

Welcome to E-XFL.COM

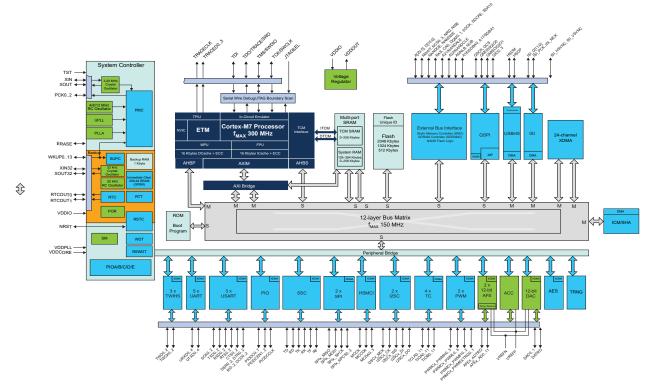
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv70q19b-cbt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

Refer to the table 1. Configuration Summary for detailed configurations of memory size, package and features of the SAM E70/S70/V70/V71 devices.

19.4 Register Summary

Offset	Name	Bit Pos.				
		7:0			ULBT[2:0]	
0x00 MATRIX_I		15:8				
0x00	MATRIX_MCFG0	23:16				
		31:24				
		7:0			ULBT[2:0]	
0x04	MATRIX_MCFG1	15:8				
0x04		23:16				
		31:24				
		7:0			ULBT[2:0]	
0x08		15:8				
0x00	MATRIX_MCFG2	23:16				
		31:24				
		7:0			ULBT[2:0]	
0x0C		15:8				
UXUC	MATRIX_MCFG3	23:16				
		31:24				
		7:0			ULBT[2:0]	
0x10	MATRIX_MCFG4	15:8				
0110	MATRIA_MCFG4	23:16				
		31:24				
		7:0			ULBT[2:0]	
0.14		15:8				
0x14	MATRIX_MCFG5	23:16				
		31:24				
		7:0			ULBT[2:0]	
0x18		15:8				
0110	MATRIX_MCFG6	23:16				
		31:24				
		7:0			ULBT[2:0]	
0.10		15:8				
0x1C	MATRIX_MCFG7	23:16				
		31:24				
		7:0			ULBT[2:0]	
000		15:8				
0x20	MATRIX_MCFG8	23:16				
		31:24				
		7:0			ULBT[2:0]	
0~04		15:8				
0x24	MATRIX_MCFG9	23:16				
		31:24				
		7:0			ULBT[2:0]	
0x28	MATRIX_MCFG10	15:8				
		23:16				

SAM E70/S70/V70/V71 Family Bus Matrix (MATRIX)

Value	Description
0	MATRIX dynamic clock gating enabled. The MATRIX circuitry is driven by the clock only
	when a transfer to a peripheral is being performed. Power consumption is optimized.
1	MATRIX dynamic clock gating disabled. The MATRIX circuitry is always driven by the clock
	in Active mode.

26.4.5.3 RSTC Mode Register

Name:	RSTC_MR
Offset:	0x08
Reset:	0x00000001
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

Bit	31	30	29	28	27	26	25	24
				KEY	[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						ERST	Ľ[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URSTIEN				URSTEN
Access				R/W				R/W
Reset				0				1

Bits 31:24 - KEY[7:0] Write Access Password

Value	Name	Description
0xA5	PASSWD	Writing any other value in this field aborts the write operation. Always reads as 0.

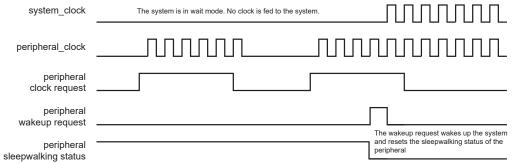
Bits 11:8 - ERSTL[3:0] External Reset Length

This field defines the external reset length. The external reset is asserted during a time of $2^{(\text{ERSTL+1})}$ SLCK cycles. This allows assertion duration to be programmed between 60 µs and 2 seconds. Note that synchronization cycles must also be considered when calculating the actual reset length as previously described.

Bit 4 – URSTIEN User Reset Interrupt Enable

Value	Description
0	RSTC_SR.USRTS at '1' has no effect on the RSTC interrupt line.
1	RSTC_SR.USRTS at '1' asserts the RSTC interrupt line if URSTEN = 0.

Bit 0 – URSTEN User Reset Enable


Only the following peripherals can be configured with asynchronous partial wakeup: UARTx and TWIHSx.

