

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71n21b-cb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17. SAM-BA Boot Program

17.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload into the different memories of the product.

17.2 Embedded Characteristics

- Default Boot Program
- Interface with SAM-BA Graphic User Interface
- SAM-BA Boot
 - Supports several communication media
 I Serial Communication on UART0

I USB device port communication up to 1Mbyte/s

USB Requirements
 I External crystal or external clock with frequency of 12 MHz or 16 MHz

17.3 Hardware and Software Constraints

- SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining available bytes can be used for user code.
- USB Requirements:
 - External crystal or external clock (see the following Note) with frequency of 12 MHz or 16 MHz

Note: Must be 2500 ppm and VDDIO square wave signal.

- UART0 Requirements:
 - None. If no accurate external clock source is available, the internal 12 MHz RC meets RS-232 standards.

Table 17-1. Pins Driven during Boot Program Execution

Peripheral	Pin	PIO Line		
UART0	URXD0	PA9		
UART0	UTXD0	PA10		

17.4 Flow Diagram

The boot program implements the algorithm below.

23.4 Functional Description

23.4.1 Overview

The device is divided into two power supply areas:

- VDDIO power supply: includes the Supply Controller, part of the Reset Controller, the slow clock switch, the general-purpose backup registers, the supply monitor and the clock which includes the Real-time Timer and the Real-time Clock.
- Core power supply: includes part of the Reset Controller, the Brownout Detector, the processor, the SRAM memory, the Flash memory and the peripherals.

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when the VDDIO power supply rises (when the system is starting) or when Backup mode is entered.

The SUPC also integrates the slow clock generator, which is based on a 32.768 kHz crystal oscillator, and a slow RC oscillator. The slow clock defaults to the slow RC oscillator, but the software can enable the 32.768 kHz crystal oscillator and select it as the slow clock source.

The SUPC and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset cell. The zero-power power-on reset allows the SUPC to start correctly as soon as the VDDIO voltage becomes valid.

At startup of the system, once the backup voltage VDDIO is valid and the slow RC oscillator is stabilized, the SUPC starts up the core by sequentially enabling the internal voltage regulator. The SUPC waits until the core voltage VDDCORE is valid, then releases the reset signal of the core vddcore_nreset signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply monitor detects a voltage level on VDDIO that is too low, the SUPC asserts the reset signal of the core vddcore_nreset signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage level VDDCORE that is too low, the SUPC asserts the reset signal vddcore_nreset until VDDCORE is valid.

When Backup mode is entered, the SUPC sequentially asserts the reset signal of the core power supply vddcore_nreset and disables the voltage regulator, in order to supply only the VDDIO power supply. Current consumption is reduced to a few microamps for the backup part retention. Exit from this mode is possible on multiple wakeup sources including an event on WKUP pins, or a clock alarm. To exit this mode, the SUPC operates in the same way as system startup.

23.4.2 Slow Clock Generator

The SUPC embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as the VDDIO is supplied, both the 32.768 kHz crystal oscillator and the slow RC oscillator are powered up, but only the slow RC oscillator is enabled. When the slow RC oscillator is selected as the slow clock source, the slow clock stabilizes more quickly than when the 32.768 kHz crystal oscillator is selected.

The user can select the 32.768 kHz crystal oscillator to be the source of the slow clock, as it provides a more accurate frequency than the slow RC oscillator. The 32.768 kHz crystal oscillator is selected by setting the XTALSEL bit in the SUPC Control register (SUPC_CR). The following sequence must be used to switch from the slow RC oscillator to the 32.768 kHz crystal oscillator:

- 1. The PIO lines multiplexed with XIN32 and XOUT32 are configured to be driven by the oscillator.
- 2. The 32.768 kHz crystal oscillator is enabled.

Reinforced Safety Watchdog Timer (RSWDT)

25.5.1 Reinforced Safety Watchdog Timer Control Register

Reset

Bits 31:24 - KEY[7:0] Password

Value	Name	Description
0xC4	PASSWD	Writing any other value in this field aborts the write operation.

Bit 0 – WDRSTT Watchdog Restart

Value	Description
0	No effect.
1	Restarts the watchdog.

