

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

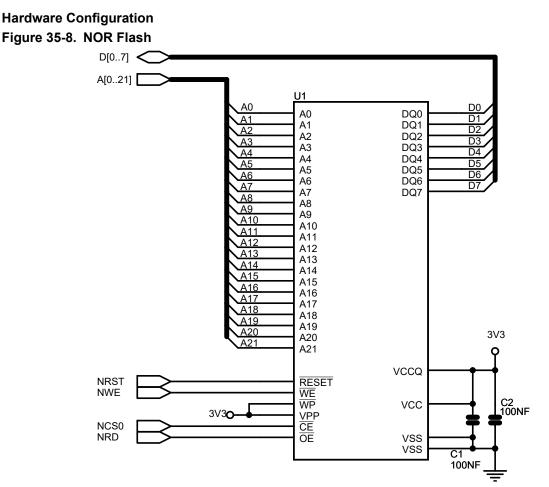
Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv70q19b-aabt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reinforced Safety Watchdog Timer (RSWDT)

Bit 31 30 29 28 27 26 25 24 Access Reset Image: Constraint of the set of th		Name: Offset: Reset: Property:	RSWDT_SR 0x08 0x00000000 Read-only						
Reset Bit 23 22 21 20 19 18 17 16 Access Reset Image: Constraint of the set of the	Bit	31	30	29	28	27	26	25	24
Reset Bit 23 22 21 20 19 18 17 16 Access Reset Image: Constraint of the set of the									
Bit 23 22 21 20 19 18 17 16 Access Reset Image: Constraint of the second secon									
Access Reset Image: state of the st	Reset								
Access Reset Image: state of the st									
Reset Bit 15 14 13 12 11 10 9 8 Access Reset Image: Constraint of the second seco	Bit	23	22	21	20	19	18	17	16
Reset Bit 15 14 13 12 11 10 9 8 Access Reset Image: Constraint of the second seco									
Bit 15 14 13 12 11 10 9 8 Access Reset Image: Constraint of the second									
Access Reset Bit 7 6 5 4 3 2 1 0 MOUNF Access	Reset								
Access Reset Bit 7 6 5 4 3 2 1 0 MOUNF Access									
Bit 7 6 5 4 3 2 1 0 Image: Access Im	Bit	15	14	13	12	11	10	9	8
Bit 7 6 5 4 3 2 1 0 Image: Access Im									
Bit 7 6 5 4 3 2 1 0 Image:									
Access	Reset								
Access									
Access	Bit	7	6	5	4	3	2	1	
									WDUNF
Reset 0	Access								
	Reset								0


25.5.3 Reinforced Safety Watchdog Timer Status Register

Bit 0 - WDUNF Watchdog Underflow

Value	Description
0	No watchdog underflow occurred since the last read of RSWDT_SR.
1	At least one watchdog underflow occurred since the last read of RSWDT_SR.

Static Memory Controller (SMC)

35.8.1.2 NOR Flash

Software Configuration

Configure the SMC CS0 Setup, Pulse, Cycle, and Mode, depending on Flash timings and system bus frequency.

35.9 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBS0 to NBS1) always have the same timing as the A address bus. NWE represents either the NWE signal in byte select access type or one of the byte write lines (NWR0 to NWR1) in byte write access type. NWR0 to NWR1 have the same timings and protocol as NWE. If D[15:8] are used, they have the same timing as D[7:0]. In the same way, NCS represents one of the NCS[0..3] chip select lines.

35.9.1 Read Waveforms

The read cycle is shown in the following figure.

The read cycle starts with the address setting on the memory address bus.

