

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                               |
|----------------------------|--------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M7                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                   |
| Speed                      | 300MHz                                                                               |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                         |
| Number of I/O              | 75                                                                                   |
| Program Memory Size        | 1MB (1M × 8)                                                                         |
| Program Memory Type        | FLASH                                                                                |
| EEPROM Size                | -                                                                                    |
| RAM Size                   | 384K x 8                                                                             |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                            |
| Data Converters            | A/D 10x12b; D/A 2x12b                                                                |
| Oscillator Type            | Internal                                                                             |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                        |
| Package / Case             | 100-LQFP                                                                             |
| Supplier Device Package    | 100-LQFP (14x14)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsamv70n20b-aab           |
|                            |                                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|        | Name:<br>Offset:<br>Reset:<br>Property: | CCFG_PCCR<br>0x0118<br>0x00022224<br>Read/Write |         |       |    |    |    |    |
|--------|-----------------------------------------|-------------------------------------------------|---------|-------|----|----|----|----|
| Bit    | 31                                      | 30                                              | 29      | 28    | 27 | 26 | 25 | 24 |
|        |                                         |                                                 |         |       |    |    |    |    |
| Access |                                         |                                                 |         |       |    |    |    |    |
| Reset  |                                         |                                                 |         |       |    |    |    |    |
|        |                                         |                                                 |         |       |    |    |    |    |
| Bit    | 23                                      | 22                                              | 21      | 20    | 19 | 18 | 17 | 16 |
|        |                                         | I2SC1CC                                         | I2SC0CC | TC0CC |    |    |    |    |
| Access |                                         |                                                 |         |       | -  |    |    |    |
| Reset  |                                         | 0                                               | 0       | 0     |    |    |    |    |
|        |                                         |                                                 |         |       |    |    |    |    |
| Bit    | 15                                      | 14                                              | 13      | 12    | 11 | 10 | 9  | 8  |
|        |                                         |                                                 |         |       |    |    |    |    |
| Access |                                         |                                                 |         |       |    |    |    |    |
| Reset  |                                         |                                                 |         |       |    |    |    |    |
|        |                                         |                                                 |         |       |    |    |    |    |
| Bit    | 7                                       | 6                                               | 5       | 4     | 3  | 2  | 1  | 0  |
|        |                                         |                                                 |         |       |    |    |    |    |
| Access |                                         |                                                 |         |       |    |    |    |    |
| Reset  |                                         |                                                 |         |       |    |    |    |    |

### 19.4.8 Peripheral Clock Configuration Register

### Bit 22 – I2SC1CC I2SC1 Clock Configuration

| Value | Description                        |
|-------|------------------------------------|
| 0     | Peripheral clock of I2SC1 is used. |
| 1     | GCLK is used.                      |

#### Bit 21 – I2SC0CC I2SC0 Clock Configuration

| Value | Description                        |
|-------|------------------------------------|
| 0     | Peripheral clock of I2SC0 is used. |
| 1     | GCLK is used.                      |

## Bit 20 – TC0CC TC0 Clock Configuration

| Value | Description             |
|-------|-------------------------|
| 0     | PCK6 is used (default). |
| 1     | PCK7 is used.           |

### Bit 1 – ALRDIS Alarm Interrupt Disable

| Value | Description                      |
|-------|----------------------------------|
| 0     | No effect.                       |
| 1     | The alarm interrupt is disabled. |

## Bit 0 – ACKDIS Acknowledge Update Interrupt Disable

| Value | Description                                       |
|-------|---------------------------------------------------|
| 0     | No effect.                                        |
| 1     | The acknowledge for update interrupt is disabled. |

## **Power Management Controller (PMC)**

| Value | Description                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| 0     | No clock failure detection of the Main crystal oscillator clock has occurred since the last read of PMC_SR.           |
| 1     | At least one clock failure detection of the Main crystal oscillator clock has occurred since the last read of PMC_SR. |

#### Bit 17 – MOSCRCS Main RC Oscillator Status

| Value | Description                           |
|-------|---------------------------------------|
| 0     | Main RC oscillator is not stabilized. |
| 1     | Main RC oscillator is stabilized.     |

#### Bit 16 – MOSCSELS Main Clock Source Oscillator Selection Status

| Value | Description               |
|-------|---------------------------|
| 0     | Selection is in progress. |
| 1     | Selection is done.        |

#### Bits 8, 9, 10, 11, 12, 13, 14 - PCKRDY Programmable Clock Ready Status

| Value | Description                        |
|-------|------------------------------------|
| 0     | Programmable Clock x is not ready. |
| 1     | Programmable Clock x is ready.     |