The peripheral selected for asynchronous partial wakeup must first be configured so that its clock is enabled. To do so, write a '1' to the appropriate PIDx bit in PMC_PCER registers.

31.10.2 Asynchronous Partial Wakeup in Wait Mode (SleepWalking)

When the system is in Wait mode, all clocks of the system except SLCK are stopped. When an asynchronous clock request from a peripheral occurs, the PMC partially wakes up the system to feed the clock only to this peripheral. The rest of the system is not fed with the clock, thus optimizing power consumption. Finally, depending on user-configurable conditions, the peripheral either wakes up the whole system if these conditions are met or stops the peripheral clock until the next clock request. If a wakeup request occurs, SleepWalking is automatically disabled until the user instructs the PMC to enable SleepWalking. This is done by writing a '1' to PIDx in the PMC SleepWalking Enable register (PMC_SLPWK_ER).

31.10.2.1 Configuration Procedure

Before configuring SleepWalking for a peripheral, check that the PIDx bit in PMC_PCSR is set. This ensures that the peripheral clock is enabled.

The steps to enable SleepWalking for a peripheral are the following:

- 1. Check that the corresponding PIDx bit in the PMC SleepWalking Activity Status register (PMC_SLPWK_ASR) is set to '0'. This ensures that the peripheral has no activity in progress.
- 2. Enable SleepWalking for the peripheral by writing a '1' to the corresponding PIDx bit in the PMC_SLPWK_ER.
- 3. Check that the corresponding PIDx bit in PMC_SLPWK_ASR is set to '0'. This ensures that no activity has started during the enable phase.
- 4. In the PMC_SLPWK_ASR, if the corresponding PIDx bit is set, SleepWalking must be immediately disabled by writing a '1' to the PIDx bit in the PMC SleepWalking Disable register (PMC_SLPWK_DR). Wait for the end of peripheral activity before reinitializing the procedure. If the corresponding PIDx bit is set to '0', then the peripheral clock is disabled and the system can then be placed in Wait mode.

Before entering Wait mode, check that the AIP bit in the PMC SleepWalking Activity In Progress Register (PMC_SLPWK_AIPR) is cleared. This ensures that none of the peripherals is currently active.

Note: When SleepWalking for a peripheral is enabled and the core is running (system not in Wait mode), the peripheral must not be accessed before a wakeup of the peripheral is performed.

38.8.13 GMAC Interrupt Mask Register

Name:	GMAC_IMR
Offset:	0x030
Reset:	0x07FFFFFF
Property:	Read/Write

This register is a read-only register indicating which interrupts are masked. All bits are set at Reset and can be reset individually by writing to the Interrupt Enable Register (GMAC_IER), or set individually by writing to the Interrupt Disable Register (GMAC_IDR).

For test purposes there is a write-only function to this register that allows the bits in the Interrupt Status Register to be set or cleared, regardless of the state of the mask register. A write to this register directly affects the state of the corresponding bit in the Interrupt Status Register, causing an interrupt to be generated if a 1 is written.

The following values are valid for all listed bit names of this register when read:

0: The corresponding interrupt is enabled.

1: The corresponding interrupt is not enabled.

Bit	31	30	29	28	27	26	25	24
			TSUTIMCMP	WOL	RXLPISBC	SRI	PDRSFT	PDRQFT
Access		•	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	1	1	1
Bit	23	22	21	20	19	18	17	16
	PDRSFR	PDRQFR	SFT	DRQFT	SFR	DRQFR		
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1		
Bit	15	14	13	12	11	10	9	8
	EXINT	PFTR	PTZ	PFNZ	HRESP	ROVR		
Access	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1		
Bit	7	6	5	4	3	2	1	0
	TCOMP	TFC	RLEX	TUR	TXUBR	RXUBR	RCOMP	MFS
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit 29 – TSUTIMCMP TSU Timer Comparison

Bit 28 – WOL Wake On LAN

Bit 27 – RXLPISBC Receive LPI indication Status Bit Change Receive LPI indication status bit change.

Cleared on read.