	Name: Offset: Reset: Property:	GMAC_RPSF 0x044 0x00000FFF -						
Bit	31	30	29	28	27	26	25	24
	ENRXP							
Access	R							
Reset	0							
Bit	23	22	21	20	19	18	17	16
Dit	20		21	20	15	10	17	
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						RPB1AD		
Access					R/W	R/W	R/W	R/W
Reset					1	1	1	1
Dit	-	0	-		0	0	4	0
Bit	7	6	5	4	3	2	1	0
					DR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

38.8.18 GMAC RX Partial Store and Forward Register

Bit 31 – ENRXP Enable RX Partial Store and Forward Operation

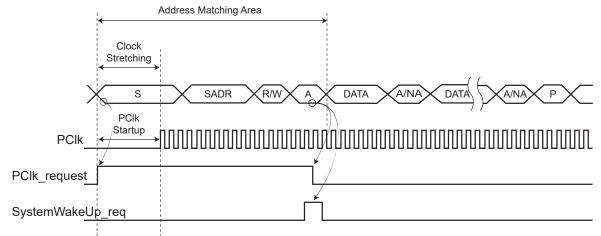
Bits 11:0 – RPB1ADR[11:0] Receive Partial Store and Forward Address Watermark value. Reset = 1.

USB High-Speed Interface (USBHS)

- Bit 5 OVERFIES Overflow Interrupt Enable
- Bit 4 NAKEDES NAKed Interrupt Enable
- Bit 3 PERRES Pipe Error Interrupt Enable
- Bit 2 UNDERFIES Underflow Interrupt Enable
- Bit 1 TXOUTES Transmitted OUT Data Interrupt Enable
- Bit 0 RXINES Received IN Data Interrupt Enable

Two-wire Interface (TWIHS)

43.6.5.8 Asynchronous Partial Wakeup (SleepWalking)


The TWIHS includes an asynchronous start condition detector. It is capable of waking the device up from a Sleep mode upon an address match (and optionally an additional data match), including Sleep modes where the TWIHS peripheral clock is stopped.

After detecting the START condition on the bus, the TWIHS stretches TWCK until the TWIHS peripheral clock has started. The time required for starting the TWIHS depends on which Sleep mode the device is in. After the TWIHS peripheral clock has started, the TWIHS releases its TWCK stretching and receives one byte of data (slave address) on the bus. At this time, only a limited part of the device, including the TWIHS module, receives a clock, thus saving power. If the address phase causes a TWIHS address match (and, optionally, if the first data byte causes data match as well), the entire device is woken up and normal TWIHS address matching actions are performed. Normal TWIHS transfer then follows. If the TWIHS is not addressed (or if the optional data match fails), the TWIHS peripheral clock is automatically stopped and the device returns to its original Sleep mode.

The TWIHS has the capability to match on more than one address. The SADR1EN, SADR2EN and SADR3EN bits in TWIHS_SMR enable address matching on additional addresses which can be configured through SADR1, SADR2 and SADR3 fields in the TWIHS_SWMR. The SleepWalking matching process can be extended to the first received data byte if TWIHS_SMR.DATAMEN is set and, in this case, a complete matching includes address matching and first received data matching. TWIHS_SWMR.DATAM configures the data to match on the first received byte.

When the system is in Active mode and the TWIHS enters Asynchronous Partial Wakeup mode, the flag SVACC must be programmed as the unique source of the TWIHS interrupt and the data match comparison must be disabled.

When the system exits Wait mode as the result of a matching condition, the SVACC flag is used to determine if the TWIHS is the source of exit.

Figure 43-39. Address Match Only (Data Matching Disabled)

Universal Synchronous Asynchronous Receiver Transc...

46.7.23 USART Baud Rate Generator Register

Name:	US_BRGR
Offset:	0x0020
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							FP[2:0]	
Access	L							
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
				CD[[*]	15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CD	7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 18:16 - FP[2:0] Fractional Part

▲ WARNING When the value of field FP is greater than 0, the SCK (oversampling clock) generates nonconstant duty cycles. The SCK high duration is increased by "selected clock" period from time to time. The duty cycle depends on the value of the CD field.

Value	Description
0	Fractional divider is disabled.
1-7	Baud rate resolution, defined by FP × 1/8.

