

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71n20b-aab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

46.6	. Functional Description	
46.7	. Register Summary	
47. Univ	versal Asynchronous Receiver Transmitter (UART)	
	. Description	
	Embedded Characteristics	
	Block Diagram	
	Product Dependencies	
	Functional Description	
	Register Summary	
	dia Local Bus (MLB)	
	Description	
	Embedded Characteristics	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
48.7	. Register Summary	
49. Cor	ntroller Area Network (MCAN)	1570
49.1	. Description	1570
49.2	. Embedded Characteristics	
49.3	. Block Diagram	
49.4	. Product Dependencies	
49.5	. Functional Description	
49.6	. Register Summary	
50. Tim	er Counter (TC)	
50.1	Description	
	Embedded Characteristics	
	Block Diagram	
	Pin List	
	Product Dependencies	
	. Functional Description	
	. Register Summary	
	se Width Modulation Controller (PWM)	
	Description	
	Embedded Characteristics	
	Block Diagram	
	I/O Lines Description	
	Product Dependencies	
	Functional Description	
51.7.	. Register Summary	
52. Ana	log Front-End Controller (AFEC)	
52.1	. Description	1860

19.4.5 Bus Matrix Master Remap Control Register

Name:	MATRIX_MRCR
Offset:	0x0100
Reset:	0x0000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				RCB12	RCB11	RCB10	RCB9	RCB8
Access								
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RCB7	RCB6	RCB5	RCB4	RCB3	RCB2	RCB1	RCB0
Access			· · · · · · · · · · · · · · · · · · ·					
Reset	0	0	0	0	0	0	0	0

Bit 12 – RCB12 Remap Command Bit for Master 12

Value	Description
0	Disables remapped address decoding for the selected Master.
1	Enables remapped address decoding for the selected Master.

Bit 11 – RCB11 Remap Command Bit for Master 11

Value	Description
0	Disables remapped address decoding for the selected Master.
1	Enables remapped address decoding for the selected Master.

Bit 10 – RCB10 Remap Command Bit for Master 10

Value	Description
0	Disables remapped address decoding for the selected Master.
1	Enables remapped address decoding for the selected Master.

Bit 9 – RCB9 Remap Command Bit for Master 9

25. Reinforced Safety Watchdog Timer (RSWDT)

25.1 Description

The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if the software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the WDT. Its clock source is automatically selected from either the Slow RC oscillator clock, or from the Main RC oscillator divided clock to get an equivalent Slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz crystal oscillator) fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the monitoring. Thus, there is no lack of safety regardless of the external operating conditions. The RSWDT shares the same features as the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug mode or Idle mode.

25.2 Embedded Characteristics

- Automatically Selected Reliable RSWDT Clock Source (independent of WDT clock source)
- 12-bit Key-protected Programmable Counter
- Provides Reset or Interrupt Signals to the System
- Counter may be Stopped While Processor is in Debug State or Idle Mode

Parallel Input/Output Controller (PIO)

Offset	Name	Bit Pos.								
		15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0x94	PIO_PPDER	15:8	P15	P14	P13	P12	P11	P10	P9	P8
0,101		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0x98	PIO_PPDSR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0x9C 0x9F	Reserved									
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0.40		15:8	P15	P14	P13	P12	P11	P10	P9	P8
0xA0	PIO_OWER	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xA4	PIO_OWDR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
08,44	PIO_OWDR	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xA8	PIO_OWSR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
0740		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
OxAC										
 0xAF	Reserved									
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB0	PIO_AIMER	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB4	PIO_AIMDR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
		23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xB8	PIO_AIMMR	15:8	P15	P14	P13	P12	P11	P10	P9	P8
	· ····	23:16	P23	P22	P21	P20	P19	P18	P17	P16
		31:24	P31	P30	P29	P28	P27	P26	P25	P24
0xBC 0xBF	Reserved									
0		7:0	P7	P6	P5	P4	P3	P2	P1	P0
0xC0	PIO_ESR	15:8	P15	P14	P13	P12	P11	P10	P9	P8

DMA Controller (XDMAC)

Peripheral Name	Transfer Type	HW Interface Number (XDMAC_CC.PERID)
I2SC0	Receive Left	45
I2SC1	Transmit Left	46
I2SC1	Receive Left	47
I2SC0	Transmit Right	48
I2SC0	Receive Right	49
I2SC1	Transmit Right	50
I2SC1	Receive Right	51

36.5 Functional Description

36.5.1 Basic Definitions

Source Peripheral: Slave device, memory mapped on the interconnection network, from where the XDMAC reads data. The source peripheral teams up with a destination peripheral to form a channel. A data read operation is scheduled when the peripheral transfer request is asserted.