Bit 26 - SRI TSU Seconds Register Increment

- Bit 25 PDRSFT PDelay Response Frame Transmitted
- **Bit 24 PDRQFT** PDelay Request Frame Transmitted
- Bit 23 PDRSFR PDelay Response Frame Received
- Bit 22 PDRQFR PDelay Request Frame Received
- Bit 21 SFT PTP Sync Frame Transmitted
- Bit 20 DRQFT PTP Delay Request Frame Transmitted
- Bit 19 SFR PTP Sync Frame Received
- Bit 18 DRQFR PTP Delay Request Frame Received
- Bit 15 EXINT External Interrupt
- Bit 14 PFTR Pause Frame Transmitted
- Bit 13 PTZ Pause Time Zero
- Bit 12 PFNZ Pause Frame with Non-zero Pause Quantum Received
- Bit 11 HRESP HRESP Not OK
- Bit 10 ROVR Receive Overrun
- Bit 7 TCOMP Transmit Complete
- Bit 6 TFC Transmit Frame Corruption Due to AHB Error
- Bit 5 RLEX Retry Limit Exceeded
- Bit 4 TUR Transmit Underrun
- Bit 3 TXUBR TX Used Bit Read
- Bit 2 RXUBR RX Used Bit Read
- Bit 1 RCOMP Receive Complete
- Bit 0 MFS Management Frame Sent

The bank is really killed: USBHS DEVEPTISRx.NBUSYBK is decremented.

The bank is not cleared but sent (IN transfer): USBHS_DEVEPTISRx.NBUSYBK is decremented.

The bank is not cleared because it was empty.

The user should wait for this bit to be cleared before trying to kill another packet.

This kill request is refused if at the same time an IN token is coming and the last bank is the current one being sent on the USB line. If at least two banks are ready to be sent, there is no problem to kill a packet even if an IN token is coming. Indeed, in this case, the current bank is sent (IN transfer) while the last bank is killed.

Bit 12 – NBUSYBKE Number of Busy Banks Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.NBUSYBKEC = 0. This disables the Number of Busy
	Banks interrupt (USBHS_DEVEPTISRx.NBUSYBK).
1	Set when the USBHS_DEVEPTIERx.NBUSYBKES = 1. This enables the Number of Busy
	Banks interrupt (USBHS_DEVEPTISRx.NBUSYBK).

Bit 7 – SHORTPACKETE Short Packet Interrupt

If this bit is set for non-control IN endpoints, a short packet transmission is guaranteed upon ending a DMA transfer, thus signaling an end of isochronous frame or a bulk or interrupt end of transfer, provided that the End of DMA Buffer Output Enable (END_B_EN) bit and the Automatic Switch (AUTOSW) = 1.

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.SHORTPACKETEC = 1. This disables the Short
	Packet interrupt (USBHS_DEVEPTISRx.SHORTPACKET).
1	Set when USBHS_DEVEPTIERx.SHORTPACKETES = 1. This enables the Short Packet
	interrupt (USBHS_DEVEPTISRx.SHORTPACKET).

Bit 6 – STALLEDE STALLed Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.STALLEDEC = 1. This disables the STALLed interrupt
	(USBHS_DEVEPTISRx.STALLEDI).
1	Set when USBHS_DEVEPTIERx.STALLEDES = 1. This enables the STALLed interrupt
	(USBHS_DEVEPTISRx.STALLEDI).

Bit 5 – OVERFE Overflow Interrupt

Value	Description
0	Cleared when USBHS_DEVEPTIDRx.OVERFEC = 1. This disables the Overflow interrupt
	(USBHS_DEVEPTISRx.OVERFI).
1	Set when USBHS_DEVEPTIERx.OVERFES = 1. This enables the Overflow interrupt
	(USBHS_DEVEPTISRx.OVERFI).

Bit 4 - NAKINE NAKed IN Interrupt

USB High-Speed Interface (USBHS)

Value	Description
0	No PID error occurred since last clear of this bit.
1	This bit is automatically set when a PID error has been detected.

Bit 1 – DATAPID Data PID Error

Value	Description
0	No Data PID error occurred since last clear of this bit.
1	This bit is automatically set when a Data PID error has been detected.

Bit 0 – DATATGL Data Toggle Error

Value	Description
0	No Data Toggle error occurred since last clear of this bit.
1	This bit is automatically set when a Data Toggle error has been detected.

- Bit 7 UNRE Underrun Error Interrupt Disable
- Bit 6 OVRE Overrun Error Interrupt Disable
- Bit 5 GACC General Call Access Interrupt Disable
- Bit 4 SVACC Slave Access Interrupt Disable
- Bit 2 TXRDY Transmit Holding Register Ready Interrupt Disable
- Bit 1 RXRDY Receive Holding Register Ready Interrupt Disable
- Bit 0 TXCOMP Transmission Completed Interrupt Disable

Universal Synchronous Asynchronous Receiver Transc...

Bit 7 – TXDIS Transmitter Disable

Value	Description
0	No effect.
1	Disables the transmitter.