30. Clock Generator

30.1 Description

The Clock Generator user interface is embedded within the Power Management Controller and is described in Power Management Controller (PMC) User Interface. However, the Clock Generator registers are named CKGR_.

30.2 Embedded Characteristics

The Clock Generator is comprised of the following:

- A low-power 32.768 kHz crystal oscillator with Bypass mode
- A low-power Slow RC oscillator (32 kHz typical)
- A 3 to 20 MHz Main crystal oscillator with Bypass mode
- A Main RC oscillator. Three output frequencies can be selected: 4/8/12 MHz. By default 12 MHz is selected. 8 MHz and 12 MHz are factory-trimmed.
- A 480 MHz UTMI PLL, providing a clock for the USB high-speed controller
- A 160 to 500 MHz programmable PLL (input from 8 to 32 MHz)

It provides the following clocks:

- SLCK Slow clock. The only permanent clock within the system
- MAINCK output of the Main clock oscillator selection: either the Main crystal oscillator or Main RC oscillator
- PLLACK output of the divider and 160 to 500 MHz programmable PLL (PLLA)
- UPLLCK output of the 480 MHz UTMI PLL (UPLL)

DMA Controller (XDMAC)

Offset	Name	Bit Pos.									
		23:16				SA[2	3:16]				
		31:24					1:24]				
		7:0					[7:0]				
		15:8		DA[15:8]							
0x03E4	XDMAC_CDA14	23:16		DA[23:16]							
		31:24				DA[3	1:24]				
		7:0			NDA	[5:0]				NDAIF	
0 0050		15:8				NDA	[13:6]				
0x03E8	XDMAC_CNDA14	23:16				NDA[21:14]				
		31:24		NDA[29:22]							
		7:0				NDVIE	EW[1:0]	NDDUP	NDSUP	NDE	
		15:8									
0x03EC	XDMAC_CNDC14	23:16									
		31:24									
		7:0				UBLE	N[7:0]				
		15:8				UBLEI	N[15:8]				
0x03F0	XDMAC_CUBC14	23:16				UBLEN	I[23:16]				
		31:24									
		7:0				BLEI	N[7:0]				
		15:8						BLEN	I[11:8]		
0x03F4	XDMAC_CBC14	23:16									
		31:24									
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE	
		15:8		DIF	SIF	DWID.	TH[1:0]		CSIZE[2:0]	1	
0x03F8	XDMAC_CC14	23:16	WRIP	RDIP	INITD		DAM	DAM[1:0] SAM[1:0]			
		31:24			1		PERID[6:0]		1		
		7:0				SDS_N	ISP[7:0]				
0x03FC	XDMAC_CDS_MSP	15:8				SDS_M	SP[15:8]				
UXUSEC	14	23:16				DDS_N	ISP[7:0]				
		31:24				DDS_M	SP[15:8]				
		7:0				SUB	S[7:0]				
0x0400		15:8				SUBS	6[15:8]				
0X0400	XDMAC_CSUS14	23:16				SUBS	[23:16]				
		31:24									
		7:0				DUB	S[7:0]				
0x0404	XDMAC_CDUS14	15:8				DUBS	6[15:8]				
0x0404	XDIMAC_CD0514	23:16				DUBS	[23:16]				
		31:24									
0x0408											
	Reserved										
0x040F											
		7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE	
0x0410	XDMAC_CIE15	15:8									
57.0 110		23:16									
		24.24									
		31:24									

DMA Controller (XDMAC)

