

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv70n20b-cb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.4.3 Bus Matrix Priority Registers A For Slaves

Name:	MATRIX_PRASx
Offset:	0x80 + x*0x08 [x=08]
Reset:	0x00000222
Property:	Read/Write

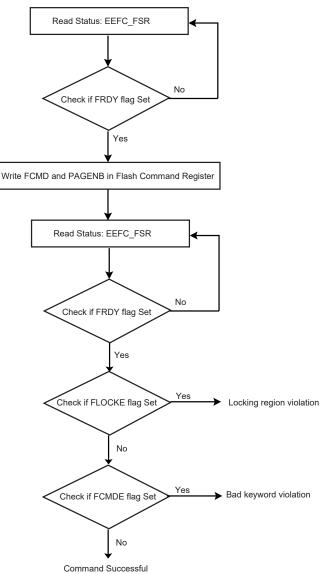
This register can only be written if the WPE bit is cleared in the Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
			M7PI	R[1:0]			M6PR[1:0]	
Access		•	R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	23	22	21	20	19	18	17	16
			M5PI	R[1:0]			M4PF	ק[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	15	14	13	12	11	10	9	8
			M3PI	R[1:0]			M2PF	ק[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			1	0
Bit	7	6	5	4	3	2	1	0
			M1PI	R[1:0]			MOPF	ק[1:0]
Access			R/W	R/W			R/W	R/W
Reset			1	0			1	0

Bits 0:1, 4:5, 8:9, 12:13, 16:17, 20:21, 24:25, 28:29 - MxPR Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.


Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See "Arbitration Priority Scheme" for details.

Enhanced Embedded Flash Controller (EEFC)

Figure 22-7. Command State Chart

22.4.3.1 Get Flash Descriptor Command

This command provides the system with information on the Flash organization. The system can take full advantage of this information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in EEFC_FCR. The first word of the descriptor can be read by the software application in EEFC_FRR as soon as the FRDY flag in EEFC_FSR rises. The next reads of EEFC_FRR provide the following word of the descriptor. If extra read operations to EEFC_FRR are done after the last word of the descriptor has been returned, the EEFC_FRR value is 0 until the next valid command.

28.5 Register Summary

Offset	Name	Bit Pos.									
		7:0	J.		RTPR	ES[7:0]					
0.400	0x00 RTT_MR	15:8	RTPRES[15:8]								
0000		23:16			RTTDIS		RTTRST	RTTINCIEN	ALMIEN		
		31:24							RTC1HZ		
		7:0			ALM	V[7:0]					
0x04 RTT_AR		15:8	ALMV[15:8]								
0.04		23:16		ALMV[23:16]							
		31:24	ALMV[31:24]								
		7:0	CRTV[7:0]								
0x08	RTT_VR	15:8	CRTV[15:8]								
0,000		23:16			CRTV	[23:16]					
		31:24			CRTV	[31:24]					
		7:0						RTTINC	ALMS		
0x0C	RTT_SR	15:8									
5,000		23:16									
		31:24									

Parallel Input/Output Controller (PIO)

Register	Value to be Written
PIO_PER	0x0000_FFFF
PIO_PDR	0xFFF_0000
PIO_OER	0x0000_00FF
PIO_ODR	0xFFFF_FF00
PIO_IFER	0x0000_0F00
PIO_IFDR	0xFFFF_F0FF
PIO_SODR	0x0000_0000
PIO_CODR	0x0FFF_FFF
PIO_IER	0x0F00_0F00
PIO_IDR	0xF0FF_F0FF
PIO_MDER	0x0000_000F
PIO_MDDR	0xFFFF_FF0
PIO_PUDR	0xFFF0_00F0
PIO_PUER	0x000F_FF0F
PIO_PPDDR	0xFF0F_FFF
PIO_PPDER	0x00F0_0000
PIO_ABCDSR1	0xF0F0_0000
PIO_ABCDSR2	0xFF00_0000
PIO_OWER	0x0000_000F
PIO_OWDR	0x0FFF_FF0

Table 32-3. Programming Example

32.5.16 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

- PIO Enable Register
- PIO Disable Register
- PIO Output Enable Register
- PIO Output Disable Register
- PIO Input Filter Enable Register

Parallel Input/Output Controller (PIO)

Name: PIO SODR Offset: 0x0030 **Property:** Write-only Bit 31 30 29 28 27 26 25 24 P24 P31 P30 P29 P28 P27 P26 P25 Access Reset 17 Bit 23 22 21 20 19 18 16 P23 P22 P21 P19 P18 P17 P16 P20 Access Reset Bit 15 14 13 12 11 10 9 8 P15 P14 P13 P12 P11 P10 P9 P8 Access Reset Bit 7 5 3 2 6 4 1 0 P7 P6 P5 P4 P3 P2 P1 P0 Access Reset

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Set Output Data

Va	lue	Description
0		No effect.
1		Sets the data to be driven on the I/O line.