Bit 6 – TXEN Transmitter Enable

Value	Description
0	No effect.
1	Enables the transmitter if TXDIS is 0.

Bit 5 - RXDIS Receiver Disable

Value	Description
0	No effect.
1	Disables the receiver.

Bit 4 – RXEN Receiver Enable

Value	Description
0	No effect.
1	Enables the receiver, if RXDIS is 0.

Bit 3 – RSTTX Reset Transmitter

Value	Description
0	No effect.
1	Resets the transmitter.

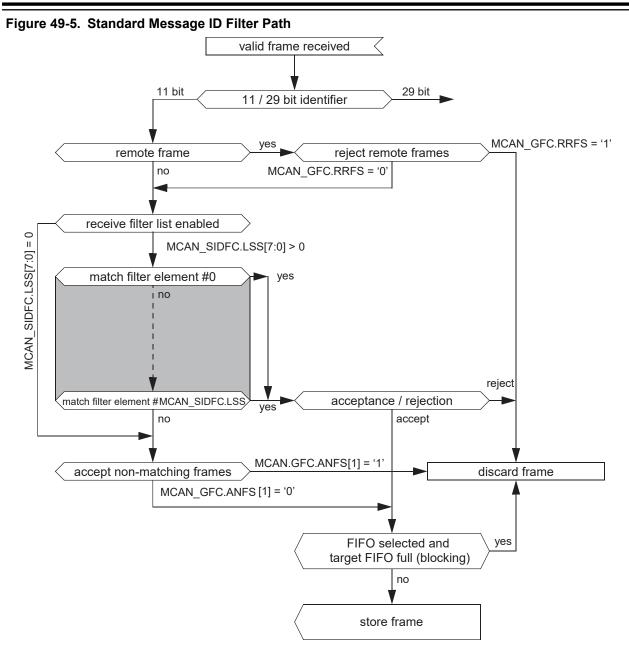
Bit 2 - RSTRX Reset Receiver

Value	Description
0	No effect.
1	Resets the receiver.

- Bit 5 OVRE Overrun Error Interrupt Enable
- **Bit 1 TXRDY** TXRDY Interrupt Enable
- Bit 0 RXRDY RXRDY Interrupt Enable

Media Local Bus (MLB)

Offset	Name	Bit Pos.										
 0x7F												
		7:0							RST1	RST0		
0x80		15:8	EN									
	MLB_HCTL	23:16										
		31:24										
0x84												
 0x87	Reserved											
		7:0			CHM	I: Bitwise Chan	nel Mask Bit [3	1[7:0]				
0.00		15:8			CHM	: Bitwise Chan	nel Mask Bit [3	1[15:8]				
0x88	MLB_HCMR0	23:16			CHM	Bitwise Chann	el Mask Bit [31	[23:16]				
		31:24			CHM	Bitwise Chann	el Mask Bit [31	[31:24]				
		7:0			CHM	I: Bitwise Chan	nel Mask Bit [6	3[7:0]				
0x8C		15:8			CHM	: Bitwise Chan	nel Mask Bit [6	3[15:8]				
UXOC	MLB_HCMR1	23:16			CHM	Bitwise Chann	nel Mask Bit [63	[23:16]				
		31:24			CHM	Bitwise Chann	nel Mask Bit [63	[31:24]				
		7:0			CER	R: Bitwise Cha	nnel Error Bit [3	31[7:0]				
0x90	MLB_HCER0	15:8		CERR: Bitwise Channel Error Bit [31[15:8]								
0,30	MED_HOEKO	23:16		CERR: Bitwise Channel Error Bit [31[23:16]								
		31:24		CERR: Bitwise Channel Error Bit [31[31:24]								
		7:0		CERR: Bitwise Channel Error Bit [63[7:0]								
0x94	MLB_HCER1	15:8	CERR: Bitwise Channel Error Bit [63[15:8]									
		23:16		CERR: Bitwise Channel Error Bit [63[23:16]								
		31:24			CERF	: Bitwise Chan	nel Error Bit [63	3[31:24]				
		7:0				3: Bitwise Chan						
0x98	MLB_HCBR0	15:8				: Bitwise Chan						
		23:16				Bitwise Chann						
		31:24				Bitwise Chann						
		7:0				3: Bitwise Chan						
0x9C	MLB_HCBR1	15:8				Bitwise Chan						
		23:16				Bitwise Chann	<i>,</i> ,					
0xA0		31:24				Bitwise Chann		[31:24]				
	Reserved											
 0xBF	Reserved											
		7:0				DAT	A[7:0]					
		15:8					A[15:8]					
0xC0	MLB_MDAT0	23:16		DATA[23:16]								
		31:24					[31:24]					
		7:0					A[7:0]					
		15:8					4[15:8]					
0xC4	MLB_MDAT1	23:16				DATA	[23:16]					
		31:24				DATA	[31:24]					
0xC8		7:0				DAT	A[7:0]					
	MLB_MDAT2	15:8				DATA	A[15:8]					
						2						