#### Bit 7 – OSCSELS Slow Clock Source Oscillator Selection

| Value | Description                                |
|-------|--------------------------------------------|
| 0     | Slow RC oscillator is selected.            |
| 1     | 32.768 kHz crystal oscillator is selected. |

#### Bit 6 – LOCKU UTMI PLL Lock Status

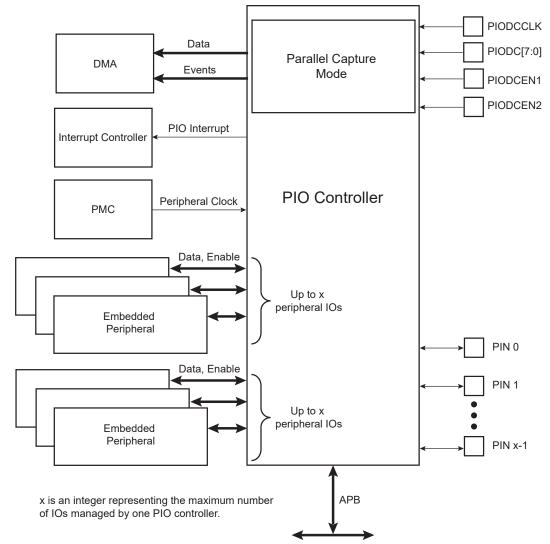
| Value | Description            |
|-------|------------------------|
| 0     | UTMI PLL is not locked |
| 1     | UTMI PLL is locked.    |

#### Bit 3 – MCKRDY Master Clock Status

| Value | Description                |
|-------|----------------------------|
| 0     | Master Clock is not ready. |
| 1     | Master Clock is ready.     |

### Bit 1 – LOCKA PLLA Lock Status

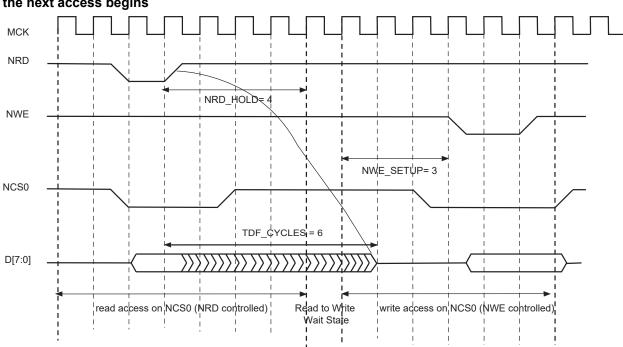
| Value | Description        |
|-------|--------------------|
| 0     | PLLA is not locked |
| 1     | PLLA is locked.    |


#### Bit 0 - MOSCXTS Main Crystal Oscillator Status

## Parallel Input/Output Controller (PIO)

- Can Be Used to Interface a CMOS Digital Image Sensor, an ADC, etc.
- One Clock, 8-bit Parallel Data and Two Data Enable on I/O Lines
- Data Can be Sampled Every Other Time (For Chrominance Sampling Only)
- Supports Connection of One DMA Controller Channel Which Offers Buffer Reception Without Processor Intervention

### 32.3 Block Diagram


#### Figure 32-1. Block Diagram



#### Table 32-1. Signal Description

| Signal Name | Signal Description          | Signal Type |  |
|-------------|-----------------------------|-------------|--|
| PIODCCLK    | Parallel Capture Mode Clock | Input       |  |
| PIODC[7:0]  | Parallel Capture Mode Data  | Input       |  |

### Static Memory Controller (SMC)



# Figure 35-23. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

#### 35.12.3 TDF Optimization Disabled (SMC\_MODE.TDF\_MODE = 0)

When optimization is disabled, TDF Wait states are inserted at the end of the read transfer, so that the data float period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data float period, no additional TDF Wait states will be inserted.

Figure 35-24, Figure 35-25 and Figure 35-26 illustrate the cases:

- read access followed by a read access on another Chip Select,
- read access followed by a write access on another Chip Select,
- read access followed by a write access on the same Chip Select,

with no TDF optimization.

