

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71n21b-cbt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19. Bus Matrix (MATRIX)

19.1 Description

The Bus Matrix (MATRIX) implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths between multiple AHB masters and slaves in a system, thus increasing the overall bandwidth. The MATRIX interconnects 13 AHB masters to 9 AHB slaves. The normal latency to connect a master to a slave is one cycle. The exception is the default master of the accessed slave which is connected directly (zero cycle latency).

The MATRIX user interface is compliant with ARM Advanced Peripheral Bus.

19.2 Embedded Characteristics

- 13 Masters
- 9 Slaves
- One Decoder for Each Master
- Several Possible Boot Memories for Each Master before Remap
- One Remap Function for Each Master
- Support for Long Bursts of 32, 64, 128 and up to the 256-beat Word Burst AHB Limit
- Enhanced Programmable Mixed Arbitration for Each Slave
 - Round-Robin
 - Fixed Priority
- Programmable Default Master for Each Slave
 - No Default Master
 - Last Accessed Default Master
 - Fixed Default Master
- Deterministic Maximum Access Latency for Masters
- Zero or One Cycle Arbitration Latency for the First Access of a Burst
- Bus Lock Forwarding to Slaves
- Master Number Forwarding to Slaves
- Configurable Automatic Clock-off Mode for Power Reduction
- One Special Function Register for Each Slave (not dedicated)
- Register Write Protection

19.2.1 Matrix Masters

The MATRIX manages the masters listed in he following table. Each master can perform an access to an available slave concurrently with other masters. lists the available masters.

Each master has its own specifically-defined decoder. To simplify addressing, all the masters have the same decodings.

Power Management Controller (PMC)

31.20.30 PMC SleepWalking Disable Register 0

Name:PMC_SLPWK_DR0Offset:0x0118Property:Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
ſ	PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
Access								
Reset								
	00			00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
	PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
Access		•	•					
Reset								
D :4	45	4.4	40	10	44	10	0	0
BIL	15	14	13	12	11	10	9	8
	PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
[PID7	3	<u> </u>	•	J	-	•	
, l								
Access								

Reset

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx Peripheral x SleepWalking Disable

Not all PIDs can be configured with asynchronous partial wake-up.

Only the following PIDs can be configured with asynchronous partial wake-up: UARTx and TWIHSx.

Value	Description
0	No effect.
1	The asynchronous partial wakeup (SleepWalking) function of the corresponding peripheral is disabled.
	Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers".

Parallel Input/Output Controller (PIO)

32.6.1.9 PIO Input Filter Status Register

Name:	PIO_IFSR
Offset:	0x0028
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access		·	·					•
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		•	•					
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access		•				•		
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access								
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Input Filter Status

Value	Description
0	The input glitch filter is disabled on the I/O line.
1	The input glitch filter is enabled on the I/O line.

Static Memory Controller (SMC)

35.9.1.1 NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

- nrd_setup— NRD setup time is defined as the setup of address before the NRD falling edge;
- nrd_pulse—NRD pulse length is the time between NRD falling edge and NRD rising edge;
- nrd_hold—NRD hold time is defined as the hold time of address after the NRD rising edge.

35.9.1.2 NCS Waveform

The NCS signal can be divided into a setup time, pulse length and hold time:

- ncs_rd_setup—NCS setup time is defined as the setup time of address before the NCS falling edge.
- ncs_rd_pulse—NCS pulse length is the time between NCS falling edge and NCS rising edge;
- ncs_rd_hold—NCS hold time is defined as the hold time of address after the NCS rising edge.

35.9.1.3 Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on the address bus to the point where address may change. The total read cycle time is defined as:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD,

as well as

NRD_CYCLE = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles. The NRD_CYCLE field is common to both the NRD and NCS signals, thus the timing period is of the same duration.

NRD_CYCLE, NRD_SETUP, and NRD_PULSE implicitly define the NRD_HOLD value as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE

Image Sensor Interface (ISI)

Bit 17 – CXFR_DONE Codec DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 16 – PXFR_DONE Preview DMA Transfer Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 10 – VSYNC Vertical Synchronization Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 2 – SRST Software Reset Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

Bit 1 – DIS_DONE Disable Done Interrupt Disable

Value	Description
0	No effect.
1	Disables the corresponding interrupt.