32.6.1.10 PIO Set Output Data Register

Parallel Input/Output Controller (PIO)

32.6.1.34 PIO Output Write Disable Register

Name:	PIO_OWDR
Offset:	0x00A4
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Output Write Disable

Value	Description
0	No effect.
1	Disables writing PIO_ODSR for the I/O line.

38.8.62 GMAC Multicast Frames Received Register

GMAC_MFR

Name:

	Offset: Reset: Property:	0x160 0x00000000 -							
Bit	31	30	29	28	27	26	25	24	
				MFRX[[31:24]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				MFRX[[23:16]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				MFRX	[15:8]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				MFR)	<[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 - MFRX[31:0] Multicast Frames Received without Error

This register counts the number of multicast frames successfully received without error, excluding pause frames, and is only incremented if the frame is successfully filtered and copied to memory.

USB High-Speed Interface (USBHS)

Value	Description
0	Cleared when USBHS_HSTPIPICR.SHORTPACKETIC = 1.
1	Set when a short packet is received by the host controller (packet length inferior to the PSIZE programmed field).

Bit 6 – RXSTALLDI Received STALLed Interrupt

This bit is set when a STALL handshake has been received on the current bank of the pipe. The pipe is automatically frozen. This triggers an interrupt if USBHS_HSTPIPIMR.RXSTALLE = 1.

Value	Description
0	Cleared when USBHS_HSTPIPICR.RXSTALLDIC = 1.

Bit 5 - OVERFI Overflow Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.OVERFIC = 1.
1	Set when the current pipe has received more data than the maximum length of the current
	pipe. An interrupt is triggered if USBHS_HSTPIPIMR.OVERFIE = 1.

Bit 4 – NAKEDI NAKed Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.NAKEDIC = 1.
1	Set when a NAK has been received on the current bank of the pipe. This triggers an interrupt
	if USBHS_HSTPIPIMR.NAKEDE = 1.

Bit 3 – PERRI Pipe Error Interrupt

Value	Description
0	Cleared when the error source bit is cleared.
1	Set when an error occurs on the current bank of the pipe. This triggers an interrupt if the USBHS_HSTPIPIMR.PERRE bit is set. Refer to the USBHS_HSTPIPERRx register to determine the source of the error.

Bit 2 – TXSTPI Transmitted SETUP Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.TXSTPIC = 1.
1	Set, for control pipes, when the current SETUP bank is free and can be filled. This triggers
	an interrupt if USBHS_HSTPIPIMR.TXSTPE = 1.

Bit 1 – TXOUTI Transmitted OUT Data Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.TXOUTIC = 1.
1	Set when the current OUT bank is free and can be filled. This triggers an interrupt if USBHS_HSTPIPIMR.TXOUTE = 1.

Bit 0 - RXINI Received IN Data Interrupt

USB High-Speed Interface (USBHS)

Bit 0 - RXINIC Received IN Data Interrupt Clear

Serial Peripheral Interface (SPI)

Offset	Name	Bit Pos.								
		7:0	E	BITS[3:0]	,	CSAAT	CSNAAT	NCPHA	CPOL	
0x38		15:8	SCBR[7:0]							
0x36	SPI_CSR2	23:16	DLYBS[7:0]							
		31:24			DLYB	CT[7:0]				
		7:0	E	BITS[3:0]		CSAAT	CSNAAT	NCPHA	CPOL	
0x3C		15:8			SCB	R[7:0]	:			
0x30	SPI_CSR3	23:16	DLYBS[7:0]							
		31:24			DLYB	CT[7:0]				
0x40										
	Reserved									
0xE3										
		7:0					WPCREN	WPITEN	WPEN	
0xE4	SPI_WPMR	15:8	WPKEY[7:0]							
UNET		23:16			WPKE	Y[15:8]				
		31:24			WPKE'	Y[23:16]				
		7:0							WPVS	
0xE8	SPI_WPSR	15:8			WPVS	RC[7:0]				
UALO	SPI_WPSR	23:16								
		31:24								

Universal Synchronous Asynchronous Receiver Transc...

46.7.46 USART Write Protection Mode Register

Name:	US_WPMR
Offset:	0x00E4
Reset:	0x0
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
		WPKEY[23:16]						
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPKE	EY[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WPEN
Access								
Reset								0

Bits 31:8 - WPKEY[23:0] Write Protection Key

ValueNameDescription0x55534PASSWDWriting any other value in this field aborts the write operation of the WPEN bit.1Always reads as 0.