# **GMAC** - Ethernet MAC

| _      |              |          |                |  |  |  |  |  |  |
|--------|--------------|----------|----------------|--|--|--|--|--|--|
| Offset | Name         | Bit Pos. |                |  |  |  |  |  |  |
|        |              | 23:16    | ADDR[23:16]    |  |  |  |  |  |  |
|        |              | 31:24    | ADDR[31:24]    |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0x8C   | GMAC_SAT1    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
| 0,000  | GWAC_SATT    | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    |                |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0x90   | GMAC_SAB2    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
| UND U  | 0.000_07.022 | 23:16    | ADDR[23:16]    |  |  |  |  |  |  |
|        |              | 31:24    | ADDR[31:24]    |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0x94   | GMAC_SAT2    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    |                |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0x98   | GMAC_SAB3    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
|        |              | 23:16    | ADDR[23:16]    |  |  |  |  |  |  |
|        |              | 31:24    | ADDR[31:24]    |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0x9C   | GMAC_SAT3    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    |                |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0xA0   | GMAC_SAB4    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
|        | _            | 23:16    | ADDR[23:16]    |  |  |  |  |  |  |
|        |              | 31:24    | ADDR[31:24]    |  |  |  |  |  |  |
|        |              | 7:0      | ADDR[7:0]      |  |  |  |  |  |  |
| 0xA4   | GMAC_SAT4    | 15:8     | ADDR[15:8]     |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    |                |  |  |  |  |  |  |
|        |              | 7:0      | TID[7:0]       |  |  |  |  |  |  |
| 0xA8   | GMAC_TIDM1   | 15:8     | TID[15:8]      |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    | ENIDn          |  |  |  |  |  |  |
|        |              | 7:0      | TID[7:0]       |  |  |  |  |  |  |
| 0xAC   | GMAC_TIDM2   | 15:8     | TID[15:8]      |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    | ENIDn TIDI7-01 |  |  |  |  |  |  |
|        |              | 7:0      | TID[7:0]       |  |  |  |  |  |  |
| 0xB0   | GMAC_TIDM3   | 15:8     | TID[15:8]      |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    | ENIDn          |  |  |  |  |  |  |
|        |              | 7:0      | TID[7:0]       |  |  |  |  |  |  |
| 0xB4   | GMAC_TIDM4   | 15:8     | TID[15:8]      |  |  |  |  |  |  |
|        |              | 23:16    |                |  |  |  |  |  |  |
|        |              | 31:24    | ENIDn          |  |  |  |  |  |  |

# **USB High-Speed Interface (USBHS)**

#### Bit 5 – EORSM End of Resume Interrupt

| Value | Description                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | Cleared when the USBHS_DEVICR.EORSMC bit is written to one to acknowledge the interrupt.                                                   |
| 1     | Set when the USBHS detects a valid "End of Resume" signal initiated by the host. This triggers a USB interrupt if USBHS_DEVIMR.EORSME = 1. |

#### Bit 4 – WAKEUP Wakeup Interrupt

This interrupt is generated even if the clock is frozen by the USBHS\_CTRL.FRZCLK bit.

| Value | Description                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | Cleared when the USBHS_DEVICR.WAKEUPC bit is written to one to acknowledge the interrupt (USB clock inputs must be enabled before), or when the Suspend (SUSP) interrupt bit is set. |
| 1     | Set when the USBHS is reactivated by a filtered non-idle signal from the lines (not by an upstream resume). This triggers an interrupt if USBHS_DEVIMR.WAKEUPE = 1.                  |

#### Bit 3 – EORST End of Reset Interrupt

| Value | Description                                                                       |
|-------|-----------------------------------------------------------------------------------|
| 0     | Cleared when the USBHS_DEVICR.EORSTC bit is written to one to acknowledge the     |
|       | interrupt.                                                                        |
| 1     | Set when a USB "End of Reset" has been detected. This triggers a USB interrupt if |
|       | USBHS_DEVIMR.EORSTE = 1.                                                          |

#### Bit 2 – SOF Start of Frame Interrupt

| Value | Description                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | Cleared when the USBHS_DEVICR.SOFC bit is written to one to acknowledge the interrupt.                                                                                                          |
| 1     | Set when a USB "Start of Frame" PID (SOF) has been detected (every 1 ms). This triggers a USB interrupt if SOFE = 1. The FNUM field is updated. In High-speed mode, the MFNUM field is cleared. |

#### Bit 1 – MSOF Micro Start of Frame Interrupt

| Value | Description                                                                             |
|-------|-----------------------------------------------------------------------------------------|
| 0     | Cleared when the USBHS_DEVICR.MSOFC bit is written to one to acknowledge the            |
|       | interrupt.                                                                              |
| 1     | Set in High-speed mode when a USB "Micro Start of Frame" PID (SOF) has been detected    |
|       | (every 125 μs). This triggers a USB interrupt if MSOFE = 1. The MFNUM field is updated. |
|       | The FNUM field is unchanged.                                                            |

#### Bit 0 – SUSP Suspend Interrupt

| Value | Description                                                                                |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0     | Cleared when the USBHS_DEVICR.SUSPC bit is written to one to acknowledge the               |  |  |  |  |  |
|       | interrupt, or when the Wakeup (WAKEUP) interrupt bit is set.                               |  |  |  |  |  |
| 1     | Set when a USB "Suspend" idle bus state has been detected for 3 frame periods (J state for |  |  |  |  |  |
|       | 3 ms). This triggers a USB interrupt if USBHS_DEVIMR.SUSPE = 1.                            |  |  |  |  |  |