Destination Peripheral: Slave device, memory mapped on the interconnection network, to which the XDMAC writes. A write data operation is scheduled when the peripheral transfer request is asserted.

Channel: The data movement between source and destination creates a logical channel.

Transfer Type: The transfer is hardware-synchronized when it is paced by the peripheral hardware request, otherwise the transfer is self-triggered (memory to memory transfer).

36.5.2 Transfer Hierarchy Diagram

XDMAC Master Transfer: The Master Transfer is composed of a linked list of blocks. The channel address, control and configuration registers can be modified at the inter block boundary. The descriptor structure modifies the channel registers conditionally. Interrupts can be generated on a per block basis or when the end of linked list event occurs.

XDMAC Block: An XDMAC block is composed of a programmable number of microblocks. The channel configuration registers remain unchanged at the inter microblock boundary. The source and destination addresses are conditionally updated with a programmable signed number.

XDMAC Microblock: The microblock is composed of a programmable number of data. The channel configuration registers remain unchanged at the data boundary. The data address may be fixed (a FIFO location, a peripheral transmit or receive register), incrementing (a memory-mapped area) by a programmable signed number.

XDMAC Burst and Incomplete Burst: In order to improve the overall performance when accessing dynamic external memory, burst access is mandatory. Each data of the microblock is considered as a part of a memory burst. The programmable burst value indicates the largest memory burst allowed on a per channel basis. When the microblock length is not an integral multiple of the burst size, an incomplete burst is performed to read or write the last trailing bytes.

XDMAC Chunk and Incomplete Chunk: When a peripheral synchronized transfer is activated, the microblock splits into a number of data chunks. The chunk size is programmable. The larger the chunk is,

Image Sensor Interface (ISI)

Bit 17 – CXFR_DONE Codec DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 16 – PXFR_DONE Preview DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 10 – VSYNC Vertical Synchronization Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 2 – SRST Software Reset Interrupt Disable

Va	alue	Description
0		No effect.
1		Disables the corresponding interrupt.

Bit 1 – DIS_DONE Disable Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

- Bit 22 PDRQFR PDelay Request Frame Received
- Bit 21 SFT PTP Sync Frame Transmitted
- **Bit 20 DRQFT** PTP Delay Request Frame Transmitted
- Bit 19 SFR PTP Sync Frame Received
- Bit 18 DRQFR PTP Delay Request Frame Received
- Bit 15 EXINT External Interrupt
- **Bit 14 PFTR** Pause Frame Transmitted
- Bit 13 PTZ Pause Time Zero
- Bit 12 PFNZ Pause Frame with Non-zero Pause Quantum Received
- Bit 11 HRESP HRESP Not OK
- Bit 10 ROVR Receive Overrun
- Bit 7 TCOMP Transmit Complete
- Bit 6 TFC Transmit Frame Corruption Due to AHB Error
- Bit 5 RLEX Retry Limit Exceeded or Late Collision
- Bit 4 TUR Transmit Underrun
- Bit 3 TXUBR TX Used Bit Read
- Bit 2 RXUBR RX Used Bit Read
- Bit 1 RCOMP Receive Complete
- Bit 0 MFS Management Frame Sent

USB High-Speed Interface (USBHS)

39.6.23 Device Endpoint Interrupt Disable Register (Control, Bulk, Interrupt Endpoints)

 Name:
 USBHS_DEVEPTIDRx

 Offset:
 0x0220 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if EPTYPE = 0x0, 0x2, or 0x3 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Mask Register (Control, Bulk, Interrupt Endpoints)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