Offset	Name	Bit Pos.								
		23:16								
		31:24								
		7:0	MEMSET	SWREQ		DSYNC		MBSIZ	ZE[1:0]	TYPE
00470		15:8		DIF	SIF	DWID	FH[1:0]		CSIZE[2:0]	1
0x0478	XDMAC_CC16	23:16	WRIP	RDIP	INITD		DAN	/[1:0]	SAM	I[1:0]
		31:24			1		PERID[6:0]		1	
		7:0				SDS_M	SP[7:0]			
00470	XDMAC_CDS_MSP	15:8				SDS_M	SP[15:8]			
0x047C	16	23:16				DDS_M	ISP[7:0]			
		31:24				DDS_M	SP[15:8]			
		7:0				SUBS	S[7:0]			
00400		15:8				SUBS	[15:8]			
0x0480	XDMAC_CSUS16	23:16				SUBS	[23:16]			
		31:24								
		7:0				DUB	S[7:0]			
0x0484		15:8				DUBS	[15:8]			
0X0464	XDMAC_CDUS16	23:16				DUBS	[23:16]			
		31:24								
0x0488										
 0x048F	Reserved									
	XDMAC_CIE17	7:0		ROIE	WBIE	RBIE	FIE	DIE	LIE	BIE
00400		15:8								
0x0490		23:16								
		31:24								
		7:0		ROID	WBEID	RBEID	FID	DID	LID	BID
0x0494		15:8								
0X0494	XDMAC_CID17	23:16								
		31:24								
		7:0		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM
020409		15:8								
0x0498	XDMAC_CIM17	23:16								
		31:24								
		7:0		ROIS	WBEIS	RBEIS	FIS	DIS	LIS	BIS
0x049C		15:8								
0x0490	XDMAC_CIS17	23:16								
		31:24								
		7:0				SA[7:0]			
0x04A0	XDMAC_CSA17	15:8				SA[1	15:8]			
0X04A0	ADIVIAC_CSATT	23:16				SA[2	3:16]			
		31:24				SA[3	1:24]			
		7:0				DA[7:0]			
0x04A4		15:8				DA[´	15:8]			
UXU4A4	XDMAC_CDA17	23:16				DA[2	3:16]			
		31:24				DA[3	1:24]			
0x04A8	XDMAC_CNDA17	7:0			NDA	[5:0]				NDAIF

from the queue will be from immediately after the last successfully transmitted frame. As long as transmit is disabled by writing a '0' to the Transmit Enable bit in the Network Control register (GMAC_NCR.TXEN), the transmit buffer queue pointer resets to point to the address indicated by the Transmit Buffer Queue Base Address register (GMAC_TBQB).

Note: Disabling receive does not have the same effect on the receive buffer queue pointer.

Once the transmit queue is initialized, transmit is activated by writing a '1' to the Start Transmission bit of the Network Control register (GMAC_NCR.TSTART). Transmit is halted when a buffer descriptor with its used bit set is read, a transmit error occurs, or by writing to the Transmit Halt bit of the Network Control register (GMAC_NCR.THALT). Transmission is suspended if a pause frame is received while the Transmit Pause Frame bit is '1' in the Network Configuration register (GMAC_NCR.TXPF). Rewriting the Start bit (GMAC_NCR.TSTART) while transmission is active is allowed. This is implemented by the Transmit Go variable which is readable in the Transmit Status register (GMAC_TSR.TXGO). The TXGO variable is reset when:

- Transmit is disabled.
- A buffer descriptor with its ownership bit set is read.
- Bit 10, THALT, of the Network Control register is written.
- There is a transmit error such as too many retries or a transmit underrun.

To set TXGO, write a '1' to GMAC_NCR.TSTART. Transmit halt does not take effect until any ongoing transmit finishes.

If the DMA is configured for packet buffer Partial Store and Forward mode and a collision occurs during transmission of a multi-buffer frame, transmission will automatically restart from the first buffer of the frame. For packet buffer mode, the entire contents of the frame are read into the transmit packet buffer memory, so the retry attempt will be replayed directly from the packet buffer memory rather than having to re-fetch through the AHB.

If a used bit is read midway through transmission of a multi-buffer frame, this is treated as a transmit error. Transmission stops, GTXER is asserted and the FCS will be bad.

If transmission stops due to a transmit error or a used bit being read, transmission restarts from the first buffer descriptor of the frame being transmitted when the transmit start bit is rewritten.

38.6.3.5 DMA Bursting on the AHB

The DMA will always use SINGLE, or INCR type AHB accesses for buffer management operations. When performing data transfers, the AHB burst length is selected by the Fixed Burst Length for DMA Data Operations bit field in the DMA Configuration register (GMAC_DCFGR.FBLDO) so that either SINGLEor fixed length incrementing bursts (INCR4, INCR8 or INCR16) are used where possible:

When there is enough space and enough data to be transferred, the programmed fixed length bursts will be used. If there is not enough data or space available, for example when at the beginning or the end of a buffer, SINGLE type accesses are used. Also SINGLE type accesses are used at 1024 Byte boundaries, so that the 1 KByte boundaries are not burst over as per AHB requirements.