Bits 15:0 – CD[15:0] Clock Divider

CD	USART_MODE ≠ IS	USART_MODE ≠ ISO7816							
	SYNC = 0		SYNC = 1	ISO7816					
	OVER = 0	OVER = 1	or						
			USART_MODE = SPI						
			(Master or Slave)						

Universal Synchronous Asynchronous Receiver Transc...

46.7.32 USART LIN Mode Register

Name:	US_LINMR
Offset:	0x0054
Reset:	0x0
Property:	Read/Write

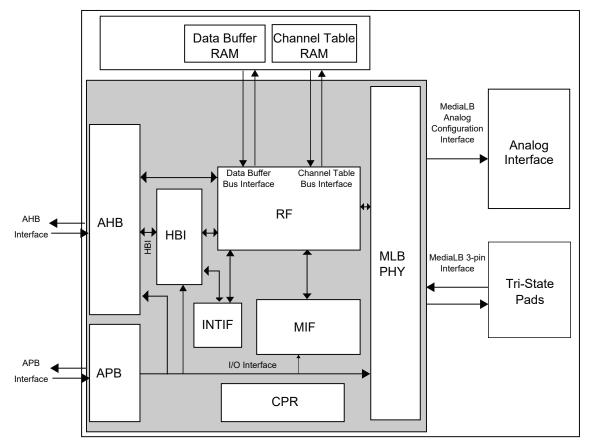
This register is relevant only if USART_MODE = 0xA or 0xB in the USART Mode Register.

Bit	31	30	29	28	27	26	25	24
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
							SYNCDIS	PDCM
Access								
Reset							0	0
Bit	15	14	13	12	11	10	9	8
				DLC	[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WKUPTYP	FSDIS	DLM	CHKTYP	CHKDIS	PARDIS	NACT	[1:0]
Access		· · · · · · · · · · · · · · · · · · ·						
Reset	0	0	0	0	0	0	0	0

Bit 17 – SYNCDIS Synchronization Disable

Value	Description
0	The synchronization procedure is performed in LIN slave node configuration.
1	The synchronization procedure is not performed in LIN slave node configuration.

Bit 16 - PDCM DMAC Mode


Value	Description
0	The LIN mode register US_LINMR is not written by the DMAC.
1	The LIN mode register US_LINMR (excepting that flag) is written by the DMAC.

Bits 15:8 - DLC[7:0] Data Length Control

Value	Description
0-255	Defines the response data length if DLM = 0, in that case the response data length is equal to
	DLC+1 bytes.

Bit 7 – WKUPTYP Wakeup Signal Type

48.4 Signal Description

48.4.1 Definition of Terms

The following terms will be used when referring to specific implementations of MediaLB.

 Table 48-1. MediaLB Definition of Terms

Names	Description						
Media Local Bu	us:						
MLBC	General reference to the Clock line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBCLK pin						
MLBS	General reference to the Signal line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBSIG pin						
MLBD	General reference to the Data line of a Media Local Bus: on a 3-pin MediaLB interface, connects to the MLBDAT pin						
3-pin MediaLB	3-pin MediaLB Interface:						
MLBCLK	MediaLB Controller (output) pin connected to MLBC.						

© 2018 Microchip Technology Inc.

Controller Area Network (MCAN)

Table 49-9. Tx Event FIFO Element

	31			24	23				16	15 8	7 0
E0	ESI	XTD	RTR	ID[28:	0]						
E1	MM[7:0]			<u></u>	ET [1:0]	FDF	BRS	DLC[3	:0]	TXTS[15:0	D]

• E0 Bit 31 ESI: Error State Indicator

- 0: Transmitting node is error active.
- 1: Transmitting node is error passive.
- E0 Bit 30 XTD: Extended Identifier
- 0: 11-bit standard identifier.
- 1: 29-bit extended identifier.
- E0 Bit 29 RTR: Remote Transmission Request
- 0: Data frame transmitted.
- 1: Remote frame transmitted.
- E0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18].