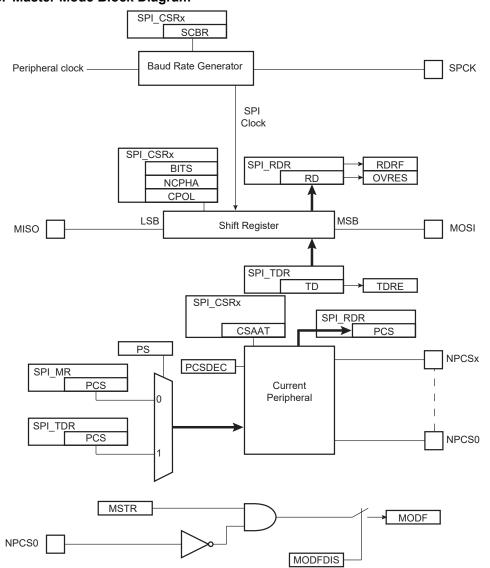
1: Clears the corresponding bit in USBHS_DEVEPTIMRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					STALLRQC		NYETDISC	EPDISHDMAC
Access								
Reset					0		0	0
Bit	15	14	13	12	11	10	9	8
		FIFOCONC		NBUSYBKEC				
Access								
Reset		0		0				
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	STALLEDEC	OVERFEC	NAKINEC	NAKOUTEC	RXSTPEC	RXOUTEC	TXINEC
	TEC							
Access								
Reset	0	0	0	0	0	0	0	0

Bit 19 - STALLRQC STALL Request Clear

Bit 17 – NYETDISC NYET Token Disable Clear

Bit 16 - EPDISHDMAC Endpoint Interrupts Disable HDMA Request Clear


Bit 14 – FIFOCONC FIFO Control Clear

Bit 12 – NBUSYBKEC Number of Busy Banks Interrupt Clear

Bit 7 – SHORTPACKETEC Shortpacket Interrupt Clear

Serial Peripheral Interface (SPI)

41.7.3.1 Master Mode Block Diagram Figure 41-6. Master Mode Block Diagram

43.7.5 **TWIHS Clock Waveform Generator Register**

Name:	TWIHS_CWGR
Offset:	0x10
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the TWIHS Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24		
				HOLD[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
							CKDIV[2:0]			
Access					-	R/W	R/W	R/W		
Reset						0	0	0		
Bit	15	14	13	12	11	10	9	8		
				CHDI	V[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CLDI	V[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

TWIHS_CWGR is used in Master mode only.

Bits 29:24 - HOLD[5:0] TWD Hold Time Versus TWCK Falling

If High-speed mode is selected TWD is internally modified on the TWCK falling edge to meet the I2C specified maximum hold time, else if High-speed mode is not configured TWD is kept unchanged after TWCK falling edge for a period of (HOLD + 3) × $t_{peripheral clock}$.

Bits 18:16 - CKDIV[2:0] Clock Divider

The CKDIV is used to increase both SCL high and low periods.

Bits 15:8 - CHDIV[7:0] Clock High Divider The SCL high period is defined as follows:

 $t_{\text{high}} = ((\text{CHDIV} \times 2^{\text{CKDIV}}) + 3) \times t_{\text{peripheral clock}}$

Bits 7:0 - CLDIV[7:0] Clock Low Divider The SCL low period is defined as follows:

 $t_{low} = ((CLDIV \times 2^{CKDIV}) + 3) \times t_{peripheral clock}$

43.7.16 TWIHS Write Protection Status Register

Name:	TWIHS_WPSR
Offset:	0xE8
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	WPVSRC[23:16]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPVSI	RC[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPVS	RC[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WPVS
Access								R
Reset								0

Bits 31:8 - WPVSRC[23:0] Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bit 0 – WPVS Write Protection Violation Status

Value	Description
0	No write protection violation has occurred since the last read of the TWIHS_WPSR.
1	A write protection violation has occurred since the last read of the TWIHS_WPSR. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

Synchronous Serial Controller (SSC)

44.9 Register Summary

Note: Offsets 0x100–0x128 are reserved for PDC registers.