Bit 0 – WPEN Write Protection Enable

See Section 7.12 "Register Write Protection" for the list of registers that can be write-protected.

Value	Description
0	Disables the write protection if WPKEY corresponds to 0x555341 ("USA" in ASCII).
1	Enables the write protection if WPKEY corresponds to 0x555341 ("USA" in ASCII).

Figure 48-13. MediaLB Isochronous Data Structure

The isochronous flow for a Tx Device is illustrated in Figure 48-14. The data transfer blocks (slanted rectangle shapes) occur only during a physical channel (PCn) associated with the logical channel defined by a single ChannelAddress. Similar to the synchronous flow, isochronous data immediately starts transmitting. When data exists from the application, the IsoSync?Bytes commands are used to indicate the start of a block, which provides alignment information to the Rx Device. The Iso?Bytes commands indicate the middle of a block of data. The definition of block for isochronous data is outside the scope of this document. For physical channels that transfer less than four bytes, the Rx Device must only use/ store the number of valid bytes, and ignore the unused portion.

The isochronous flow for an Rx Device is illustrated in Figure 48-15. The NoData command indicates that the channel is not setup yet. Once an isochronous channel is setup, the Rx Device continually receives the channel data, similar to synchronous data. The only two valid responses for an isochronous channel are ReceiverBusy, and the default bus state of ReceiverReady. Although Rx Devices can respond with ReceiverBusy, its use should be minimized, since Tx Devices may not be able to store much isochronous data that gets backed up due to the ReceiverBusy responses. If any Rx Device uses ReceiverBusy, then only one Rx Device is allowed. If all targeted Rx Devices do not drive RxStatus (default ReceiverReady response), then the isochronous stream can support multiple Rx Devices (broadcast).

Media Local Bus (MLB)

Field	No. of Bits	Description	Accessibility
		Reserved for synchronous and isochronous channels.	
MEP1	1	Most Ethernet Packet (MEP) indicator for ping buffer page: 0 = Not MEP	Rsvd for Tx r,u ⁽¹⁾ ,c0 ⁽²⁾ for Rx
		1 = MEP	
		MEP1 only valid for the first page of a segmented buffer.	
		Reserved for control, synchronous and isochronous channels.	
MEP2	1	MEP packet indicator for pong buffer page: 0 = not MEP	Reserved for Tx r,u ⁽¹⁾ ,c0 ⁽²⁾ for Rx
		1 = MEP MEP2 only valid for the first page of a segmented buffer.	
		Reserved for control, synchronous and isochronous channels.	
BD1 ⁽²⁾	11 to 13	Buffer depth for ping buffer page: 11 or 12-bits for asynchronous and control channels.	r,w
		13-bits for synchronous and isochronous channels.	
BD2 ⁽²⁾	11 to 13	Buffer depth for pong buffer page: 11 or 12-bits for asynchronous and control channels.	r,w
		13-bits for synchronous and isochronous channels.	
BA1	32	Buffer base address for ping buffer page	r,w
BA2	32	Buffer base address for pong buffer page	r,w
Reserved	varies	Software writes a zero to all Reserved bits when the entry is initialized. The reserved bits are Read-only after initialization.	r,w,u ⁽¹⁾

Note:

- 1. "u" means "Updated periodically by hardware".
- 2. "c0" means "Cleared by writing a 0".
- 3. The buffer depth (BD1 and BD2) for synchronous channels must consider if Multi-Frame per Subbuffer mode is enabled.

Data exchange across the AHB interface can be configured as Little Endian (LE = 1) or Big Endian (LE = 0). The following figure provides an overview of the endian options, chosen by an ADT descriptor field.

IVIC

	Name: Offset: Reset: Property:	MLB_MLBC1 0x03C 0x00000000 Read/Write						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Reset								
Bit	15	14	13	12	11	10	9	8
				NDA	[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit		6	5	4	3	2	1	0
	CLKM	LOCK						
Access								
Reset	0	0						

48.7.7 MediaLB Control 1 Register

Bits 15:8 - NDA[7:0] Node Device Address

Used for system commands directed to individual MediaLB nodes.

Bit 7 – CLKM MediaLB Clock Missing Status (cleared by writing a 0) Set when MLBCLK (MediaLB clock) is not toggling at the pin; cleared by software.

Bit 6 – LOCK MediaLB Lock Error Status (cleared by writing a 0) Set when MediaLB is unlocked; cleared by software.

