

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.08V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsams70q21b-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13. System Controller

The System Controller is a set of peripherals that handles key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, and so on..

13.1 System Controller and Peripherals Mapping

Refer to the "Product Mapping" section.

13.2 Power-on-Reset, Brownout and Supply Monitor

The SAM E70/S70/V70/V71 embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset (POR) on VDDIO
- POR on VDDCORE
- Brown-out-Detector (BOD) on VDDCORE
- Supply Monitor on VDDIO

13.2.1 Power-on-Reset

The Power-on-Reset (POR) monitors VDDIO and VDDCORE. It is always activated and monitors voltage at start up but also during power down. If VDDIO or VDDCORE goes below the threshold voltage, the entire chip is Reset. For more information, refer to 58. Electrical Characteristics for SAM V70/V71.

13.2.2 Brownout Detector on VDDCORE

The Brown-out-Detector(BOD) monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes, such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to 23. Supply Controller (SUPC) and 58. Electrical Characteristics for SAM V70/V71.

13.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible, which allows the supply monitor power consumption to be divided by a factor of up to 2048. For more information, refer to 23. Supply Controller (SUPC) and 58. Electrical Characteristics for SAM V70/V71.

13.3 Reset Controller

The Reset Controller is based on two POR cells, one on VDDIO and one on VDDCORE, and a Supply Monitor on VDDIO.

The Reset Controller returns the source of the last reset to the software. This may be a general reset, a wakeup reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the pin input/output. It can shape a reset signal for the external devices, simplifying the connection of a push-button on the NRST pin to implement a manual reset.

Bit 1 – UPDCAL Update Request Calendar Register

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

Value	Description
0	No effect or, if UPDCAL has been previously written to 1, stops the update procedure.
1	Stops the RTC calendar counting.

Bit 0 – UPDTIM Update Request Time Register

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

Value	Description
0	No effect or, if UPDTIM has been previously written to 1, stops the update procedure.
1	Stops the RTC time counting.

Power Management Controller (PMC)

31.20.18 PMC Fast Startup Mode Register

Name:	PMC_FSMR
Offset:	0x0070
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	FFLPM	FLPN	/[1:0]	LPM		USBAL	RTCAL	RTTAL
Access								
Reset	0	0	0	0		0	0	0
Bit	15	14	13	12	11	10	9	8
	FSTT15	FSTT14	FSTT13	FSTT12	FSTT11	FSTT10	FSTT9	FSTT8
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FSTT7	FSTT6	FSTT5	FSTT4	FSTT3	FSTT2	FSTT1	FSTT0
Access			•	•				
Reset	0	0	0	0	0	0	0	0

Bit 23 – FFLPM Force Flash Low-power Mode

Value	Description
0	The Flash Low-power mode, defined in the FLPM field, is automatically applied when in Wait
	mode and released when going back to Active mode.
1	The Flash Low-power mode is user defined by the FLPM field and immediately applied.

Bits 22:21 - FLPM[1:0] Flash Low-power Mode

Value	Name	Description
0	FLASH_STANDBY	Flash is in Standby Mode when system enters Wait Mode
1	FLASH_DEEP_POWERDOWN	Flash is in Deep-powerdown mode when system enters
		Wait Mode
2	FLASH_IDLE	Idle mode

Bit 20 - LPM Low-power Mode

Value	Description
0	The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes
	the processor enter Sleep mode.
1	The WaitForEvent (WFE) instruction of the processor makes the system enter Wait mode.

Parallel Input/Output Controller (PIO)

32.6.1.8 PIO Input Filter Disable Register

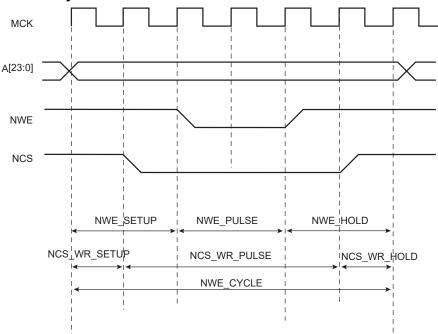
Name:	PIO_IFDR
Offset:	0x0024
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Input Filter Disable

Value	Description
0	No effect.
1	Disables the input glitch filter on the I/O line.


Static Memory Controller (SMC)

- NWE_SETUP—the NWE setup time is defined as the setup of address and data before the NWE falling edge;
- NWE_PULSE—the NWE pulse length is the time between NWE falling edge and NWE rising edge;
- NWE_HOLD—the NWE hold time is defined as the hold time of address and data after the NWE rising edge.