GMAC - Ethernet MAC

Frame Segment	Value
Type (Octets 12–13)	86dd
IP stuff (Octets 14–19)	
UDP (Octet 20)	11
IP stuff (Octets 21–37)	
IP DA (Octets 38–53)	FF0X0000000018
Source IP port (Octets 54–55)	
Dest IP port (Octets 56–57)	013F
Other stuff (Octets 58–61)	
Message type (Octet 62)	00
Other stuff (Octets 63–93)	
Version PTP (Octet 94)	02

Table 38-11. Example of Pdelay_Resp Frame in 1588 Version 2 (UDP/IPv6) Format

Frame Segment	Value
Preamble/SFD	55555555555555555555555555555555555555
DA (Octets 0–5)	
SA (Octets 6–11)	
Type (Octets 12–13)	86dd
IP stuff (Octets 14–19)	
UDP (Octet 20)	11
IP stuff (Octets 21–37)	
IP DA (Octets 38–53)	FF02000000006B
Source IP port (Octets 54–55)	
Dest IP port (Octets 56–57)	013F
Other stuff (Octets 58–61)	
Message type (Octet 62)	03
Other stuff (Octets 63–93)	
Version PTP (Octet 94)	02

For the multicast address 011B19000000 sync and delay request frames are recognized depending on the message type field, 00 for sync and 01 for delay request.

USB High-Speed Interface (USBHS)

39.6.16 Device Endpoint Interrupt Status Register (Isochronous Endpoints)

Name:	USBHS_DEVEPTISRx (ISOENPT)
Offset:	0x0130 + x*0x04 [x=09]
Reset:	0
Property:	Read/Write

This register view is relevant only if EPTYPE = 0x1 in the "Device Endpoint x Configuration Register".

Bit	31	30	29	28	27	26	25	24
					BYCT[10:4]			
Access								
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
		BYC	Г[3:0]			CFGOK		RWALL
Access								
Reset	0	0	0	0		0		0
Bit	15	14	13	12	11	10	9	8
	CURRE	3K[1:0]	NBUS	YBK[1:0]		ERRORTRANS	DTSE	Q[1:0]
Access								
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERRI	OVERFI	HBISOFLUSHI	HBISOINERRI	UNDERFI	RXOUTI	TXINI
	Т							
Access	<u> </u>			1	1	ıI]
Reset	0	0	0	0	0	0	0	0

Bits 30:20 - BYCT[10:0] Byte Count

This field is set with the byte count of the FIFO.

For IN endpoints, the field is incremented after each byte written by the software into the endpoint and decremented after each byte sent to the host.

For OUT endpoints, the field is incremented after each byte received from the host and decremented after each byte read by the software from the endpoint.

This field may be updated one clock cycle after the RWALL bit changes, so the user should not poll this field as an interrupt bit.

Bit 18 – CFGOK Configuration OK Status

This bit is updated when USBHS_DEVEPTCFGx.ALLOC = 1.

This bit is set if the endpoint x number of banks (USBHS_DEVEPTCFGx.EPBK) and size (USBHS_DEVEPTCFGx.EPSIZE) are correct compared to the maximal allowed number of banks and size for this endpoint and to the maximal FIFO size (i.e., the DPRAM size).

If this bit is cleared, the user should rewrite correct values to the USBHS_DEVEPTCFGx.EPBK and USBHS_DEVEPTCFGx.EPSIZE fields.

© 2018 Microchip Technology Inc.

USB High-Speed Interface (USBHS)

39.6.24 Device Endpoint Interrupt Disable Register (Isochronous Endpoints)

 Name:
 USBHS_DEVEPTIDRx (ISOENPT)

 Offset:
 0x0220 + x*0x04 [x=0..9]

 Reset:
 0

 Property:
 Read/Write

This register view is relevant only if EPTYPE = 0x1 in "Device Endpoint x Configuration Register".

For additional information, see "Device Endpoint x Mask Register (Isochronous Endpoints)".

This register always reads as zero.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Clears the corresponding bit in USBHS_DEVEPTIMRx.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
								EPDISHDMAC
Access								
Reset								0
Bit	15	14	13	12	11	10	9	8
		FIFOCONC		NBUSYBKEC		ERRORTRANS	DATAXEC	MDATEC
						EC		
Access								
Reset		0		0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SHORTPACKE	CRCERREC	OVERFEC	HBISOFLUSHE	HBISOINERRE	UNDERFEC	RXOUTEC	TXINEC
	TEC			С	С			
Access								
Reset	0	0	0	0	0	0	0	0

Bit 16 - EPDISHDMAC Endpoint Interrupts Disable HDMA Request Clear

- Bit 14 FIFOCONC FIFO Control Clear
- Bit 12 NBUSYBKEC Number of Busy Banks Interrupt Clear
- Bit 10 ERRORTRANSEC Transaction Error Interrupt Clear
- Bit 9 DATAXEC DataX Interrupt Clear
- Bit 8 MDATEC MData Interrupt Clear

Serial Peripheral Interface (SPI)

The figure below shows the behavior of Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and Transmission Register Empty (TXEMPTY) status flags within SPI_SR during an 8-bit data transfer in Fixed mode without the DMA involved.