Pulse Width Modulation Controller (PWM)

51.7.14 PWM Interrupt Enable Register 2

Name:	PWM_IER2
Offset:	0x34
Reset:	_
Property:	Write-only

This register can only be written if bits WPSWS1 and WPHWS1 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_
Bit	15	14	13	12	11	10	9	8
	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_
Bit	7	6	5	4	3	2	1	0
					UNRE			WRDY
Access					W			W
Reset					_			_

Bits 16, 17, 18, 19, 20, 21, 22, 23 – CMPUx Comparison x Update Interrupt Enable

Bits 8, 9, 10, 11, 12, 13, 14, 15 - CMPMx Comparison x Match Interrupt Enable

Bit 3 – UNRE Synchronous Channels Update Underrun Error Interrupt Enable

Bit 0 – WRDY Write Ready for Synchronous Channels Update Interrupt Enable

Integrity Check Monitor (ICM)

55.6.2 ICM Control Register

	Name: Offset: Reset: Property:	ICM_CTRL 0x04 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Dit	15		N[3:0]	12			S[3:0]	
A	W			W	W			W
Access		W	W			W	W	vv
Reset	0	0	0	_	0	0	0	-
Bit	7	6	5	4	3	2	1	0
			SH[3:0]		-	SWRST	DISABLE	ENABLE
Access	W	W	W	W		W	W	W
Reset		0	0	_		_	_	_

Bits 15:12 – RMEN[3:0] Region Monitoring Enable Monitoring is activated by default.

Value	Description
0	No effect
1	When bit RMEN[i] is set to one, the monitoring of region with identifier i is activated.

Bits 11:8 – RMDIS[3:0] Region Monitoring Disable

Value	Description
0	No effect
1	When bit RMDIS[i] is set to one, the monitoring of region with identifier i is disabled.

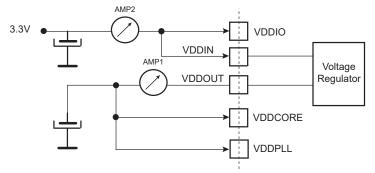
Bits 7:4 - REHASH[3:0] Recompute Internal Hash

Value	Description
0	No effect
1	When REHASH[i] is set to one, Region i digest is re-computed. This bit is only available when region monitoring is disabled.

Bit 2 - SWRST Software Reset

Electrical Characteristics for SAM ...

Table 58-14. Typical Sleep Mode Current Consumption vs. Master Clock (MCK) Variation with FastRC


Core Clock/MCK (MHz)	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit	Wakeup Time	Unit
12	2.0	2.0		12	μs
8	1.5	1.5		18	
4	1.0	1.1		31	
2	0.8	0.8	mA	62	
1	0.6	0.7		123	
0.5	0.6	0.6		247	
0.25	0.5	0.5		494	

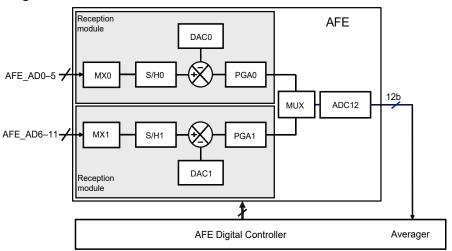
58.3.3 Wait Mode Current Consumption and Wakeup Time

The Wait mode configuration and measurements are defined as follows:

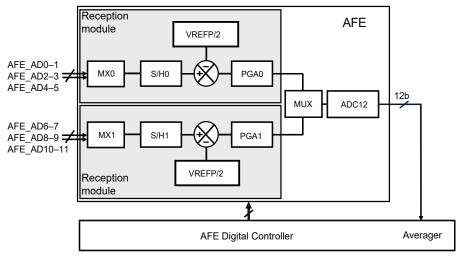
- Core clock and Master clock stopped
- Current measurement as shown below
- All peripheral clocks deactivated
- BOD disabled
- RTT enabled

Figure 58-7. Measurement Setup for Wait Mode

The following tables give current consumption and wakeup time⁽¹⁾ in Wait mode.


Table 58-15. Typical Current Consumption in Wait Mode

	Typical Value						
Wait Mode Consumption	at 2	5°C	at 85°C	at 105°C			
Consumption	VDDIO	= 3.3V	VDDIO = 3.3V	VDDIO = 3.3V	Unit		
Conditions	VDDOUT Consumption AMP1	Total Consumption AMP2	Total Consumption AMP2	Total Consumption AMP2			
No activity on the I/Os of the device	_	0.3	3.8	7.5	mA		


© 2018 Microchip Technology Inc.

Electrical Characteristics for SAM ...