35.9.3.2 NCS Waveforms

The NCS signal waveforms in write operation are not the same that those applied in read operations, but are separately defined:

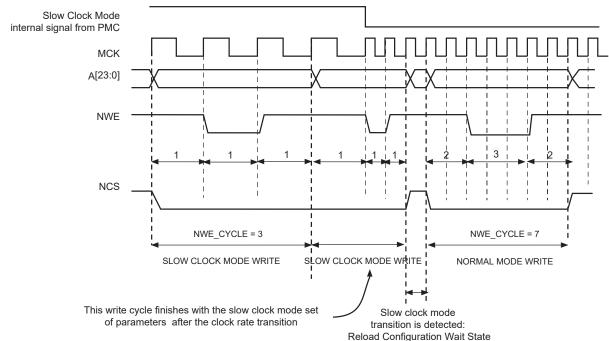
- ncs_wr_setup—the NCS setup time is defined as the setup time of address before the NCS falling edge.
- ncs_wr_pulse—the NCS pulse length is the time between NCS falling edge and NCS rising edge;
- ncs_wr_hold—the NCS hold time is defined as the hold time of address after the NCS rising edge. **Figure 35-13. Write Cycle**

35.9.3.3 Write Cycle

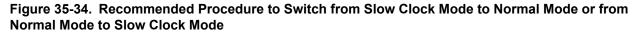
The write_cycle time is defined as the total duration of the write cycle; that is, from the time where address is set on the address bus to the point where address may change. The total write cycle time is defined as:

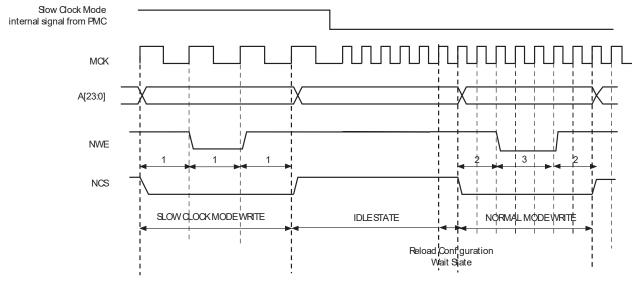
NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD,

as well as


NWE_CYCLE = NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock cycles. The NWE_CYCLE field is common to both the NWE and NCS signals, thus the timing period is of the same duration.


NWE_CYCLE, NWE_SETUP, and NWE_PULSE implicitly define the NWE_HOLD value as:


NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE

Static Memory Controller (SMC)

Figure 35-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

35.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, provided that the Page mode is enabled (SMC_MODE.PMEN =1). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in the following table.

DMA Controller (XDMAC)

Value	Description
0	End of flush condition has not occurred.
1	End of flush condition has occurred since the last read of the Status register.

Bit 2 – DIS End of Disable Interrupt Status Bit

Value	Description
0	End of disable condition has not occurred.
1	End of disable condition has occurred since the last read of the Status register.

Bit 1 – LIS End of Linked List Interrupt Status Bit

Value	Description
0	End of linked list condition has not occurred.
1	End of linked list condition has occurred since the last read of the Status register.

Bit 0 – BIS End of Block Interrupt Status Bit

Value	Description
0	End of block interrupt has not occurred.
1	End of block interrupt has occurred since the last read of the Status register.

Image Sensor Interface (ISI)

37.6.22 DMA Codec Control Register

Name: Offset: Reset: Property:		ISI_DMA_C_0 0x54 0x00000000 Read/Write	CTRL					
Bit	31	30	29	28	27	26	25	24
Access		·						
Reset								
Bit	23	22	21	20	19	18	17	16
Dit	20		21	20	15	10	17	10
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
D :4	7	G	F	4	2	2	4	0
Bit	7	6	5	4	3		1	
					C_DONE	C_IEN	C_WB	C_FETCH
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 – C_DONE Codec Transfer Done This bit is only updated in the memory.

Value	Description
0	The transfer related to this descriptor has not been performed.
1	The transfer related to this descriptor has completed. This bit is updated in memory at the end of the transfer when writeback operation is enabled.

Bit 2 – C_IEN Transfer Done Flag Control

Value	Description
0	Codec transfer done flag generation is enabled.
1	Codec transfer done flag generation is disabled.

Bit 1 – C_WB Descriptor Writeback Control Bit

Value	Description
0	Codec channel writeback operation is disabled.
1	Codec channel writeback operation is enabled.