• E1 Bits 31:24 MM[7:0]: Message Marker

Copied from Tx Buffer into Tx Event FIFO element for identification of Tx message status.

- E1 Bit 23:22 ET[1:0]: Event Type
- 0: Reserved
- 1: Tx event
- 2: Transmission in spite of cancellation (always set for transmissions in DAR mode)
- 3: Reserved
- E1 Bit 21 FDF: FD Format
- 0: Standard frame format.
- 1: CAN FD frame format (new DLC-coding and CRC).
- E1 Bit 20 BRS: Bit Rate Switch
- 0: Frame transmitted without bit rate switching.
- 1: Frame transmitted with bit rate switching.
- E1 Bits 19:16 DLC[3:0]: Data Length Code
- 0-8: CAN + CAN FD: frame with 0-8 data bytes transmitted.
- 9-15: CAN: frame with 8 data bytes transmitted.
- 9-15: CAN FD: frame with 12/16/20/24/32/48/64 data bytes transmitted
- E1 Bits 15:0 TXTS[15:0]: Tx Timestamp

Controller Area Network (MCAN)

49.6.21 MCAN Standard ID Filter Configuration

Name:	MCAN_SIDFC
Offset:	0x84
Reset:	0x00000000
Property:	Read/Write

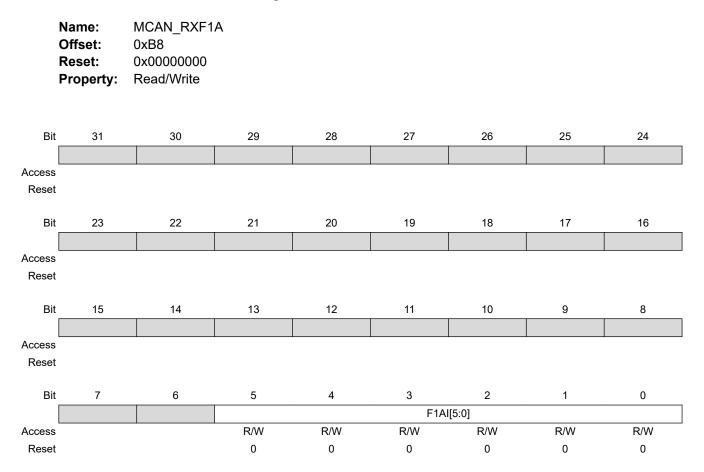
Settings for 11-bit standard Message ID filtering. The Standard ID Filter Configuration controls the filter path for standard messages as illustrated in Standard Message ID Filter Path.

This register can only be written if the bits CCE and INIT are set in MCAN CC Control Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				LSS	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				FLSSA	A[13:6]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FLSSA[5:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		
Reset	0	0	0	0	0	0		

Bits 23:16 - LSS[7:0] List Size Standard

>128: Values greater than 128 are interpreted as 128.


Value	Description
0	No standard Message ID filter.
1-128	Number of standard Message ID filter elements.

Bits 15:2 - FLSSA[13:0] Filter List Standard Start Address

Start address of standard Message ID filter list (32-bit word address, see Message RAM Configuration).

Write FLSSA with the bits [15:2] of the 32-bit address.

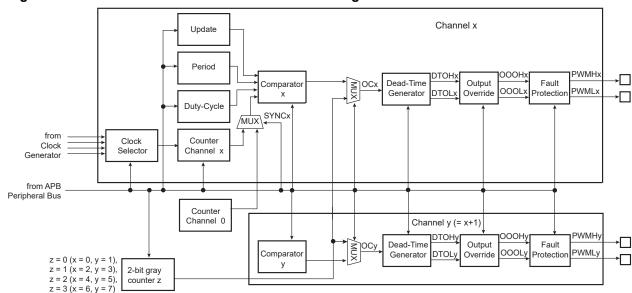
Controller Area Network (MCAN)

49.6.33 MCAN Receive FIFO 1 Acknowledge

Bits 5:0 - F1AI[5:0] Receive FIFO 1 Acknowledge Index

After the processor has read a message or a sequence of messages from Receive FIFO 1 it has to write the buffer index of the last element read from Receive FIFO 1 to F1AI. This will set the Receive FIFO 1 Get Index MCAN_RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill Level MCAN_RXF1S.F1FL.