Figure 58-11. Single-ended Mode AFE

Figure 58-12. Differential Mode AFE

58.8.1 AFE Power Supply

58.8.1.1 Power Supply Characteristics Table 58-29. Power Supply Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
I _{VDDIN}	Analog Current Consumption	Sleep mode (see Note 2)		2		μA		
		Fast wake-up mode (see Note 3)		0.4		mA		
		Normal mode, single sampling	_	3.4	-	mA		
		Normal mode, dual sampling		4.2		4.2		mA
	Disited Ourset Ocuserstics	Sleep mode (see Note 2)		1				
IVDDCORE	Digital Current Consumption	Normal mode	-	80	-	μA		

Note:

1. Current consumption is measured with AFEC_ACR.IBCTL=10.

Electrical Characteristics for SAM E70/S70

- n depends on the expected accuracy
- R_{ON}= 2 kOhm

Table 59-39. Number of Tau:n

Resolution (bits)	12	13	14	15	16
RES	0	2	3	4	5
n	8	9	10	11	12

The AFEC already includes a tracking time of 15 $t_{AFE\ Clock.}$

59.8.6.2 AFE DAC Offset Compensation

Table 59-40. DAC Static Performances (see Note 1)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Ν	Resolution (see Note 2)	_	-	9	10	LSB
INL	Integral Non Linearity	-	-2.5	±0.7	2	LSB
DNL	Differential Non Linearity	-	-3	±0.5	1.8	LSB

Note:

- 1. DAC Offset is included in the AFE EO performances.
- 2. 10 bits LSB relative to V_{REFP} scale, LSB = V_{VREFP} / 210 = 2.93 mV, with V_{VREFP} = 3V.

59.9 Analog Comparator Characteristics Table 59-41. Analog Comparator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IR}	Input Voltage Range	_	GND + 0.2	_	VDDIN - 0.2	V
V _{IO}	Input Offset Voltage	Comparator only	_	_	10	mV
I _{VDDIN} C	Current Consumption	Low-power option (ACC_ACR.ISEL = 0)	-	20	_	
	(VDDIN)	High-speed option (ACC_ACR.ISEL = 1)	-	120	-	μA
		ACC_ACR.HYST = 1 or 2 ACC_ACR.ISEL = 0	-	20	_	mV
		ACC_ACR.HYST = 3 ACC_ACR.ISEL = 0	-	40	-	IIIV
V _{hys}	Hysteresis	ACC_ACR.HYST = 1 or 2 ACC_ACR.ISEL = 1	-	25	_	m)/
		ACC_ACR.HYST = 3 ACC_ACR.ISEL = 1	-	45	-	mV

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Minimu m	Typical	Maximu m	Unit
	Integral Non-	No R _{LOAD}				
INL	linearity (see Note	C _{LOAD} = 50 pF	-10	±2	10	LSB
	1)	DACC_ACR.IBTLCHx = 3				
	Differential Non- linearity (see Note 1)	No R _{LOAD}				
DNL		C _{LOAD} = 50 pF	-4	±2	4	LSB
		DACC_ACR.IBTLCHx = 3				
Eo	Offset Error (see Note 2)	_	-8	1	8	mV
		No R _{LOAD}				
E _G	Gain Error	C _{LOAD} = 50 pF	-1	-	1	%.FSR
		DACC_ACR.IBTLCHx = 3				

Table 59-47. Static Performance Characteristics

Note:

- 1. Best-fit Curve from 0x080 to 0xF7F.
- 2. Difference between DACx at 0x800 and $V_{VREFP}/2$.

Table 59-48. Dynamic Performance Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{start}	Startup Time	From DAC on (CHER.CHx) to DAC ready to convert (CHSR.DACRDYx)		_	10	_	μs
t _S	Settling Time Code to Code; i.e., code(n-1) to $code(n) \pm 0.5 LSB$	$R_{LOAD} = 5 \text{ Kohm}$ $C_{LOAD} = 50 \text{ pF}$		_	0.5	_	μs
	Settling Time Full-scale; i.e., 0x000 to 0xFFF ±0.5 LSB	DACC_ACR.IBCTLCHx = 3					
		FS = 1 MSps		_	1	_	μs
Slew Rate			_	3	_	V/µs	

Table 59-49. Analog Outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{LOAD}	Output Resistor Load	Output load resistor	5	—	_	kOhm
C _{LOAD}	Output Capacitor Load	Output load capacitor	-	_	50	pF
V _{DACx_MIN}	Minimum Output Voltage on DACx	Code = $0x000$ No R _{LOAD} , C _{LOAD} = 50 pF, DACC_ACR.IBCTLCHx =3	—	0.1	0.5	%. V _{VREFP}