Offset	Name	Bit Pos.							
		7:0						RXDIS	RXEN
0x00	SSC_CR	15:8	SWRST					TXDIS	TXEN
0,000	330_CK	23:16							
		31:24							
		7:0		:		DIV	([7:0]		
0x04	SSC_CMR	15:8						DIV[11:8]	
0,04	330_0MIX	23:16							
		31:24							
0x08									
 0x0F	Reserved								
		7:0	CKG	6[1:0]	CKI		CKO[2:0]	С	KS[1:0]
0.40		15:8				STOP		START[3:0]	
0x10	SSC_RCMR	23:16				STTD	LY[7:0]		
		31:24				PERIO	DD[7:0]		
		7:0	MSBF		LOOP		DATL	.EN[4:0]	
		15:8						DATNB[3:0]	
0x14	SSC_RFMR	23:16			FSOS[2:0]			FSLEN[3:0]	
		31:24		FSLEN	_EXT[3:0]				FSEDGE
	SSC_TCMR	7:0	CKG	G[1:0]	CKI		CKO[2:0]	С	KS[1:0]
		15:8						START[3:0]	
0x18		23:16				STTD	LY[7:0]		
		31:24	PERIOD[7:0]						
		7:0	MSBF		DATDEF		DATL	EN[4:0]	
		15:8						DATNB[3:0]	
0x1C	SSC_TFMR	23:16	FSDEN		FSOS[2:0]			FSLEN[3:0]	
		31:24		FSLEN	_EXT[3:0]				FSEDGE
		7:0				RDA	T[7:0]		
		15:8					Γ[15:8]		
0x20	SSC_RHR	23:16					[23:16]		
		31:24					[31:24]		
		7:0					T[7:0]		
		15:8					[15:8]		
0x24	SSC_THR	23:16	TDAT[23:16]						
		31:24					[31:24]		
0x28							-		
 0x2F	Reserved								
		7:0				RSD	AT[7:0]		
		15:8					.T[15:8]		
0x30	SSC_RSHR	23:16							
		31:24							

Inter-IC Sound Controller (I2SC)

	Name: Offset: Reset: Property:	I2SC_SCR 0x0C - Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			TXUR	CH[1:0]				
Access			W	W			•	
Reset			-	-				
Bit	15	14	13	12	11	10	9	8
								CH[1:0]
Access							W	W
Reset							-	-
Bit	7	6	5	4	3	2	1	0
		TXUR				RXOR		
Access		W				W		
Reset		_				_		

Bits 21:20 – TXURCH[1:0] Transmit Underrun Per Channel Status Clear Writing a '0' has no effect.

Writing a '1' to any bit in this field clears the corresponding bit in the I2SC_SR and the corresponding interrupt request.

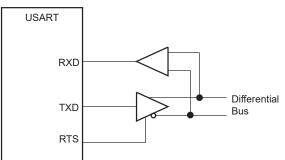
Bits 9:8 – RXORCH[1:0] Receive Overrun Per Channel Status Clear Writing a '0' has no effect.

Writing a '1' to any bit in this field clears the corresponding bit in the I2SC_SR and the corresponding interrupt request.

Bit 6 – TXUR Transmit Underrun Status Clear Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the status bit.

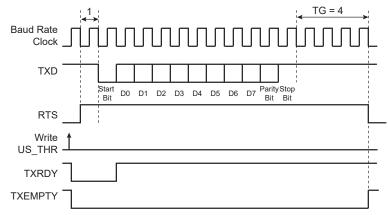
Bit 2 – RXOR Receive Overrun Status Clear Writing a '0' to this bit has no effect.


Writing a '1' to this bit clears the status bit.

45.8.4

I2SC Status Clear Register

Universal Synchronous Asynchronous Receiver Transc...


Figure 46-35. Typical Connection to a RS485 Bus

RS485 mode is enabled by writing the value 0x1 to the US_MR.USART_MODE.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is programmed so that the line can remain driven after the last character completion. Figure 46-36 gives an example of the RTS waveform during a character transmission when the timeguard is enabled.

Figure 46-36. Example of RTS Drive with Timeguard

46.6.7 Modem Mode

The USART features the Modem mode, which enables control of the signals DTR (Data Terminal Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect), and RI (Ring Indicator). While operating in Modem mode, the USART behaves as a DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR, DCD, CTS, and RI.

Modem mode is enabled by writing the value 0x3 to US_MR.USART_MODE. While operating in Modem mode, the USART behaves as though in Asynchronous mode and all the parameter configurations are available.

The following table provides the correspondence of the USART signals with modem connection standards.