# **USB High-Speed Interface (USBHS)**

### Bit 1 – RXOUTIC Received OUT Data Interrupt Clear

Bit 0 – TXINIC Transmitted IN Data Interrupt Clear

## **USB High-Speed Interface (USBHS)**

#### 39.6.24 Device Endpoint Interrupt Disable Register (Isochronous Endpoints)

 Name:
 USBHS\_DEVEPTIDRx (ISOENPT)

 Offset:
 0x0220 + x\*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if EPTYPE = 0x1 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Mask Register (Isochronous Endpoints)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Clears the corresponding bit in USBHS\_DEVEPTIMRx.

| Bit    | 31         | 30       | 29      | 28          | 27          | 26         | 25      | 24         |
|--------|------------|----------|---------|-------------|-------------|------------|---------|------------|
|        |            |          |         |             |             |            |         |            |
| Access |            |          |         |             |             |            |         |            |
| Reset  |            |          |         |             |             |            |         |            |
|        |            |          |         |             |             |            |         |            |
| Bit    | 23         | 22       | 21      | 20          | 19          | 18         | 17      | 16         |
|        |            |          |         |             |             |            |         | EPDISHDMAC |
| Access |            |          |         |             |             |            |         |            |
| Reset  |            |          |         |             |             |            |         | 0          |
|        |            |          |         |             |             |            |         |            |
| Bit    | 15         | 14       | 13      | 12          | 11          | 10         | 9       | 8          |
|        |            | FIFOCONC |         | NBUSYBKEC   |             | ERRORTRANS | DATAXEC | MDATEC     |
|        |            |          |         |             |             | EC         |         |            |
| Access |            |          |         | •           |             |            |         |            |
| Reset  |            | 0        |         | 0           |             | 0          | 0       | 0          |
|        |            |          |         |             |             |            |         |            |
| Bit    | 7          | 6        | 5       | 4           | 3           | 2          | 1       | 0          |
|        | SHORTPACKE | CRCERREC | OVERFEC | HBISOFLUSHE | HBISOINERRE | UNDERFEC   | RXOUTEC | TXINEC     |
|        | TEC        |          |         | С           | С           |            |         |            |
| Access |            |          |         |             |             | - I        |         |            |
| Reset  | 0          | 0        | 0       | 0           | 0           | 0          | 0       | 0          |

Bit 16 - EPDISHDMAC Endpoint Interrupts Disable HDMA Request Clear

- Bit 14 FIFOCONC FIFO Control Clear
- Bit 12 NBUSYBKEC Number of Busy Banks Interrupt Clear
- Bit 10 ERRORTRANSEC Transaction Error Interrupt Clear
- Bit 9 DATAXEC DataX Interrupt Clear
- Bit 8 MDATEC MData Interrupt Clear

# **USB High-Speed Interface (USBHS)**

#### 39.6.39 Host Address 1 Register

| Name:     | USBHS_HSTADDR1 |
|-----------|----------------|
| Offset:   | 0x0424         |
| Reset:    | 0x0000000      |
| Property: | Read/Write     |

| Bit    | 31 | 30 | 29 | 28 | 27            | 26 | 25 | 24 |
|--------|----|----|----|----|---------------|----|----|----|
|        |    |    |    |    | HSTADDRP3[6:0 | ]  |    |    |
| Access |    |    |    |    |               |    |    |    |
| Reset  |    | 0  | 0  | 0  | 0             | 0  | 0  | 0  |
|        |    |    |    |    |               |    |    |    |
| Bit    | 23 | 22 | 21 | 20 | 19            | 18 | 17 | 16 |
|        |    |    |    | l  | HSTADDRP2[6:0 | ]  |    |    |
| Access |    |    |    |    |               |    |    |    |
| Reset  |    | 0  | 0  | 0  | 0             | 0  | 0  | 0  |
|        |    |    |    |    |               |    |    |    |
| Bit    | 15 | 14 | 13 | 12 | 11            | 10 | 9  | 8  |
|        |    |    |    |    | HSTADDRP1[6:0 | ]  |    |    |
| Access |    |    |    |    |               |    |    |    |
| Reset  |    | 0  | 0  | 0  | 0             | 0  | 0  | 0  |
|        |    |    |    |    |               |    |    |    |
| Bit    | 7  | 6  | 5  | 4  | 3             | 2  | 1  | 0  |
|        |    |    |    | ļ  | HSTADDRP0[6:0 | ]  |    |    |
| Access |    |    |    |    |               |    |    |    |
| Reset  |    | 0  | 0  | 0  | 0             | 0  | 0  | 0  |

#### Bits 30:24 – HSTADDRP3[6:0] USB Host Address

This field contains the address of the Pipe3 of the USB device.