Bit 0 – C_FETCH Descriptor Fetch Control Bit

GMAC - Ethernet MAC

Offset	Name	Bit Pos.						
		7:0		,	TCKE	R[7:0]		
0x01AC	GMAC_TCE	15:8						
UXUTAC	GINAC_TCE	23:16						
		31:24						
		7:0			UCKE	R[7:0]		
0x01B0		15:8						
UXUIBU	GMAC_UCE	23:16						
		31:24						
0x01B4								
	Reserved							
0x01BB								
		7:0			LSBT	IR[7:0]		
0x01BC	GMAC_TISUBN	15:8			LSBTI	R[15:8]		
UNUTED		23:16						
		31:24						
		7:0			TCS	[7:0]		
0x01C0	GMAC_TSH	15:8			TCS	[15:8]		
0,0100	GMAC_ISH	23:16						
		31:24						
0x01C4								
	Reserved							
0x01CF								
		7:0			TCS			
0x01D0	GMAC_TSL	15:8				[15:8]		
		23:16			TCS[2			
		31:24			TCS[
		7:0				[7:0]		
0x01D4	GMAC_TN	15:8				[15:8]		
	_	23:16			TNS[2			
		31:24					[29:24]	
		7:0			ITDT			
0x01D8	GMAC_TA	15:8			ITDT			
		23:16			ITDT[
		31:24	ADJ				[29:24]	
		7:0				5[7:0]		
0x01DC	GMAC_TI	15:8				S[7:0]		
-		23:16			NIT	[7:0]		
		31:24						
		7:0				0[7:0]		
0x01E0	GMAC_EFTSL	15:8				[15:8]		
	_	23:16		 		23:16]		
		31:24				31:24]		
		7:0				0[7:0]		
0x01E4	GMAC_EFTN	15:8				[15:8]		
	GMAC_EFTN	23:16			RUD[23:16]		
		31:24					[29:24]	

38.8.59 GMAC Octets Received High Register

Name:	GMAC_ORHI
Offset:	0x154
Reset:	0x00000000
Property:	-

When reading the Octets Transmitted and Octets Received Registers, bits 31:0 should be read prior to bits 47:32 to ensure reliable operation.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				RXO	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RXC	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - RXO[15:0] Received Octets

Received octets in frame without errors [47:32]. The number of octets received in valid frames of any type. This counter is 48-bits and is read through two registers. This count does not include octets from pause frames, and is only incremented if the frame is successfully filtered and copied to memory.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.				
		23:16				
		31:24				

High-Speed Multimedia Card Interface (HSMCI)

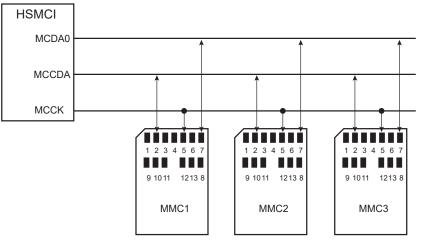

Tuble 40-2. Bus topology										
Pin Number	Name Type ⁽¹⁾		Description	HSMCI Pin Name ⁽²⁾ (Slot z)						
1	DAT[3]	I/O/PP	Data	MCDz3						
2	CMD	I/O/PP/OD	Command/response	MCCDz						
3	VSS1	S	Supply voltage ground	VSS						
4	VDD	S	Supply voltage	VDD						
5	CLK	I/O	Clock	MCCK						
6	VSS2	S	Supply voltage ground	VSS						
7	DAT[0]	I/O/PP	Data 0	MCDz0						
8	DAT[1]	I/O/PP	Data 1	MCDz1						
9	DAT[2]	I/O/PP	Data 2	MCDz2						

Table 40-2. Bus Topology

Notes: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain, S: Supply

2. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA, MCDAy to HSMCIx_DAy.

Figure 40-4. MMC Bus Connections (One Slot)

Note: When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA MCDAy to HSMCIx_DAy.

Figure 40-5. SD Memory Card Bus Topology


1 2 3 4 5 6 7 8 9 SD CARD	· · _	
	9	12345678

The SD Memory Card bus includes the signals listed in Table 1-6.

Serial Peripheral Interface (SPI)

transfers. This can lead to difficulties to interface with some serial peripherals requiring the chip select to be deasserted after each transfer. To facilitate interfacing with such devices, SPI_CSR can be programmed with the Chip Select Not Active After Transfer (CSNAAT) bit at 1. This allows the chip select lines to be deasserted systematically during a time "DLYBCS" (the value of the CSNAAT bit is processed only if the CSAAT bit is configured to 0 for the same chip select).