Each linear divider can independently divide one of the clocks of the modulo n counter. The selection of the clock to be divided is made according to the PREA (PREB) field of the PWM Clock register (PWM_CLK). The resulting clock clkA (clkB) is the clock selected divided by DIVA (DIVB) field value.


After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) are set to '0'. This implies that after reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except the peripheral clock. This situation is also true when the PWM peripheral clock is turned off through the Power Management Controller.

Δ CAUTION Before using the PWM controller, the programmer must first enable the peripheral clock in the Power Management Controller (PMC).

51.6.2 PWM Channel

51.6.2.1 Channel Block Diagram

Figure 51-3. Functional View of the Channel Block Diagram

Each of the 4 channels is composed of six blocks:

- A clock selector which selects one of the clocks provided by the clock generator (described in PWM Clock Generator).
- A counter clocked by the output of the clock selector. This counter is incremented or decremented according to the channel configuration and comparators matches. The size of the counter is 16 bits.
- A comparator used to compute the OCx output waveform according to the counter value and the configuration. The counter value can be the one of the channel counter or the one of the channel 0 counter according to SYNCx bit in the PWM Sync Channels Mode Register (PWM_SCM).
- A 2-bit configurable gray counter enables the stepper motor driver. One gray counter drives 2 channels.
- A dead-time generator providing two complementary outputs (DTOHx/DTOLx) which allows to drive external power control switches safely.

Pulse Width Modulation Controller (PWM)

Value	Name	Description
0	MODE0	Manual write of double buffer registers and manual update of synchronous channels 1 ⁽¹⁾ .
1	MODE1	Manual write of double buffer registers and automatic update of synchronous channels $2^{(2)}$.
2	MODE2	The WRDY flag in PWM Interrupt Status Register 2 and the DMA transfer request are set to '1' as soon as the update period is elapsed.

Note:

- 1. The update occurs at the beginning of the next PWM period, when the UPDULOCK bit in PWM Sync Channels Update Control Register is set.
- 2. The update occurs when the Update Period is elapsed.

Bits 0, 1, 2, 3 – SYNCx Synchronous Channel x

Value	Description
0	Channel x is not a synchronous channel.
1	Channel x is a synchronous channel.

51.7.17 PWM Interrupt Status Register 2

Name:	PWM_ISR2
Offset:	0x40
Reset:	0x00000000
Property:	Read-only

Reading PWM_ISR2 automatically clears flags WRDY, UNRE and CMPSx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	CMPU7	CMPU6	CMPU5	CMPU4	CMPU3	CMPU2	CMPU1	CMPU0
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CMPM7	CMPM6	CMPM5	CMPM4	CMPM3	CMPM2	CMPM1	CMPM0
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					UNRE			WRDY
Access					R			R
Reset					0			0

Bits 16, 17, 18, 19, 20, 21, 22, 23 – CMPUx Comparison x Update

Value	Description
0	The comparison x has not been updated since the last read of the PWM_ISR2 register.
1	The comparison x has been updated at least one time since the last read of the PWM_ISR2 register.

Bits 8, 9, 10, 11, 12, 13, 14, 15 – CMPMx Comparison x Match

Value	Description
0	The comparison x has not matched since the last read of the PWM_ISR2 register.
1	The comparison x has matched at least one time since the last read of the PWM_ISR2 register.

Bit 3 – UNRE Synchronous Channels Update Underrun Error

Value	Description
0	No Synchronous Channels Update Underrun has occurred since the last read of the
	PWM_ISR2 register.
1	At least one Synchronous Channels Update Underrun has occurred since the last read of the
	PWM_ISR2 register.