The DMA will not terminate a fixed length burst early, unless an error condition occurs on the AHB or if receive or transmit are disabled in the Network Control register (GMAC_NCR).

38.6.3.6 DMA Packet Buffer

The DMA uses packet buffers for both transmit and receive paths. This mode allows multiple packets to be buffered in both transmit and receive directions. This allows the DMA to withstand far greater access latencies on the AHB and make more efficient use of the AHB bandwidth. There are two modes of operation—Full Store and Forward and Partial Store and Forward.

GMAC - Ethernet MAC

Offset	Name	Bit Pos.								
		7:0		MASKVAL[7:0]						
		15:8		MASKVAL[15:8]						
0x07A8	GMAC_ST2CW021	23:16		COMPVAL[7:0]						
		31:24		COMPVAL[15:8]						
		7:0	OFFSSTRT[0: 0]	OFFSVAL[6:0]						
0x07AC	GMAC_ST2CW121	15:8		OFFSSTRT[1: 1]						
		23:16								
		31:24								
		7:0		MASKVAL[7:0]						
0x07B0	GMAC_ST2CW022	15:8		MASKVAL[15:8]						
0,07,00		23:16		COMPVAL[7:0]						
		31:24		COMPVAL[15:8]						
		7:0	OFFSSTRT[0: 0]	OFFSVAL[6:0]						
0x07B4	GMAC_ST2CW122	15:8		OFFSSTRT[1: 1]						
		23:16								
		31:24								
		7:0		MASKVAL[7:0]						
0x07B8	GMAC_ST2CW023	15:8		MASKVAL[15:8]						
0.07 00	GNAC_31200023	23:16		COMPVAL[7:0]						
		31:24		COMPVAL[15:8]						
		7:0	OFFSSTRT[0: 0]	OFFSVAL[6:0]						
0x07BC	GMAC_ST2CW123	15:8		OFFSSTRT[1: 1]						
		23:16								
		31:24								

GMAC - Ethernet MAC

Value	Name	Description
2	-	Reserved
4	INCR4	001xx: Attempt to use INCR4 AHB bursts (Default)
8	INCR8	01xxx: Attempt to use INCR8 AHB bursts
16	INCR16	1xxxx: Attempt to use INCR16 AHB bursts

High-Speed Multimedia Card Interface (HSMCI)

40.14.3 HSMCI Data Timeout Register

Name:	HSMCI_DTOR
Offset:	0x08
Reset:	0x0
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24	
Access		•	•						
Reset									
Bit	23	22	21	20	19	18	17	16	
Access	L	•			L	•			
Reset									
Bit	15	14	13	12	11	10	9	8	
Access			·						
Reset									
Bit	7	6	5	4	3	2	1	0	
		DTOMUL[2:0]			DTOCYC[3:0]				
Access									
Reset		0	0	0	0	0	0	0	

Bits 6:4 – DTOMUL[2:0] Data Timeout Multiplier

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the HSMCI Status Register (HSMCI_SR) rises.

Value	Name	Description
0	1	DTOCYC
1	16	DTOCYC x 16
2	128	DTOCYC x 128
3	256	DTOCYC x 256
4	1024	DTOCYC x 1024
5	4096	DTOCYC x 4096
6	65536	DTOCYC x 65536
7	1048576	DTOCYC x 1048576

Bits 3:0 – DTOCYC[3:0] Data Timeout Cycle Number

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers. It equals (DTOCYC x Multiplier).

High-Speed Multimedia Card Interface (HSMCI)

	Name: Offset: Reset: Property:	HSMCI_WPS 0xE8 0x0 Read-only	R					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				WPVSF	RC[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPVS	RC[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
	_	_	_			_		
Bit	7	6	5	4	3	2	1	0
								WPVS
Access								
Reset								0

40.14.19 HSMCI Write Protection Status Register

Bits 23:8 - WPVSRC[15:0] Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

Bit 0 – WPVS Write Protection Violation Status

Value	Description
0	No write protection violation has occurred since the last read of the HSMCI_WPSR.
1	A write protection violation has occurred since the last read of the HSMCI_WPSR. If this
	violation is an unauthorized attempt to write a protected register, the associated violation is
	reported into field WPVSRC.

