Frame Sync signal output is shifted out on Receive Clock rising edge.
1	The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge.
	The Frame Sync signal output is shifted out on Receive Clock falling edge.

Bits 4:2 – CKO[2:0] Receive Clock Output Mode Selection

Value	Name	Description
0	NONE	None, RK pin is an input
1	CONTINUOUS	Continuous Receive Clock, RK pin is an output
2	TRANSFER	Receive Clock only during data transfers, RK pin is an output

Bits 1:0 - CKS[1:0] Receive Clock Selection

Value	Name	Description
0	МСК	Divided Clock
1	ТК	TK Clock signal
2	RK	RK pin

Universal Synchronous Asynchronous Receiver Transc...

Name	Description	Туре	Active Level
	or Slave Select (NSS) in SPI Slave mode		
RTS	Request to Send or Slave Select (NSS) in SPI Master mode	Output	Low

46.5 **Product Dependencies**

46.5.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the desired USART pins to their peripheral function. If I/O lines of the USART are not used by the application, they can be used for other purposes by the PIO Controller.

All the pins of the modems may or may not be implemented on the USART. On USARTs not equipped with the corresponding pin, the associated control bits and statuses have no effect on the behavior of the USART.

46.5.2 Power Management

The USART is not continuously clocked. The programmer must first enable the USART clock in the Power Management Controller (PMC) before using the USART. However, if the application does not require USART operations, the USART clock can be stopped when not needed and be restarted later. In this case, the USART will resume its operations where it left off.

46.5.3 Interrupt Sources

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the USART interrupt requires the Interrupt Controller to be programmed first.

46.6 Functional Description

46.6.1 Baud Rate Generator

The baud rate generator provides the bit period clock, also named the baud rate clock, to both the receiver and the transmitter.

The baud rate generator clock source is selected by configuring the USCLKS field in the USART Mode register (US_MR) to one of the following:

- The peripheral clock
- A division of the peripheral clock, where the divider is product-dependent, but generally set to 8
- A processor/peripheral independent clock source fully programmable provided by PMC (PCK)
- The external clock, available on the SCK pin

The baud rate generator is based upon a 16-bit divider, which is configured using the CD field of the Baud Rate Generator register (US_BRGR). If CD is configured to '0', the baud rate generator does not generate any clocks. If CD is configured to '1', the divider is bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin must be longer than a peripheral clock period. The frequency of the signal provided on SCK must be at least 3 times lower than the frequency provided on the peripheral clock in USART mode (field

46.6.9.14.7 Header Timeout Error

This error is generated in slave node configuration, if the Header is not entirely received within the time given by the maximum length of the Header, t_{Header Maximum}.

This error is reported by flag US_CSR.LINHTE.

46.6.9.15 LIN Frame Handling

46.6.9.15.1 Master Node Configuration

- Write TXEN and RXEN in US_CR to enable both the transmitter and the receiver.
- Write USART_MODE in US_MR to select the LIN mode and the master node configuration.
- Write CD and FP in US_BRGR to configure the baud rate.
- Write NACT, PARDIS, CHKDIS, CHKTYPE, DLCM, FSDIS and DLC in US_LINMR to configure the frame transfer.
- Check that TXRDY in US_CSR is set to 1.
- Write IDCHR in US_LINIR to send the header.

What comes next depends on the NACT configuration:

- Case 1: NACT = PUBLISH, the USART sends the response
 - Wait until TXRDY in US_CSR rises.
 - Write TCHR in US_THR to send a byte.
 - If all the data have not been written, redo the two previous steps.
 - Wait until LINTC in US_CSR rises.
 - Check the LIN errors.
- Case 2: NACT = SUBSCRIBE, the USART receives the response
 - Wait until RXRDY in US_CSR rises.
 - Read RCHR in US_RHR.
 - If all the data have not been read, redo the two previous steps.
 - Wait until LINTC in US_CSR rises.
 - Check the LIN errors.
- Case 3: NACT = IGNORE, the USART is not concerned by the response.
 - Wait until LINTC in US_CSR rises.
 - Check the LIN errors.