51.7.35 PWM Write Protection Status Register

Name:	PWM_WPSR
Offset:	0xE8
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	WPVSRC[15:8]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPVS	RC[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			WPHWS5	WPHWS4	WPHWS3	WPHWS2	WPHWS1	WPHWS0
Access			R	R	R	R	R	R
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WPVS		WPSWS5	WPSWS4	WPSWS3	WPSWS2	WPSWS1	WPSWS0
Access	R		R	R	R	R	R	R
Reset	0		0	0	0	0	0	0

Bits 31:16 - WPVSRC[15:0] Write Protect Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bits 8, 9, 10, 11, 12, 13 - WPHWSx Write Protect HW Status

Value	Description
0	The HW write protection x of the register group x is disabled.
1	The HW write protection x of the register group x is enabled.

Bit 7 – WPVS Write Protect Violation Status

Value	Description
0	No write protection violation has occurred since the last read of PWM_WPSR.
1	At least one write protection violation has occurred since the last read of PWM_WPSR. If this violation is an unauthorized attempt to write a protected register, the associated violation is
	reported into field WPVSRC.

Bits 0, 1, 2, 3, 4, 5 - WPSWSx Write Protect SW Status

52.7.15 AFEC Compare Window Register

Name:	AFEC_CWR
Offset:	0x50
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	HIGHTHRES[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				HIGHTH	RES[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	LOWTHRES[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	LOWTHRES[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:16 – HIGHTHRES[15:0] High Threshold

High threshold associated to compare settings of AFEC_EMR. For comparisons lower than 16 bits and signed, the sign should be extended up to the bit 15.

Bits 15:0 – LOWTHRES[15:0] Low Threshold

Low threshold associated to compare settings of AFEC_EMR. For comparisons lower than 16 bits and signed, the sign should be extended up to the bit 15.

Integrity Check Monitor (ICM)

Value	Description
0	Automatic monitoring mode is disabled.
1	The ICM passes through the Main List once to calculate the message digest of the
	monitored area. When WRAP = 1 in ICM_RCFG, the ICM begins monitoring.

Bits 7:4 – BBC[3:0] Bus Burden Control

This field is used to control the burden of the ICM system bus. The number of system clock cycles between the end of the current processing and the next block transfer is set to 2^{BBC}. Up to 32,768 cycles can be inserted.

Bit 2 – SLBDIS Secondary List Branching Disable

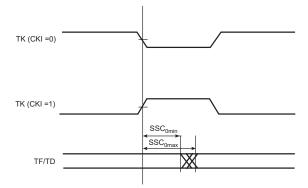
Value	Description
0	Branching to the Secondary List is permitted.
1	Branching to the Secondary List is forbidden. The NEXT field of the ICM_RNEXT structure
	member has no effect and is always considered as zero.

Bit 1 – EOMDIS End of Monitoring Disable

Value	Description
0	End of Monitoring is permitted.
1	End of Monitoring is forbidden. The EOM bit of the ICM_RCFG structure member has no effect.

Bit 0 – WBDIS Write Back Disable

When ASCD is set, WBDIS has no effect.


Value	Description
0	Write Back operations are permitted.
1	Write Back operations are forbidden. Context register CDWBN bit is internally set to one and
	cannot be modified by a linked list element. ICM_RCFG.CDWBN has no effect.

Integrity Check Monitor (ICM)

Register Address	Address Offset / Byte Lane					
	0x3 / 31:24	0x2 / 23:16	0x1 / 15:8	0x0 / 7:0		
0x000 ICM_UIHVAL0	01	23	45	67		
0x004 ICM_UIHVAL1	89	ab	cd	ef		
0x008 ICM_UIHVAL2	fe	dc	ba	98		
0x00C ICM_UIHVAL3	76	54	32	10		
0x010 ICM_UIHVAL4	fO	e1	d2	c3		

Electrical Characteristics for SAM E70/S70

Figure 59-41. Min and Max Access Time of Output Signals

59.13.1.15 ISI Timings

59.13.1.15.1 Timing Conditions

Timings are given assuming the load capacitance in the following table.