Serial Peripheral Interface (SPI)

41.8.8 SPI Interrupt Mask Register

Name:SPI_IMROffset:0x1CReset:0x0Property:Read-only

The following configuration values are valid for all listed bit names of this register:

- 0: The corresponding interrupt is not enabled.
- 1: The corresponding interrupt is enabled.

Bit 10 – UNDES Underrun Error Interrupt Mask

- **Bit 9 TXEMPTY** Transmission Registers Empty Mask
- Bit 8 NSSR NSS Rising Interrupt Mask
- **Bit 3 OVRES** Overrun Error Interrupt Mask
- Bit 2 MODF Mode Fault Error Interrupt Mask
- Bit 1 TDRE SPI Transmit Data Register Empty Interrupt Mask
- Bit 0 RDRF Receive Data Register Full Interrupt Mask

Quad Serial Peripheral Interface (QSPI)

42.3 Block Diagram

Figure 42-1. Block Diagram

42.4 Signal Description Table 42-1. Signal Description

Pin Name	Pin Description	Туре
QSCK	Serial Clock	Output
MOSI (QIO0) ⁽¹⁾⁽²⁾	Data Output (Data Input Output 0)	Output (Input/Output)
MISO (QIO1) ⁽¹⁾⁽²⁾	Data Input (Data Input Output 1)	Input (Input/Output)
QIO2 ⁽³⁾	Data Input Output 2	Input/Output
QIO3 ⁽³⁾	Data Input Output 3	Input/Output
QCS	Peripheral Chip Select	Output

Note:

- 1. MOSI and MISO are used for single-bit SPI operation.
- 2. QIO0–QIO1 are used for Dual SPI operation.
- 3. QIO0–QIO3 are used for Quad SPI operation.

42.5 Product Dependencies

42.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer must first program the PIO controllers to assign the QSPI pins to their peripheral functions.

In this mode, the device never initiates and never completes the transmission (START, REPEATED START and STOP conditions are always provided by the master).

43.6.5.2 Programming Slave Mode

The following fields must be programmed before entering Slave mode:

- 1. TWIHS_SMR.SADR: The slave device address is used in order to be accessed by master devices in Read or Write mode.
- 2. (Optional) TWIHS_SMR.MASK can be set to mask some SADR address bits and thus allow multiple address matching.
- 3. TWIHS_CR.MSDIS: Disables the Master mode.
- 4. TWIHS_CR.SVEN: Enables the Slave mode.

As the device receives the clock, values written in TWIHS_CWGR are ignored.

43.6.5.3 Receiving Data

After a START or REPEATED START condition is detected, and if the address sent by the master matches the slave address programmed in the SADR (Slave Address) field, the SVACC (Slave Access) flag is set and SVREAD (Slave Read) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a REPEATED START is detected. When such a condition is detected, the EOSACC (End Of Slave Access) flag is set.

43.6.5.3.1 Read Sequence

In the case of a read sequence (SVREAD is high), the TWIHS transfers data written in the TWIHS_THR until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset.

As soon as data is written in the TWIHS_THR, TXRDY (Transmit Holding Register Ready) flag is reset, and it is set when the internal shifter is empty and the sent data acknowledged or not. If the data is not acknowledged, the NACK flag is set.

Note that a STOP or a REPEATED START always follows a NACK.

To clear the TXRDY flag, first set TWIHS_CR.SVDIS, then set TWIHS_CR.SVEN.

See Read Access Ordered by a Master.

43.6.5.3.2 Write Sequence

In the case of a write sequence (SVREAD is low), the RXRDY (Receive Holding Register Ready) flag is set as soon as a character has been received in TWIHS_RHR. RXRDY is reset when reading TWIHS_RHR.

The TWIHS continues receiving data until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the write sequence, the TXCOMP flag is set and SVACC is reset.

See Write Access Ordered by a Master.