Figure 46-45. Master Node Configuration, NACT = PUBLISH

Controller Area Network (MCAN)

Value	Name	Description
2	DOMINANT	Dominant ('0') level at pin CANTX.
3	RECESSIVE	Recessive ('1') at pin CANTX.

Bit 4 – LBCK Loop Back Mode (read/write)

0 (DISABLED): Reset value. Loop Back mode is disabled.

1 (ENABLED): Loop Back mode is enabled (see Test Modes).

49.6.6 MCAN RAM Watchdog Register

Name:	MCAN_RWD		
Offset:	0x14		
Reset:	0x00000000		
Property:	Read/Write		

The RAM Watchdog monitors the Message RAM response time. A Message RAM access via the MCAN's Generic Master Interface starts the Message RAM Watchdog Counter with the value configured by MCAN_RWD.WDC. The counter is reloaded with MCAN_RWD.WDC when the Message RAM signals successful completion by activating its READY output. In case there is no response from the Message RAM until the counter has counted down to zero, the counter stops and interrupt flag MCAN_IR.WDI is set. The RAM Watchdog Counter is clocked by the system bus clock (peripheral clock).

Bit	31	30	29	28	27	26	25	24	
ſ									
Access									
Reset									
D ''	00	00	0.4	00	10	10	47	10	
Bit	23	22	21	20	19	18	17	16	
. [
Access									
Reset									
Bit	15	14	13	12	11	10	9	8	
				WD\	/[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
Γ	WDC[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 – WDV[7:0] Watchdog Value (read-only)

Watchdog Counter Value for the current message located in RAM.

Bits 7:0 – WDC[7:0] Watchdog Configuration (read/write)

Start value of the Message RAM Watchdog Counter. The counter is disabled when WDC is cleared.

	Name: Offset: Reset: Property:	MCAN_TSCV 0x24 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				TSC	15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TSC	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

49.6.10 MCAN Timestamp Counter Value Register

Bits 15:0 – TSC[15:0] Timestamp Counter (cleared on write)

The internal/external Timestamp Counter value is captured on start of frame (both Receive and Transmit). When MCAN_TSCC.TSS = 1, the Timestamp Counter is incremented in multiples of CAN bit times [1... 16] depending on the configuration of MCAN_TSCC.TCP. A wrap around sets interrupt flag MCAN_IR.TSW. Write access resets the counter to zero.

When MCAN_TSCC.TSS = 2, TSC reflects the external Timestamp Counter value. Thus a write access has no impact.

Note: A "wrap around" is a change of the Timestamp Counter value from non-zero to zero not caused by write access to MCAN_TSCV.

49.6.23 MCAN Extended ID AND Mask

Name:	MCAN_XIDAM			
Offset:	0x90			
Reset:	0x1FFFFFFF			
Property:	Read/Write			

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

Bit	31	30	29	28	27	26	25	24	
				EIDM[28:24]					
Access		•	•	R/W	R/W	R/W	R/W	R/W	
Reset				1	1	1	1	1	
Bit	23	22	21	20	19	18	17	16	
				EIDM	23:16]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	1	1	1	1	1	1	1	
Bit	15	14	13	12	11	10	9	8	
				EIDM	[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	1	1	1	1	1	1	1	
Bit	7	6	5	4	3	2	1	0	
[EIDN	/ [7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	1	1	1	1	1	1	1	

Bits 28:0 - EIDM[28:0] Extended ID Mask

For acceptance filtering of extended frames the Extended ID AND Mask is ANDed with the Message ID of a received frame. Intended for masking of 29-bit IDs in SAE J1939. With the reset value of all bits set to one the mask is not active.

49.6.33 MCAN Receive FIFO 1 Acknowledge

Bits 5:0 - F1AI[5:0] Receive FIFO 1 Acknowledge Index

After the processor has read a message or a sequence of messages from Receive FIFO 1 it has to write the buffer index of the last element read from Receive FIFO 1 to F1AI. This will set the Receive FIFO 1 Get Index MCAN_RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill Level MCAN_RXF1S.F1FL.

Timer Counter (TC)

Value	Description
0	The interrupt on IDX input is disabled.
1	The interrupt on IDX input is enabled.