This field is cleared when a USB reset is requested.

#### Bits 22:16 - HSTADDRP2[6:0] USB Host Address

This field contains the address of the Pipe2 of the USB device.

This field is cleared when a USB reset is requested.

#### Bits 14:8 – HSTADDRP1[6:0] USB Host Address

This field contains the address of the Pipe1 of the USB device.

This field is cleared when a USB reset is requested.

#### Bits 6:0 - HSTADDRP0[6:0] USB Host Address

This field contains the address of the Pipe0 of the USB device.

This field is cleared when a USB reset is requested.

# USB High-Speed Interface (USBHS)

- Bit 5 OVERFIES Overflow Interrupt Enable
- Bit 4 NAKEDES NAKed Interrupt Enable
- Bit 3 PERRES Pipe Error Interrupt Enable
- Bit 2 UNDERFIES Underflow Interrupt Enable
- Bit 1 TXOUTES Transmitted OUT Data Interrupt Enable
- Bit 0 RXINES Received IN Data Interrupt Enable

# SAM E70/S70/V70/V71 Family Media Local Bus (MLB)

One physical channel after the ChannelAddress is sent on MLBS, the transmitting MediaLB Device associated with that ChannelAddress outputs a command byte (Command) on MLBS and respective data (Data) on MLBD, concurrently. The Command byte contains information about the data simultaneously being transmitted. The MediaLB Device receiving the data outputs a status byte (RxStatus) on MLBS after the transmitting Device sends the Command byte. This status response can indicate that the Device is ready to receive the data, or that the receiving Device is busy (e.g. cannot receive the data at present). Since synchronous stream data is sent in a broadcast fashion, Devices receiving synchronous data can never return a busy status response. In this situation, the RxStatus byte must not be actively driven onto the MLBS line by Devices receiving synchronous data.

The ChannelAddresses output by the Controller for each logical channel are used in normal data transport and can be statically or dynamically assigned. To support dynamic configuration of MediaLB Devices, a unique DeviceAddress must be assigned to all MediaLB Devices before startup. DeviceAddresses allow the External Host Controller (EHC) and MediaLB Controller to dynamically determine which Devices exist on the bus. At the request of a MediaLB Device (e.g. EHC), the Controller scans for DeviceAddresses in the System Channel. Once a Device is detected, a ChannelAddress for each logical channel can be assigned.

The DeviceAddress, ChannelAddress, Command, and RxStatus structures are described in the Link Layer section.

### 48.2 Embedded Characteristics

- Support of all MOST data transport methods: synchronous stream data, asynchronous packet data, control message data, and isochronous data
- Multiple clock rates supported
- Scalable data rate for all MOST Network data transport methods
- A frame synchronization pattern (FRAMESYNC) enables easy Device synchronization to MOST Networks
- Dedicated system-broadcast channel for administration
- Support of MediaLB Controller to MediaLB Device transfers and inter-MediaLB Devices transfers
- Broadcast support from one transmitter to multiple receivers for synchronous stream data

### 48.3 Block Diagram

The following figure is the top-level block diagram of the MLB behavioral models.

## Timer Counter (TC)

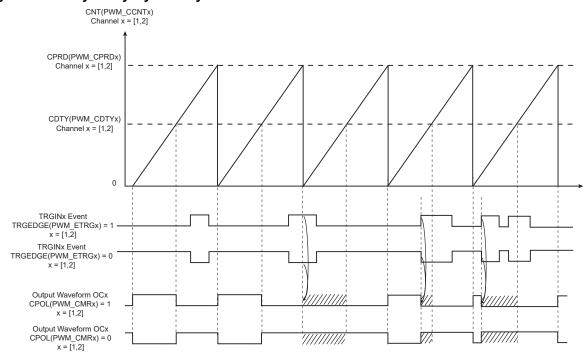
| Figure 50-21. Quadrature Error Detection                                                               |
|--------------------------------------------------------------------------------------------------------|
| Peripheral Clock MAXFILT = 2                                                                           |
|                                                                                                        |
| Abnormally formatted optical disk strips (theoretical view)                                            |
| PHA                                                                                                    |
|                                                                                                        |
| РНВ                                                                                                    |
| strip edge inaccuracy due to disk etching/printing process                                             |
| $\rightarrow   \leftarrow \rightarrow   \leftarrow \rightarrow   \leftarrow   \leftarrow$              |
|                                                                                                        |
| $\rightarrow$ $\leftarrow$ $\rightarrow$ $\leftarrow$                                                  |
| РНВ                                                                                                    |
|                                                                                                        |
| resulting PHA, PHB electrical waveforms                                                                |
| РНА                                                                                                    |
| Even with an abnormally formatted disk, there is no occurrence of PHA, PHB switching at the same time. |
| PHB                                                                                                    |
| → duration < MAXFILT                                                                                   |
|                                                                                                        |

MAXFILT must be tuned according to several factors such as the peripheral clock frequency, type of rotary sensor and rotation speed to be achieved.