48.7.16 MIF Data 1 Register

Name:	MLB_MDAT1				
Offset:	0x0C4				
Reset:	0x00000000				
Property:	Read/Write				

Bit	31	30	29	28	27	26	25	24		
	DATA[31:24]									
Access										
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				DATA	[23:16]					
Access										
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				DATA	[15:8]					
Access										
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				DAT	A [7:0]					
Access										
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 – DATA[31:0] CRT Data CTR data - bits[63:32] of 128-bit entry

Controller Area Network (MCAN)

Extended Message ID Filtering

The figure below shows the flow for extended Message ID (29-bit Identifier) filtering. The Extended Message ID Filter element is described in 49.5.7.6 Extended Message ID Filter Element.

Controlled by MCAN_GFC and MCAN_XIDFC Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of received frames are compared against the list of configured filter elements.

MCAN_XIDAM is ANDed with the received identifier before the filter list is executed.

Controller Area Network (MCAN)

Buffer element is described in Tx Buffer Element. The table below describes the possible configurations for frame transmission.

MCAN_CCCR		Tx Buffer Elen	nent	Frame Transmission		
BRSE	FDOE	FDF	BRS			
ignored	0	ignored	ignored	Classic CAN		
0	1	0	ignored	Classic CAN		
0	1	1	ignored	FD without bit rate switching		
1	1	0	ignored	Classic CAN		
1	1	1	0	FD without bit rate switching		
1	1	1	1	FD with bit rate switching		

 Table 49-5.
 Possible Configurations for Frame Transmission

Note: AUTOSAR requires at least three Tx Queue Buffers and support of transmit cancellation.

The Tx Handler starts a Tx scan to check for the highest priority pending Tx request (Tx Buffer with lowest Message ID) when MCAN_TXBRP is updated, or when a transmission has been started.

49.5.5.1 Transmit Pause

The transmit pause feature is intended for use in CAN systems where the CAN message identifiers are (permanently) specified to specific values and cannot easily be changed. These message identifiers may have a higher CAN arbitration priority than other defined messages, while in a specific application their relative arbitration priority should be inverse. This may lead to a case where one ECU sends a burst of CAN messages that cause another ECU's CAN messages to be delayed because that other messages have a lower CAN arbitration priority.

If e.g. CAN ECU-1 has the transmit pause feature enabled and is requested by its application software to transmit four messages, it will, after the first successful message transmission, wait for two CAN bit times of bus idle before it is allowed to start the next requested message. If there are other ECUs with pending messages, those messages are started in the idle time, they would not need to arbitrate with the next message of ECU-1. After having received a message, ECU-1 is allowed to start its next transmission as soon as the received message releases the CAN bus.

The transmit pause feature is controlled by bit MCAN_CCCR.TXP. If the bit is set, the MCAN will, each time it has successfully transmitted a message, pause for two CAN bit times before starting the next transmission. This enables other CAN nodes in the network to transmit messages even if their messages have lower prior identifiers. Default is transmit pause disabled (MCAN_CCCR.TXP = '0').

This feature looses up burst transmissions coming from a single node and it protects against "babbling idiot" scenarios where the application program erroneously requests too many transmissions.

49.5.5.2 Dedicated Tx Buffers

Dedicated Tx Buffers are intended for message transmission under complete control of the processor. Each dedicated Tx Buffer is configured with a specific Message ID. In case that multiple Tx Buffers are configured with the same Message ID, the Tx Buffer with the lowest buffer number is transmitted first.

If the data section has been updated, a transmission is requested by an Add Request via MCAN_TXBAR.ARn. The requested messages arbitrate internally with messages from an optional Tx FIFO or Tx Queue and externally with messages on the CAN bus, and are sent out according to their Message ID.