Table 59-76. Load Capacitance

Supply	C _L Max
3.3V	30 pF
1.7V	20 pF

59.13.1.15.2 Timing Extraction

Table 59-77. ISI Timings with Peripheral Supply 3.3V

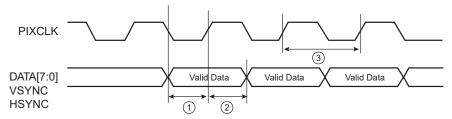

Symbol	Parameter	Min	Мах	Unit
ISI ₁	DATA/VSYNC/HSYNC setup time	1.5	-	ns
ISI ₂	DATA/VSYNC/HSYNC hold time	-1.2	-	ns
ISI ₃	PIXCLK frequency	-	75	MHz

Figure 59-42.

Table 59-78. ISI Timings with Peripheral Supply 1.8V

Symbol	Parameter	Min	Max	Unit
ISI ₁	DATA/VSYNC/HSYNC setup time	1.8	-	ns
ISI ₂	DATA/VSYNC/HSYNC hold time	-1.4	-	ns
ISI ₃	PIXCLK frequency	-	75	MHz

Figure 59-43. ISI Timing Diagram

Revision History

Date	Changes				
	Section 42.7.9 "QSPI Serial Clock Register": updated equations.				
	Section 42.7.12 "QSPI Instruction Frame Register": updated INSTEN bit description.				
	Section 43. "Two-wire Interface (TWIHS)" Section 43.6.3.4 "Master Transmitter Mode" and "Read Sequence": added sentence on clearing TXRDY flag.				
	Section 43.6.5.7 "High-Speed Slave Mode": updated 11-MHz limit information.				
	Updated Section 43.6.7 "Register Write Protection".				
	Updated Section 43.7.1 "TWIHS Control Register": added bit FIFODIS, FIFOEN, LOCKCLR and THRCLR.				
	Added Section 45. "Inter-IC Sound Controller (I2SC)".				
08-Feb-16	Section 46. "Universal Synchronous Asynchronous Receiver Transceiver (USART)" Added descriptions of Modem mode and ISO7816 mode throughout.				
	Updated Section 46.1 "Description" and Section 46.2 "Embedded Characteristics".				
	Table 46-1 "I/O Line Description" updated and added lines RI, DSR, DCD, and DTR.				
	Section 46.6.1 "Baud Rate Generator": corrected value in "The frequency of the signal provided on SCK must be at least"				
	Updated Figure 46-2, "Baud Rate Generator".				
	"Baud Rate Calculation Example", corrected formula.				
	Section 46.6.1.2 "Fractional Baud Rate in Asynchronous Mode" and Section 46.7.23 "USART Baud Rate Generator Register": added warning "When the value of field FP is greater than 0"				
	Updated Figure 46-3, "Fractional Baud Rate Generator".				
	Section 46.6.1.3 "Baud Rate in Synchronous Mode or SPI Mode": corrected formula. Corrected external clock frequency. Corrected SCK maximum frequency.				
	Added Section 46.6.4 "ISO7816 Mode".				
	Inserted new Figure 46-27, "RTS Line Software Control when USART_MR.USART_MODE = 2".				
	Section 46.6.3.4 "Manchester Decoder": corrected "MANE flag" with "MANERR" flag.				
	Added Section 46.6.7 "Modem Mode".				
	Section 46.6.8.5 "Character Transmission": added content to 1st paragraph. Corrected occurrences of RTSEN to RCS, RTSDIS to FCS.				
	Section 46.6.9.8 "Slave Node Synchronization": updated bullet on oversampling.				
	Updated Figure 46-42, "Slave Node Synchronization".				
	Section 46.7.1 "USART Control Register": added bits/fields RSTIT, RSTNACK, DTREN and DTRDIS. Updated RTSDIS bit description.				