#### 50.6.16.4 Position and Rotation Measurement

When TC\_BMR.POSEN is set, the motor axis position is processed on channel 0 (by means of the PHA, PHB edge detections) and the number of motor revolutions are recorded on channel 1 if the IDX signal is provided on the TIOB1 input. If no IDX signal is available, the internal counter can be cleared for each revolution if the number of counts per revolution is configured in TC\_RC0.RC and the TC\_CMR.CPCTRG bit is written to '1'. The position measurement can be read in the TC\_CV0 register and the rotation measurement can be read in the TC\_CV1 register.

Channel 0 and 1 must be configured in Capture mode (TC\_CMR0.WAVE = 0). 'Rising edge' must be selected as the External Trigger Edge (TC\_CMR.ETRGEDG = 0x01) and 'TIOAx' must be selected as the External Trigger (TC\_CMR.ABETRG = 0x1). The process must be started by configuring TC\_CCR.CLKEN and TC\_CCR.SWTRG.


In parallel, the number of edges are accumulated on TC channel 0 and can be read on the TC\_CV0 register.

Therefore, the accurate position can be read on both TC\_CV registers and concatenated to form a 32-bit word.

The TC channel 0 is cleared for each increment of IDX count value.

© 2018 Microchip Technology Inc.

# Pulse Width Modulation Controller (PWM)



#### Figure 51-31. Cycle-By-Cycle Duty Mode

#### 51.6.5.3.2 Application Example

The figure below illustrates an application example of the Cycle-by-cycle Duty mode.

In an LED string control circuit, Cycle-by-cycle Duty mode can be used to automatically limit the current in the LED string.

# 51.7 Register Summary

| Offset | Name      | Bit Pos. |            |           |           |        |        |          |  |  |  |  |
|--------|-----------|----------|------------|-----------|-----------|--------|--------|----------|--|--|--|--|
|        |           | 7:0      |            | DIVA[7:0] |           |        |        |          |  |  |  |  |
| 000    |           | 15:8     |            |           |           | PRE    | A[3:0] |          |  |  |  |  |
| 0x00   | PWM_CLK   | 23:16    |            | DIV       | B[7:0]    |        |        |          |  |  |  |  |
|        |           | 31:24    |            |           |           | PRE    | B[3:0] |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
| 0x04   |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x04   | PWM_ENA   | 23:16    |            |           |           |        |        |          |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
| 000    |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x08   | PWM_DIS   | 23:16    |            |           |           |        |        |          |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
|        |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x0C   | DC PWM_SR | 23:16    |            |           |           |        |        |          |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
|        |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x10   | PWM_IER1  | 23:16    |            |           | FCHID3    | FCHID2 | FCHID1 | FCHID0   |  |  |  |  |
|        |           | 31:24    |            |           | -         |        |        |          |  |  |  |  |
|        | PWM_IDR1  | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
|        |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x14   |           | 23:16    |            |           | FCHID3    | FCHID2 | FCHID1 | FCHID0   |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
|        |           | 15:8     |            |           | _         |        |        |          |  |  |  |  |
| 0x18   | PWM_IMR1  | 23:16    |            |           | FCHID3    | FCHID2 | FCHID1 | FCHID0   |  |  |  |  |
|        |           | 31:24    |            |           | _         |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | CHID3     | CHID2  | CHID1  | CHID0    |  |  |  |  |
|        |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x1C   | PWM_ISR1  | 23:16    |            |           | FCHID3    | FCHID2 | FCHID1 | FCHID0   |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           | SYNC3     | SYNC2  | SYNC1  | SYNC0    |  |  |  |  |
|        |           | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0x20   | PWM_SCM   | 23:16    | PTRCS[2:0] | PTRM      |           |        | UPE    | 0M[1:0]  |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            | DMAD      | UTY[7:0]  |        |        |          |  |  |  |  |
|        |           | 15:8     |            |           | JTY[15:8] |        |        |          |  |  |  |  |
| 0x24   | PWM_DMAR  | 23:16    |            |           | TY[23:16] |        |        |          |  |  |  |  |
|        |           | 31:24    |            |           |           |        |        |          |  |  |  |  |
|        |           | 7:0      |            |           |           |        |        | UPDULOCK |  |  |  |  |
| 0x28   | PWM_SCUC  | 15:8     |            |           |           |        |        |          |  |  |  |  |
| 0720   |           | 23:16    |            |           |           |        |        |          |  |  |  |  |

# Pulse Width Modulation Controller (PWM)

| Value | Description                                     |
|-------|-------------------------------------------------|
| 0     | The comparison x is disabled and can not match. |
| 1     | The comparison x is enabled and can match.      |

#### 52.5.7 Fault Output

The AFEC has the Fault output connected to the FAULT input of PWM. See Fault Output and implementation of the PWM in the product.