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Sleep mode to Normal mode	_	-	4	μs
t _{START}	AFE Startup Time	Fast Wake-up mode to Normal mode	-	-	2	μs

Note:

1. $f_s = 1 / t_{AFE \text{ conv}}$ in Free Run mode; otherwise defined by the trigger timing.

58.8.4 AFE Transfer Function

The first operation of the AFE is a sampling function relative to V_{DAC} . V_{DAC} is generated by an internal DAC0 or DAC1. All operations after the Sample-and-Hold are differential relative to an internal common mode voltage $V_{CM} = V_{VREFP}/2$.

In Differential mode, the Sample-and-Hold common mode voltage is equal to $V_{DAC} = V_{VREFP}/2$ (set by software DAC0 and DAC1 to code 512).

In Single-ended mode, V_{DAC} is the common mode voltage. V_{DAC} is the output of DAC0 or DAC1 voltage. All operations after the Sample-and-Hold are differential, including those in Single-ended mode.

For the formula example, the internal DAC0 or DAC1 is set for the code 512.

The DATA code in AFEC_CDR is up to 16-bit positive integer or two's complement (signed integer).

The code does not exceed 4095 when the field AFEC_EMR.RES=0 (12-bit mode, no averaging).

58.8.4.1 Differential Mode (12-bit mode)

A differential input voltage $V_{IN} = V_{INP} - V_{INN}$ can be applied between two selected differential pins, e.g. AFE0_AD0 and AFE0_AD1. The ideal code C_i is calculated by using the following formula and rounding the result to the nearest positive integer.

$$C_i = \frac{4096}{V_{\text{VREFP}}} \times V_{\text{IN}} \times \text{Gain} + (2047)$$

For the other resolution defined by RES, the code C_i is extended to the corresponding resolution.

The table below is a computation example for the above formula, where V_{VREFP} = 3V.

Ci		Gain			
Signed	Nonsigned	1	2	4	
-2048	0	-3	-1.5	-0.75	
0	2047	0	0	0	
2047	4095	3	1.5	0.75	

Table 58-32. Input Voltage Values in Differential Mode, Nonsigned Output

58.8.4.2 Single-ended Mode (12-bit mode)

A single input voltage V_{IN} can be applied to selected pins, e.g. AFE0_AD0 or AFE0_AD1. The ideal code C_i is calculated using the following formula and rounding the result to the nearest positive integer.

The single-ended ideal code conversion formula is:

$$C_i = \frac{4096}{V_{\text{VREFP}}} \times (V_{\text{IN}} - V_{\text{DAC}}) \times \text{Gain} + 2047$$

Electrical Characteristics for SAM E70/S70

Figure 59-14. Gain and Offset Errors in Single-ended Mode

where:

- Full-scale error $E_{FS} = (E_{FS+})-(E_{FS-})$, unit is LSB code
- Offset error E_0 is the offset error measured for $V_{REFP/2}$ = 0V
- Gain error E_G =100 x E_{FS} /4096, unit in %

The error values in the tables below include the DAC, the sample-and-hold error as well as the PGA gain error.

59.8.5 AFE Electrical Characteristics

Table 59-34. AFE INL and DNL, $f_{AFE CLOCK} = < 20$ MHz Maximum, IBCTL = 10

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit			
Differential Mode									
		Gain = 1		±0.7					
INL	Integral Non-Linearity	Gain = 2	-4	±1	4	LSB			
		Gain = 4		±1.2					
DNL	Differential Non-Linearity	-	-2	±0.6	2	LSB			
	Single-En	ded Mode							
	Integral Non-Linearity	Gain = 1	-6	±1	4				
INL		Gain = 2		±1.3		LSB			
		Gain = 4		±1.7					
DNL	Differential Non-Linearity	_	-2	±0.6	2	LSB			

Note: INL/DNL given inside the linear range of the AFE: 2% to 98% of VREFP.