50.7.3 TC Channel Mode Register: Waveform Mode

Name:	TC_CMRx
Offset:	0x04 + x*0x40 [x=02]
Reset:	0x0000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	BSWT	RG[1:0] BEEV		VT[1:0] BCPC		C[1:0]	BCPI	3[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	ASWT	RG[1:0]	AEE\	/T[1:0]	ACPO	C[1:0]	ACPA	A[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	WAVE	WAVS	EL[1:0]	ENETRG	EEV	EEVT[1:0]		DG[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CPCDIS	CPCSTOP	BURS	ST[1:0]	CLKI		TCCLKS[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:30 – BSWTRG[1:0] Software Trigger Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

Bits 29:28 - BEEVT[1:0] External Event Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

Bits 27:26 - BCPC[1:0] RC Compare Effect on TIOBx

Value	Name	Description
0	NONE	None
1	SET	Set

51.7.10 PWM DMA Register

Name:	PWM_DMAR
Offset:	0x24
Reset:	-
Property:	Write-only

Only the first 16 bits (channel counter size) are significant.

16
W
0
8
W
0
0
W

Bits 23:0 – DMADUTY[23:0] Duty-Cycle Holding Register for DMA Access

Each write access to PWM_DMAR sequentially updates PWM_CDTYUPDx.CDTYUPD with DMADUTY (only for channel configured as synchronous). See "Method 3: Automatic write of duty-cycle values and automatic trigger of the update".

Analog Front-End Controller (AFEC)

						1		1			
Offset	Name	Bit Pos.									
		31:24									
		7:0				TLOWTH	IRES[7:0]				
0.74		15:8				TLOWTH	RES[15:8]				
0x74	AFEC_TEMPCWR	23:16		THIGHTHRES[7:0]							
		31:24				THIGHTH	RES[15:8]				
0x78											
	Reserved										
0x93											
		7:0					PGA1EN	PGA0EN			
		15:8							IBCT	L[1:0]	
0x94	AFEC_ACR	23:16									
		31:24									
0x98		-									
	Reserved										
0x9F											
		7:0	DUAL7	DUAL6	DUAL5	DUAL4	DUAL3	DUAL2	DUAL1	DUAL0	
		15:8					DUAL11	DUAL10	DUAL9	DUAL8	
0xA0	AFEC_SHMR	23:16									
		31:24									
0xA4		0.112.1									
	Reserved										
0xCF											
		7:0								CSEL	
		15:8								0022	
0xD0	AFEC_COSR	23:16									
		31:24									
		7:0				OFESET	CORR[7:0]				
		15:8					ORR[15:8]				
0xD4	AFEC_CVR	23:16									
		31:24					DRR[7:0]				
			F00007	FOODDA	FOODDE		RR[15:8]	500000	500DD4	F00000	
		7:0	ECORR7	ECORR6	ECORR5	ECORR4	ECORR3	ECORR2	ECORR1	ECORR0	
0xD8	AFEC_CECR	15:8					ECORR11	ECORR10	ECORR9	ECORR8	
		23:16									
0.55		31:24									
0xDC											
	Reserved										
0xE3											
		7:0								WPEN	
0xE4	AFEC_WPMR	15:8					EY[7:0]				
		23:16					Y[15:8]				
		31:24				WPKE'	Y[23:16]				
		7:0								WPVS	
0xE8	AFEC_WPSR	15:8					RC[7:0]				
_		23:16				WPVSF	RC[15:8]				
		31:24									

Electrical Characteristics for SAM E70/S70

Core Clock/MCK (MHz)	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit	Wakeup Time	Unit
96/96	12.5	15		1.4	
96/48	7.5	10		2.5	
48/48	7	9.5		2.8	
24/24	3.5	5		5.6	
24/12	2	3		10	
12/12	2	3		11.2	
8/8	1.5	2		16.8	
4/4	1.0	1.5		32.9	
4/2	0.9	1		60	
4/1	0.8	1		112.6	

Table 59-14. Typical Sleep Mode Current Consumption vs. Master Clock (MCK) Variation with Fast RC

Core Clock/MCK (MHz)	VDDCORE Consumption (AMP1)	Total Consumption (AMP2)	Unit	Wakeup Time	Unit
12	2.0	2.0		12	
8	1.5	1.5		18	
4	1.0	1.1		31	
2	0.8	0.8	mA	62	μs
1	0.6	0.7		123	
0.5	0.6	0.6		247	
0.25	0.5	0.5		494	

59.3.3 Wait Mode Current Consumption and Wakeup Time

The Wait mode configuration and measurements are defined as follows:

- Core clock and Master clock stopped
- Current measurement as shown below
- All peripheral clocks deactivated
- BOD disabled
- RTT enabled