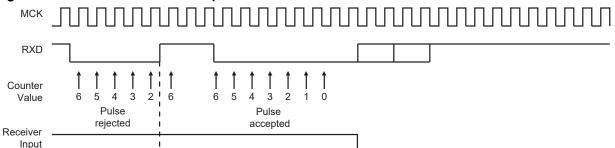
The following figure shows different peripheral deselection cases and the effect of the CSAAT and CSNAAT bits.

Figure 41-11. Peripheral Deselection

41.7.3.10 Mode Fault Detection

The SPI has the capability to operate in multimaster environment. Consequently, the NPCS0/NSS line must be monitored. If one of the masters on the SPI bus is currently transmitting, the NPCS0/NSS line is low and the SPI must not transmit any data. A mode fault is detected when the SPI is programmed in Master mode and a low level is driven by an external master on the NPCS0/NSS signal. In multimaster

Peripheral Clock	Baud Rate (bit/s)	CD	Baud Rate Error	Pulse Time (µs)
20,000,000	9,600	130	0.16%	19.53
32,768,000	9,600	213	0.16%	19.53
40,000,000	9,600	260	0.16%	19.53
3,686,400	2,400	96	0.00%	78.13
20,000,000	2,400	521	0.03%	78.13
32,768,000	2,400	853	0.04%	78.13


Universal Synchronous Asynchronous Receiver Transc...

46.6.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting down at the peripheral clock speed. If a rising edge is detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

The following figure illustrates the operations of the IrDA demodulator.

Figure 46-34. IrDA Demodulator Operations

The programmed value in the US_IF register must always meet the following criterion:

t_{peripheral clock} × (IRDA_FILTER + 3) < 1.41 μs

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to a value higher than 0 in order to ensure IrDA communications operate correctly.

46.6.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART behaves as though in Asynchronous or Synchronous mode and configuration of all the parameters is possible. The difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical connection of the USART to an RS485 bus is shown in Figure 46-35.

The isochronous buffering scheme allows each ping or pong buffer to contain a single block or a multiple number of blocks. For this reason, the isochronous buffer depth (BDn) must be defined in terms of an integer number (n) and block size (BS) (e.g. BDn = $n \times (BS + 1) - 1$).

Table 48-22 shows the format for an isochronous ADT entry. The field definitions are defined in Table48-23. Each isochronous channel buffer can be up to 8k-bytes deep.

Bit Offset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	CE	LE	PG	Rese	erved											
16	Reserved															
32	RDY1	DNE1	ERR1	BD1[[12:0]											
48	RDY2	DNE2	ERR2	BD2[[12:0]											
64	BA1[15:0]															
80	BA1[31:16	6]														
96	BA2[15:0]															
112	BA2[31:16	6]														

Table 48-22. Isochronous ADT Entry Format

AHB Asynchronous and Control Channel Descriptors

Every asynchronous and control packet adheres to the Port Message Protocol (PMP), which designates the first two bytes of each packet as the packet length (PML). Each packet must be no more than 2048 bytes.

Software must set the buffer ready bit (RDYn) for each buffer as it programs the DMA. As hardware processes each buffer, it sets the done bit (DNEn) and generates an interrupt to inform HC. When hardware finishes processing a buffer it can begin processing another buffer if RDYn is set. The application is responsible for setting up and configuring the channel buffer descriptor prior to every DMA access on the channel.

Two packet modes are supported by hardware for programming the DMA, single-packet mode and multiple-packet mode.

Single-packet Mode

The single-packet mode asynchronous and control buffering scheme supports a maximum of one packet per buffer (e.g. ping or pong). Both non-segmented and segmented data packets are allowed while using single-packet mode.

Non-segmented packets are exchanged when only one buffer (e.g. ping or pong) is needed for packet transfer. Segmented packets are exchanged when a single packet is too long for one buffer and the packet must span multiple buffers. The following figure shows the memory space usage for both non-segmented and segmented asynchronous or control packets along with the packet start bit (PSn). While using single-packet mode, buffer done (DNEn) is set in hardware when a packet is done or the buffer is full.

shows the format for single-packet mode asynchronous and control ADT entries. The field definitions are defined in Table 48-23.

Controller Area Network (MCAN)

49.6.1 MCAN Core Release Register

Name:	MCAN_CREL
Offset:	0x00
Reset:	0xrrrddddd
Property:	Read-only

Due to clock domain crossing, there is a delay between when a register bit or field is written and when the related status register bits are updated.