Table 59-35. AFE INL and DNL, $f_{AFE CLOCK} = > 20$ MHz to 40 MHz, IBCTL = 11

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Differential Mode									
INL	Integral Non-Linearity	Gain = 1	-12	±2	12	LSB			

Electrical Characteristics for SAM E70/S70

59.13.1.5 QSPI Characteristics

Figure 59-17. QSPI Master Mode with (CPOL= NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 59-18. QSPI Master Mode with (CPOL = 0 and NCPHA=1) or (CPOL=1 and NCPHA= 0)

59.13.1.5.1 Maximum QSPI Frequency

The following formulas give maximum QSPI frequency in Master read and write modes.

$$f_{\text{QSCK}} \text{max} = \frac{1}{QSPI_0(\text{or } QSPI_3) + t_{\text{VALID}}}$$

t_{valid} is the slave time response to output data after detecting a QSCK edge.

For a QSPI slave device with t_{VALID} (or t_V) = 12 ns, f_{QSCK} max = 66 MHz at VDDIO = 3.3V.

For a QSPI Flash memory device with t_{VALID} (or t_V) = 6 ns, the formula returns a value of 112 MHz. In worst case conditions, this exceeds 66 MHz, which is the maximum allowed frequency of the QSPI master. In this case, the limitation is due to the controller and not the slave.

Master Write Mode

The QSPI sends data to a slave device only, e.g. an LCD. The limit is given by QSPI₂ (or QSPI₅) timing. Since it gives a maximum frequency above the maximum pad speed (see I/O Characteristics), the max QSPI frequency is the one from the pad.

Master Read Mode

59.13.1.5.2 QSPI Timings

Timings are given in the following domains:

- 1.8V domain: VDDIO from 1.7V to 1.95V, maximum external capacitor = 20 pF
- 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 40 pF.

Revision History

Date	Changes
	Section 32.2 "Embedded Characteristics": updated bullet on Peripheral Clocks. Added bullet on generic clock.
	Updated figure Figure 32-1, "General Clock Block Diagram": replaced "SysTick" with "External SysTick Clock". Added GCLKx in PMC_PCR block.
	Updated Section 32.8 "Peripheral Clock Controller".
	Updated Section 32.12 "Core and Bus Independent Clocks for Peripherals".
	Added Step 5 and WARNING in Section 32.13 "Fast Startup".
	Updated Section 32.15 "Main Clock Failure Detection".
	Section 32.17 "Programming Sequence": in Step 7., modified sub-steps (c) and (e).
	Section 32.19 "Register Write Protection": added PMC Clock Generator Main Clock Frequency Register to list of write-protected registers.
	Table 32-4 "Register Mapping": modified Reset for PMC_OCR; replaced by note. Added PMC_PMMR at offset 0x0130.
	Section 32.20.3 "PMC System Clock Status Register": added HCLKS at bit 0.
	Section 32.20.9 "PMC Clock Generator Main Clock Frequency Register": updated MAINF bit description.
	Section 32.20.17 "PMC Interrupt Mask Register": added missing bits PCKRDY3–PCKRDY6 (bits 11 to 14).
	Section 32.20.26 "PMC Peripheral Control Register": added GCLKEN, GCLKDIV, DIV and GCLKCSS bits/fields and descriptions. Corrected maximum PID number to 127. Added missing bits PCKRDY3–PCKRDY6 (bits 11 to 14).: updated PID field description. Deleted DIV field from register table; bits 16 and 17 now reserved. Deleted DIV description.
	Added Section 32.20.35 "PLL Maximum Multiplier Value Register".
	Section 33. "Parallel Input/Output Controller (PIO)" Deleted section "Keypad Controller" and all related registers.
	Section 34. "External Bus Interface (EBI)" Added NAND Flash support on NCS0/1/2 (was NCS3 only).
	Figure 34-1, "Organization of the External Bus Interface": Removed DQS from block diagram.
	Section 34.5.3.4 "NAND Flash Support": changed NCS3 address space.
	Section 29. "SDRAM Controller (SDRAMC)" Updated Step 1. and Step 4. to Step 9. in Section 29.5.1 "SDRAM Device Initialization".
	Section 29.6.5.1 "Self-refresh Mode": added Note.
	Section 29.7.3 "SDRAMC Configuration Register": corrected CAS field configuration values.
08-Feb-16	Section 35. "Static Memory Controller (SMC)" Section 35.7.3 "NAND Flash Support": removed reference to NCS3.