43.6.5.3.3 Clock Stretching Sequence

If TWIHS_THR or TWIHS_RHR is not written/read in time, the TWIHS performs a clock stretching.

Clock stretching information is given by the SCLWS (Clock Wait State) bit.

See Clock Stretching in Read Mode and Clock Stretching in Write Mode.

Note: Clock stretching can be disabled by configuring the SCLWSDIS bit in TWIHS_SMR. In that case, the UNRE and OVRE flags indicate an underrun (when TWIHS_THR is not filled on time) or an overrun (when TWIHS_RHR is not read on time).

Two-wire Interface (TWIHS)

Offset	Name	Bit Pos.									
0x34		7:0					TXDA	TA[7:0]			
	TWIHS_THR	15:8									
		23:16									
		31:24									
		7:0							PRES	SC[3:0]	
0x38	TWIHS_SMBTR	15:8	TLOWS[7:0]								
0,30		23:16					TLOW	/M[7:0]			
		31:24					THMA	X[7:0]			
0x3C											
	Reserved										
0x43											
		7:0							PADFCFG	PADFEN	FILT
0x44	TWIHS_FILTR	15:8								THRES[2:0]	
0,44		23:16									
		31:24									
0x48											
	Reserved										
0x4B											
		7:0						SADR1[6:0]			
0x4C	TWIHS_SWMR	15:8						SADR2[6:0]			
0,40		23:16						SADR3[6:0]			
		31:24					DATA	M[7:0]			
0x50											
	Reserved										
0xE3											
		7:0									WPEN
0xE4	TWIHS_WPMR	15:8					WPKE	EY[7:0]			
UNE		23:16	WPKEY[15:8]								
		31:24					WPKE'	Y[23:16]			
		7:0									WPVS
0xE8	TWIHS_WPSR	15:8					WPVS	RC[7:0]			
UXEO		23:16					WPVSF	RC[15:8]			
		31:24					WPVSR	C[23:16]			

Media Local Bus (MLB)

Offset	Name	Bit Pos.	
	23:16		CHS[23:16]
		31:24	CHS[31:24]
0x03D8	MLB_ACMR0	7:0	CHM[7:0]
		15:8	CHM[15:8]
		23:16	CHM[23:16]
		31:24	CHM[31:24]
0x03DC	MLB_ACMR1	7:0	CHM[7:0]
		15:8	CHM[15:8]
		23:16	CHM[23:16]
		31:24	CHM[31:24]

53. Digital-to-Analog Converter Controller (DACC)

53.1 Description

The Digital-to-Analog Converter Controller (DACC) offers up to two single-ended analog outputs or one differential analog output, making it possible for the digital-to-analog conversion to drive up to two independent analog lines.

The DACC supports 12-bit resolution.

The DACC operates in Free-running mode, Max speed mode, Trigger mode or Interpolation mode.

The DACC integrates a Bypass mode which minimizes power consumption in case of a limited sampling rate conversion.

Each channel connects with a separate DMA channel. This feature reduces both power consumption and processor intervention.

53.2 Embedded Characteristics

- Up to Two Independent Single-Ended Analog Outputs or One Differential Analog Output
- 12-bit Resolution
- Integrated Interpolation Filter with 2×, 4×, 8×, 16× or 32× Oversampling Ratio (OSR)
- Reduced Number of System Bus Accesses (Word Transfer Mode)
- Individual Control of Each Analog Channel
- Hardware Triggers
 - One Trigger Selection Per Channel
 - External trigger pin
 - Internal events
- DMA Support
- One Internal FIFO per Channel
- Register Write Protection