USART Pin	V24	ССІТТ	Direction
TXD	2	103	From terminal to modem
RTS	4	105	From terminal to modem
DTR	20	108.2	From terminal to modem

Table 46-11. Circuit References

48.6.1.4 RxStatus Bytes

The MediaLB RxStatus field is eight-bits wide and all odd values are reserved; therefore, the LSB of RxStatus is always zero. Receiving Devices must place RxStatus on the MLBS line after the Tx Device command byte (Command). The RxStatus status responses are divided into two categories: current state and feedback. The current state RxStatus indicates the status of the Rx Device in the current physical channel, whereas the feedback RxStatus is a response to a Command in the previous logical channel. For Normal responses, only the ReceiverProtocolError is a feedback RxStatus byte. All System responses are also feedback RxStatus bytes.

Two types of MediaLB status responses are defined: Normal and System. Normal status responses are sent by the receiving MediaLB Device (or Controller) in the non-System Channels. System status responses are sent by the receiving MediaLB Device in the System Channel.

For synchronous data reception, the Rx Device does not drive a response. For 3-pin MediaLB, the pulldown resistor on the MLBS line implements the ReceiverReady response automatically (cannot be delayed or stopped).

For control or asynchronous packet reception, the Rx Device responds to a control or asynchronous command with ReceiverReady if it can accept the quadlet on the MLBD line. If the Rx Device cannot accept the quadlet, then it will respond with a status of ReceiverBusy. If the Rx Device needs to stop or cancel the packet transmission, it can respond with a status of ReceiverBreak, in which case the Tx Device must stop transmitting the current packet.

When the Rx Device recognizes an error, the ReceiverProtocolError status response is sent in the next physical channel that is part of the logical channel. The status response of ReceiverProtocolError is issued by the Rx Device under certain conditions, see Data Transport Methods for details.

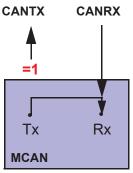

Value (see Note)	RxStatus	Description					
Normal Responses (Rx Device response in non-System Channels):							
00h	ReceiverReady	Current state indicating the receiving Device is ready to receive the data. This is the default for the bus. The Rx Devices should not drive this response for broadcast channels.					
02h 0Eh	rsvd	Reserved					
10h	ReceiverBusy	Current state indicating the Rx Device is not ready to receive the data. The data must be retransmitted in the next physical channel associated with this logical channel. This response is not allowed on synchronous channels.					
12h 6Eh	rsvd	Reserved					
70h	ReceiverBreak	Current state indicating the Rx Device will not receive additional data quadlets and requests termination of the data transmission. Only allowed on control and asynchronous channels.					
72h	ReceiverProtocolError	Feedback indicating the command received in the prior physical channel (of this logical channel) did not match the pre-defined					

 Table 48-6.
 MediaLB RxStatus Responses

Controller Area Network (MCAN)

The Bus Monitoring mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits. The figure below shows the connection of signals CANTX and CANRX to the MCAN in Bus Monitoring mode.

Figure 49-3. Pin Control in Bus Monitoring Mode

Bus Monitoring Mode

49.5.1.7 Disabled Automatic Retransmission

According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the MCAN provides means for automatic retransmission of frames that have lost arbitration or that have been disturbed by errors during transmission. By default automatic retransmission is enabled. To support time-triggered communication as described in ISO 11898-1, chapter 9.2, the automatic retransmission may be disabled via MCAN_CCCR.DAR.

49.5.1.7.1 Frame Transmission in DAR Mode

In DAR mode, all transmissions are automatically cancelled after they start on the CAN bus. A Tx Buffer's Tx Request Pending bit TXBRP.TRPx is reset after successful transmission, when a transmission has not yet been started at the point of cancellation, has been aborted due to lost arbitration, or when an error occurred during frame transmission.

Successful transmission: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx set

Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx not set

 Successful transmission in spite of cancellation: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx set

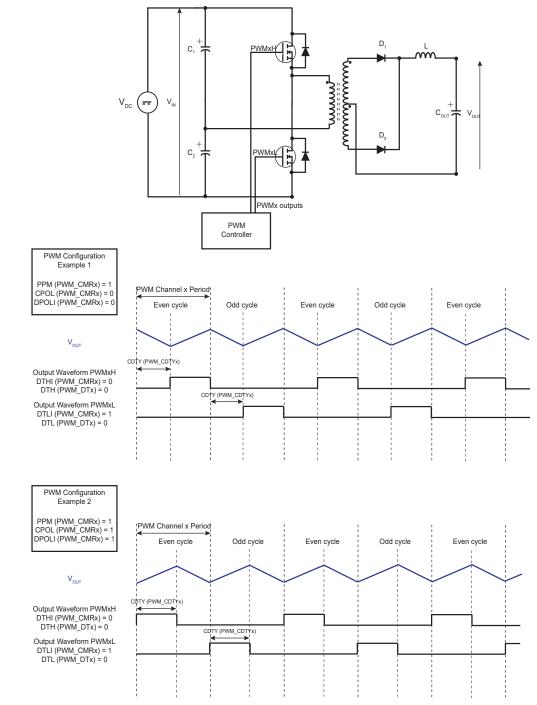
Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx set