#### 52.5.8 Conversion Performances

For performance and electrical characteristics of the AFE, refer to the AFE Characteristics in the section "Electrical Characteristics".

#### Related Links

58. Electrical Characteristics for SAM V70/V71

### 52.6 Functional Description

#### 52.6.1 Analog Front-End Conversion

The AFE embeds programmable gain amplifiers that must be enabled prior to any conversion. The bits PGA0EN and PGA1EN in the Analog Control register (AFEC\_ACR) must be set.

The AFE uses the AFE clock to perform conversions. In order to guarantee a conversion with minimum error, after any start of conversion, the AFEC waits a number of AFE clock cycles (called transfer time) before changing the channel selection again (and so starts a new tracking operation).

AFE conversions are sequenced by two operating times: the tracking time and the conversion time.

- The tracking time represents the time between the channel selection change and the time for the controller to start the AFEC. The AFEC allows a minimum tracking time of 15 AFE clock periods.
- The conversion time represents the time for the AFEC to convert the analog signal.

The AFE clock frequency is selected in the PRESCAL field of the AFEC\_MR. The tracking phase starts during the conversion of the previous channel. If the tracking time is longer than the conversion time of the12-bit AD converter ( $t_{CONV}$ ), the tracking phase is extended to the end of the previous conversion.

The AFE clock frequency ranges from  $f_{peripheral clock}/2$  if PRESCAL is 1, and  $f_{peripheral clock}/256$  if PRESCAL is set to 255 (0xFF). PRESCAL must be programmed to provide the AFE clock frequency given in the section "Electrical Characteristics".

The AFE conversion time ( $t_{AFE \text{ conv}}$ ) is applicable for all modes and is calculated as follows:

#### $t_{\rm AFE\_conv} = 23 \times t_{\rm AFE\ Clock}$

When the averager is activated, the AFE conversion time is multiplied by the OSR value.

In Free Run mode, the sampling frequency (f<sub>S</sub>) is calculated as 1/t<sub>AFE conv</sub>.

# Advanced Encryption Standard (AES)

#### 57.5.3 AES Interrupt Enable Register

Name:AES\_IEROffset:0x10Reset:-Property:Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

| Bit    | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24     |
|--------|----|----|----|----|----|----|----|--------|
|        |    |    |    |    |    |    |    |        |
| Access |    |    |    |    |    |    |    |        |
| Reset  |    |    |    |    |    |    |    |        |
|        |    |    |    |    |    |    |    |        |
| Bit    | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16     |
|        |    |    |    |    |    |    |    | TAGRDY |
| Access |    |    |    |    |    |    |    | W      |
| Reset  |    |    |    |    |    |    |    | -      |
|        |    |    |    |    |    |    |    |        |
| Bit    | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8      |
|        |    |    |    |    |    |    |    | URAD   |
| Access |    |    |    |    |    |    |    | W      |
| Reset  |    |    |    |    |    |    |    | -      |
|        |    |    |    |    |    |    |    |        |
| Bit    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0      |
|        |    |    |    |    |    |    |    | DATRDY |
| Access |    |    |    |    |    |    | •  | W      |
| Reset  |    |    |    |    |    |    |    | _      |
|        |    |    |    |    |    |    |    |        |

Bit 16 – TAGRDY GCM Tag Ready Interrupt Enable

Bit 8 – URAD Unspecified Register Access Detection Interrupt Enable

Bit 0 – DATRDY Data Ready Interrupt Enable

### Electrical Characteristics for SAM ...

| FWS | Read Operations | Maximum Operating<br>Frequency (MHz) - VDDIO 3.0V |
|-----|-----------------|---------------------------------------------------|
| 0   | 1 cycle         | 23                                                |
| 1   | 2 cycles        | 46                                                |
| 2   | 3 cycles        | 69                                                |
| 3   | 4 cycles        | 92                                                |
| 4   | 5 cycles        | 115                                               |
| 5   | 6 cycles        | 138                                               |
| 6   | 7 cycles        | 150                                               |

#### Table 58-51. Embedded Flash Wait States for Worst-Case Conditions

## 58.13 Timings for STH Conditions

#### 58.13.1 AC Characteristics

#### 58.13.1.1 Processor Clock Characteristics

#### Table 58-52. Processor Clock Waveform Parameters

| Symbol                  | Parameter                 | Conditions | Min | Max | Unit |
|-------------------------|---------------------------|------------|-----|-----|------|
| 1/(t <sub>CPPCK</sub> ) | Processor Clock Frequency | Worst case | _   | 300 | MHz  |