Electrical Characteristics for SAM E70/S70

59.13.1.9.4 Write Timings

Table 59-64. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

Symbol	VDDIO Supply	1.7V Domain	3.3V Domain	Unit			
	Parameter	 	in				
HOLD or NO HOLD Settings (NWE_HOLD ≠ 0, NWE_HOLD = 0)							
SMC ₁₅	Data Out Valid before NWE High	NWE_PULSE × t _{CPMCK} - 5.4	NWE_PULSE × t _{CPMCK} - 4.6	ns			
SMC ₁₆	NWE Pulse Width	NWE_PULSE × t _{CPMCK} - 0.7	NWE_PULSE × t _{CPMCK} - 0.3	ns			
SMC ₁₇	A0–A22 valid before NWE low	NWE_SETUP × t_{CPMCK} - 4.9	NWE_SETUP × t_{CPMCK} - 4.2	ns			
SMC ₁₈	NCS low before NWE high	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 3.2	(NWE_SETUP - NCS_RD_SETUP + NWE_PULSE) × t _{CPMCK} - 2.2	ns			
HOLD S	ettings (NWE_HOLD ≠ 0)						
SMC ₁₉	NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2–A25 change	NWE_HOLD × t _{CPMCK} - 4.6	NWE_HOLD × t _{CPMCK} - 3.9	ns			
SMC ₂₀	NWE High to NCS Inactive ⁽¹⁾	(NWE_HOLD - NCS_WR_HOLD) × t _{СРМСК} - 3.9	(NWE_HOLD - NCS_WR_HOLD) × t _{СРМСК} - 3.6	ns			
NO HOLD Settings (NWE_HOLD = 0)							
SMC ₂₁	NWE High to Data OUT, NBS0/A0 NBS1, NBS2/A1, NBS3, A2– A25, NCS change ⁽¹⁾	2.1	1.5	ns			

Note:

Hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "NCS_WR_HOLD length" or "NWE_HOLD length"

Table 59-65. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol	VDDIO Supply	1.7V Domain	3.3V Domain	Unit
	Parameter	Min		
SMC ₂₂	Data Out Valid before NCS High	NCS_WR_PULSE × t _{CPMCK} - 2.8	NCS_WR_PULSE × t _{CPMCK} - 3.9	ns
SMC ₂₃	NCS Pulse Width	NCS_WR_PULSE × t _{CPMCK} - 0.9	NCS_WR_PULSE × t _{CPMCK} - 0.2	ns
SMC ₂₄	A0–A22 valid before NCS low	NCS_WR_SETUP × t _{CPMCK} - 4.0	NCS_WR_SETUP × t _{CPMCK} - 4.6	ns

Schematic Checklist

Signal Name	Recommended Pin Connection	Description				
TD	Application dependent.	SSC Transmit Data Pulled-up input (100 kOhm) to VDDIO at reset.				
RD	Application dependent.	SSC Receive Data Pulled-up input (100 kOhm) to VDDIO at reset.				
ТК	Application dependent.	SSC Transmit Clock Pulled-up input (100 kOhm) to VDDIO at reset.				
RK	Application dependent.	SSC Receive Clock I Pulled-up input (100 kOhm) to VDDIO at reset.				
TF	Application dependent.	SSC Transmit Frame Sync Pulled-up input (100 kOhm) to VDDIO at reset.				
RF	Application dependent.	SSC Receive Frame Sync Pulled-up input (100 kOhm) to VDDIO at reset.				
Image Sensor Interface	·	·				
ISI_D0-ISI_D11	Application dependent. (Signal can be level-shifted depending on the image sensor characteristics)	Image Sensor Data Pulled-up inputs (100 kOhm) to VDDIO at reset.				
ISI_MCK	Application dependent. (Signal can be level-shifted depending on the image sensor characteristics)	Image sensor reference clock. No dedicated signal, PCK1 can be used. Pulled-up input (100 kOhm) to VDDIO at reset.				
ISI_HSYNC	Application dependent. (Signal can be level-shifted depending on the image sensor characteristics)	Image sensor horizontal synchro Pulled-up input (100 kOhm) to VDDIO at reset.				
ISI_VSYNC	Application dependent. (Signal can be level-shifted depending on the image sensor characteristics)	Image sensor vertical synchro Pulled-up input (100 kOhm) to VDDIO at reset.				
ISI_PCK	Application dependent. (Signal can be level-shifted depending on the image sensor characteristics)	Image sensor data clock Pulled-up input (100 kOhm) to VDDIO at reset.				
Timer/Counter						
TCLKx	Application dependent.	TC Channel x External Clock Input Pulled-up inputs (100 kOhm) to VDDIO at reset.				
TIOAx	Application dependent.	TC Channel x I/O Line A				

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.