Bit	31	30	29	28	27	26	25	24
		REL	[3:0]			STEF	P[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	x	x	x	x	x	х	x	x
Bit	23	22	21	20	19	18	17	16
		SUBST	EP[3:0]			YEAF	R[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	х	x	x	x	x	х	x	x
Bit	15	14	13	12	11	10	9	8
				MON	I [7:0]			
Access	R	R	R	R	R	R	R	R
Reset	x	x	х	x	х	x	x	x
Bit	7	6	5	4	3	2	1	0
				DAY	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	х	x	x	x	x	x	х	x

Bits 31:28 – REL[3:0] Core Release

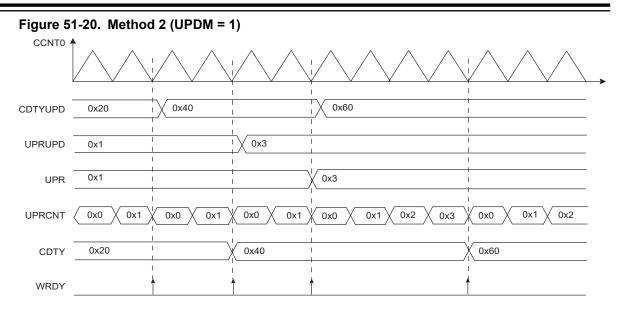
One digit, BCD-coded.

Bits 27:24 – STEP[3:0] Step of Core Release One digit, BCD-coded.

Bits 23:20 – SUBSTEP[3:0] Sub-step of Core Release One digit, BCD-coded.

Bits 19:16 – YEAR[3:0] Timestamp Year

One digit, BCD-coded. This field is set by generic parameter on MCAN synthesis.


Bits 15:8 - MON[7:0] Timestamp Month

Two digits, BCD-coded. This field is set by generic parameter on MCAN synthesis.

Bits 7:0 - DAY[7:0] Timestamp Day

Two digits, BCD-coded. This field is set by generic parameter on MCAN synthesis.

Pulse Width Modulation Controller (PWM)

51.6.2.9.3 Method 3: Automatic write of duty-cycle values and automatic trigger of the update

In this mode, the update of the duty cycle values is made automatically by the DMA Controller. The update of the period value, the dead-time values and the update period value must be done by writing in their respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK which allows to update synchronously (at the same PWM period) the synchronous channels:

- If the bit UPDULOCK is set to '1', the update is done at the next PWM period of the synchronous channels.
- If the UPDULOCK bit is not set to '1', the update is locked and cannot be performed.

After writing the UPDULOCK bit to '1', it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period value is triggered automatically after an update period.

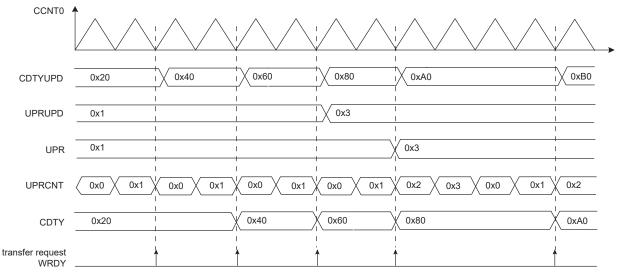
To configure the automatic update, the user must define a value for the Update Period by the field UPR in the PWM_SCUP register. The PWM controller waits UPR+1 periods of synchronous channels before updating automatically the duty values and the update period value.

Using the DMA Controller removes processor overhead by reducing its intervention during the transfer. This significantly reduces the number of clock cycles required for a data transfer, which improves microcontroller performance.

The DMA Controller must write the duty-cycle values in the synchronous channels index order. For example if the channels 0, 1 and 3 are synchronous channels, the DMA Controller must write the duty-cycle of the channel 0 first, then the duty-cycle of the channel 1, and finally the duty-cycle of the channel 3.

The status of the DMA Controller transfer is reported in PWM_ISR2 by the following flags:

• WRDY: this flag is set to '1' when the PWM Controller is ready to receive new duty-cycle values and a new update period value. It is reset to '0' when PWM_ISR2 is read. The user can choose to synchronize the WRDY flag and the DMA Controller transfer request with a comparison match (see PWM Comparison Units), by the fields PTRM and PTRCS in the PWM_SCM register. ٠


• UNRE: this flag is set to '1' when the update period defined by the UPR field has elapsed while the whole data has not been written by the DMA Controller. It is reset to '0' when PWM_ISR2 is read.