#### 58.13.1.2 Master Clock Characteristics

#### Table 58-53. Master Clock Waveform Parameters

| Syn               | nbol   | Parameter              | Conditions | Min | Max | Unit |
|-------------------|--------|------------------------|------------|-----|-----|------|
| 1/(t <sub>c</sub> | срмск) | Master Clock Frequency | Worst case | -   | 150 | MHz  |

#### 58.13.1.3 I/O Characteristics

Criteria used to define the maximum frequency of the I/Os:

- Output duty cycle (40%-60%)
- Minimum output swing: 100 mV to  $V_{\text{DDIO}}$  100 mV
- Addition of rising and falling time inferior to 75% of the period

#### Table 58-54. I/O Characteristics

| Symbol Parameter |                                                     | Conditions |                   |                | Min | Max | Unit |
|------------------|-----------------------------------------------------|------------|-------------------|----------------|-----|-----|------|
|                  |                                                     | Load       | V <sub>DDIO</sub> | Drive<br>Level |     |     |      |
| FreqMax1         | Pin Group 1 <sup>(1)</sup> Maximum output frequency | 10 pF      | 3.0V              | Low            | -   | 65  | MHz  |
|                  |                                                     |            |                   | High           | -   | 115 |      |
|                  |                                                     | 25 pF      |                   | Low            | _   | 28  |      |

# **Revision History**

| Date | Changes                                                                                                                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Removed redundant Section 15.7.2. NRST Pin and Section 15.7.3. ERASE Pin (already in Section 8. "Input/Output Lines").                                                                                                                        |
|      | Removed references to Embedded Trace Buffer (ETB).                                                                                                                                                                                            |
|      | Section 16.7.8 "IEEE1149.1 JTAG Boundary Scan": updated conditons to enable boundary scan.                                                                                                                                                    |
|      | Section 18. "Fast Flash Programming Interface (FFPI)"<br>Table 18-1 "Signal Description List": updated XIN information. Deleted comment for XIN.                                                                                              |
|      | Section 18.3 "Parallel Fast Flash Programming", Figure 18-1, "16-bit Parallel Programming Interface": changed input source for XIN.                                                                                                           |
|      | Section 18.3.3 "Entering Parallel Programming Mode": deleted note on device clocking.<br>Reworded steps 2 and 3.                                                                                                                              |
|      | Section 19. "Bus Matrix (MATRIX)"<br>Table 19-4 "Register Mapping": corrected reset values for MATRIX_PRASx and<br>MATRIX_PRBSx registers.                                                                                                    |
|      | In Section 19.4.8 "SMC NAND Flash Chip Select Configuration Register":                                                                                                                                                                        |
|      | - added warning to bit description SMC_NFCS1.                                                                                                                                                                                                 |
|      | - changed SDRAMEN bit description and added warning.                                                                                                                                                                                          |
|      | Section 22. "Enhanced Embedded Flash Controller (EEFC)"<br>Updated Section 22.2 "Embedded Characteristics".                                                                                                                                   |
|      | Added Figure 22-1, "Flash Memory Areas".                                                                                                                                                                                                      |
|      | Section 22.4.3.6 "Calibration Bit": updated oscillators that are calibrated in production.                                                                                                                                                    |
|      | Section 22.4.3.7 "Security Bit Protection": added detail on ETM.                                                                                                                                                                              |
|      | Section 23. "Supply Controller (SUPC)"<br>Figure 23-2, "Separate Backup Supply Powering Scheme": updated figure and corrected<br>min voltage in note on ADC/DAC/ACC.                                                                          |
|      | Section 24. "Watchdog Timer (WDT)"<br>Section 24.1 "Description": Replaced "Idle mode" with "Sleep mode (Idle mode)".                                                                                                                         |
|      | Section 24.4 "Functional Description": replaced "Idle mode" with "Sleep mode"                                                                                                                                                                 |
|      | Section 24.4 "Functional Description", Section 24.5.2 "Watchdog Timer Mode Register":<br>modified information on WDDIS bit setting to read "When setting the WDDIS bit, and while it<br>is set, the fields WDV and WDD must not be modified." |
|      | Section 24.5.1 "Watchdog Timer Control Register": added note on modification of WDT_CR values                                                                                                                                                 |
|      | Section 24.5.2 "Watchdog Timer Mode Register": added Note (2) on modification of WDT_MR values.                                                                                                                                               |
|      | Section 25. "Reinforced Safety Watchdog Timer (RSWDT)"                                                                                                                                                                                        |