 Arbitration lost or frame transmission disturbed: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx not set

Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx set

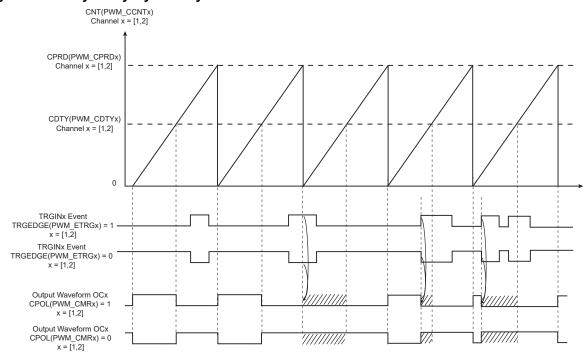
In case of a successful frame transmission, and if storage of Tx events is enabled, a Tx Event FIFO element is written with Event Type ET = "10" (transmission in spite of cancellation).

49.5.1.8 Power-down (Sleep Mode)


The MCAN can be set into Power-down mode via bit MCAN_CCCR.CSR.

When all pending transmission requests have completed, the MCAN waits until bus idle state is detected. Then the MCAN sets MCAN_CCCR.INIT to prevent any further CAN transfers. Now the MCAN acknowledges that it is ready for power down by setting to one the bit MCAN_CCCR.CSA. In this state, before the clocks are switched off, further register accesses can be made. A write access to

Bit 0 – IDX Index


Value	Description
0	No Index input change since the last read of TC_QISR.
1	The IDX input has changed since the last read of TC_QISR.

Pulse Width Modulation Controller (PWM)

Figure 51-13. Half-Bridge Converter Application: No Feedback Regulation

Pulse Width Modulation Controller (PWM)

Figure 51-31. Cycle-By-Cycle Duty Mode

51.6.5.3.2 Application Example

The figure below illustrates an application example of the Cycle-by-cycle Duty mode.

In an LED string control circuit, Cycle-by-cycle Duty mode can be used to automatically limit the current in the LED string.

Electrical Characteristics for SAM ...

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		ESR	_	_	2	Ohm
t _{ON}	Turn-on Time	$C_{DOUT} = 1 \ \mu$ F, V_{DDOUT} reaches DC output voltage	_	1	2.5	ms

Note:

- A 4.7 μF (±20%) or higher ceramic capacitor must be connected between V_{DDIN} and the closest GND pin of the device. This large decoupling capacitor is mandatory to reduce startup current, improving transient response and noise rejection.
- 2. To ensure stability, an external 1 μ F (±20%) output capacitor, C_{DOUT}, must be connected between V_{DDOUT} and the closest GND pin of the device. Solid tantalum and multilayer ceramic capacitors are suitable as output capacitors. A 100 nF bypass capacitor between V_{DDOUT} and the closest GND pin of the device helps decrease output noise and improves the load transient response.

Table 58-6. Core Power Supply Brownout Detector Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{T-}	Supply Falling Threshold (see Note 1)	-	0.97	1.0	1.04	V
V _{hys}	Hysteresis Voltage	-	_	25	50	mV
t _{START}	Startup Time	From disabled state to enabled state	_		400	μs

Note:

1. The Brownout Detector is configured using the BODDIS bit in the SUPC_MR register.

Figure 58-1. Core Brownout Output Waveform

Table 58-7. VDDCORE Power-on Reset Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{T+}	Threshold Voltage Rising	-	0.79	0.95	1.07	V
V _{T-}	Threshold Voltage Falling	-	0.66	0.89	_	V
V _{hys}	Hysteresis Voltage	-	10	60	115	mV
t _{RES}	Reset Timeout Period	-	240	350	800	μs