Depending on the interrupt mask in PWM_IMR2, an interrupt can be generated by these flags.

Sequence for Method 3:

- 1. Select the automatic write of duty-cycle values and automatic update by setting the field UPDM to 2 in the PWM_SCM register.
- 2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.
- 3. Define the update period by the field UPR in the PWM_SCUP register.
- 4. Define when the WRDY flag and the corresponding DMA Controller transfer request must be set in the update period by the PTRM bit and the PTRCS field in the PWM_SCM register (at the end of the update period or when a comparison matches).
- 5. Define the DMA Controller transfer settings for the duty-cycle values and enable it in the DMA Controller registers
- 6. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.
- 7. If an update of the period value and/or of the dead-time values is required, write registers that need to be updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 10.
- 8. Set UPDULOCK to '1' in PWM_SCUC.
- 9. The update of these registers will occur at the beginning of the next PWM period. At this moment the bit UPDULOCK is reset, go to Step 7. for new values.
- 10. If an update of the update period value is required, check first that write of a new update value is possible by polling the flag WRDY (or by waiting for the corresponding interrupt) in PWM_ISR2, else go to Step 14.
- 11. Write the register that needs to be updated (PWM_SCUPUPD).
- 12. The update of this register will occur at the next PWM period of the synchronous channels when the Update Period is elapsed. Go to Step 10. for new values.
- 13. Wait for the DMA status flag indicating that the buffer transfer is complete. If the transfer has ended, define a new DMA transfer for new duty-cycle values. Go to Step 5.

Figure 51-21. Method 3 (UPDM = 2 and PTRM = 0)

Analog Comparator Controller (ACC)

Value	Description
0	No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.
1	A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
⁻ ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
Fechnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/	China - Chongqing	Japan - Osaka	Finland - Espoo
support	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
Neb Address:	China - Dongguan	Japan - Tokyo	France - Paris
www.microchip.com	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Atlanta	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Duluth, GA	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Tel: 678-957-9614	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Fax: 678-957-1455	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Austin, TX	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Tel: 512-257-3370	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Boston	China - Nanjing	Malaysia - Penang	Tel: 49-7131-67-3636
Westborough, MA	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Tel: 774-760-0087	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Fax: 774-760-0088	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
			Tel: 49-89-627-144-0
Chicago	China - Shanghai Tel: 86-21-3326-8000	Singapore	
tasca, IL		Tel: 65-6334-8870	Fax: 49-89-627-144-44
Tel: 630-285-0071	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Fax: 630-285-0075	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Dallas	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Addison, TX	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Tel: 972-818-7423	China - Suzhou Tel: 86-186-6233-1526	Taiwan - Taipei	Italy - Milan
Fax: 972-818-2924	China - Wuhan	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Detroit	Tel: 86-27-5980-5300	Thailand - Bangkok	Fax: 39-0331-466781
Novi, MI	China - Xian	Tel: 66-2-694-1351	Italy - Padova
Tel: 248-848-4000	Tel: 86-29-8833-7252	Vietnam - Ho Chi Minh Tel: 84-28-5448-2100	Tel: 39-049-7625286
Houston, TX	China - Xiamen	161. 04-20-3440-2100	Netherlands - Drunen
Tel: 281-894-5983	Tel: 86-592-2388138		Tel: 31-416-690399
ndianapolis	China - Zhuhai		Fax: 31-416-690340
Noblesville, IN	Tel: 86-756-3210040		Norway - Trondheim
Tel: 317-773-8323	Tel. 80-750-5210040		Tel: 47-7289-7561
Fax: 317-773-5453			Poland - Warsaw
Tel: 317-536-2380			Tel: 48-22-3325737
Los Angeles			Romania - Bucharest
Mission Viejo, CA			Tel: 40-21-407-87-50
Tel: 949-462-9523			Spain - Madrid
⁼ ax: 949-462-9608			Tel: 34-91-708-08-90
Tel: 951-273-7800			Fax: 34-91-708-08-91
Raleigh, NC			Sweden - Gothenberg
Tel: 919-844-7510			Tel: 46-31-704-60-40
New York, NY			Sweden - Stockholm
Tel: 631-435-6000			Tel: 46-8-5090-4654
San Jose, CA			UK - Wokingham
Tel: 408-735-9110			Tel: 44-118-921-5800
Tel: 408-436-4270			Fax: 44-118-921-5820
Canada - Toronto			
Tel: 905-695-1980			

Fax: 905-695-2078