41.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the peripheral clock by a value between 1 and 255.

If SPI_CSRx.SCBR is programmed to 1, the operating baud rate is peripheral clock (refer to the section "Electrical Characteristics" for the SPCK maximum frequency). Triggering a transfer while SPI_CSRx.SCBR is at 0 can lead to unpredictable results.

At reset, SPI_CSRx.SCBR=0 and the user has to program it to a valid value before performing the first transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in SPI_CSRx.SCBR. This allows the SPI to automatically adapt the baud rate for each interfaced peripheral without reprogramming.

Related Links

58. Electrical Characteristics for SAM V70/V71

41.7.3.4 Transfer Delays

The following figure shows a chip select transfer change and consecutive transfers on the same chip select. Three delays can be programmed to modify the transfer waveforms:

 Delay between the chip selects—programmable only once for all chip selects by writing field SPI_MR.DLYBCS. The SPI slave device deactivation delay is managed through DLYBCS. If there is only one SPI slave device connected to the master, DLYBCS does not need to be configured. If several slave devices are connected to a master, DLYBCS must be configured depending on the highest deactivation delay. Refer to details on the SPI slave device in the section "Electrical Characteristics".

46.6.8.5 Character Transmission

The characters are sent by writing in the US_THR. An additional condition for transmitting a character can be added when the USART is configured in SPI Master mode. In the USART_MR (SPI_MODE), the value of WRDBT can prevent any character transmission (even if US_THR has been written) while the receiver side is not ready (character not read). When WRDBT equals '0', the character is transmitted whatever the receiver status. If WRDBT is set to '1', the transmitter waits for US_RHR to be read before transmitting the character (RXRDY flag cleared), thus preventing any overflow (character loss) on the receiver side.

The chip select line is deasserted for a period equivalent to three bits between the transmission of two data.

The transmitter reports two status bits in US_CSR: TXRDY (Transmitter Ready), which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the current character processing is completed, the last character written in US_THR is transferred into the Shift register of the transmitter and US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave mode and if a character must be sent while the US_THR is empty, the UNRE (Underrun Error) bit is set. The TXD transmission line stays at high level during all this time. The UNRE bit is cleared by writing a 1 to the RSTSTA (Reset Status) bit in US_CR.

In SPI Master mode, the slave select line (NSS) is asserted at low level one t_{bit} (t_{bit} being the nominal time required to transmit a bit) before the transmission of the MSB bit and released at high level one t_{bit} after the transmission of the LSB bit. So, the slave select line (NSS) is always released between each character transmission and a minimum delay of three t_{bit} always inserted. However, in order to address slave devices supporting the CSAAT mode (Chip Select Active After Transfer), the slave select line (NSS) can be forced at low level by writing a 1 to the RCS bit in the US_CR. The slave select line (NSS) can be released at high level only by writing a '1' to US_CR.FCS (for example, when all data have been transferred to the slave device).

In SPI Slave mode, the transmitter does not require a falling edge of the slave select line (NSS) to initiate a character transmission but only a low level. However, this low level must be present on the slave select line (NSS) at least one t_{bit} before the first serial clock cycle corresponding to the MSB bit.

46.6.8.6 Character Reception

When a character reception is completed, it is transferred to US_RHR and US_CSR.RXRDY rises. If a character is completed while RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing a '1' to US_CR.RSTSTA.

To ensure correct behavior of the receiver in SPI Slave mode, the master device sending the frame must ensure a minimum delay of one t_{bit} between each character transmission. The receiver does not require a falling edge of the slave select line (NSS) to initiate a character reception but only a low level. However, this low level must be present on the slave select line (NSS) at least one t_{bit} before the first serial clock cycle corresponding to the MSB bit.

46.6.8.7 Receiver Timeout

Because the receiver baud rate clock is active only during data transfers in SPI mode, a receiver timeout is impossible in this mode, whatever the value is in US_RTOR.TO.

46.6.9 LIN Mode

The LIN mode provides master node and slave node connectivity on a LIN bus.

• Not send/check a checksum (CHKDIS = 1)

This configuration is made by the Checksum Type (CHKTYP) and Checksum Disable (CHKDIS) fields of US_LINMR.

If the checksum feature is disabled, the user can send it manually all the same, by considering the checksum as a normal data byte and by adding 1 to the response data length (see Response Data Length).

46.6.9.13 Frame Slot Mode

This mode is useful only for master nodes. It complies with the following rule: each frame slot should be longer than or equal to $t_{Frame Maximum}$.

If the Frame Slot mode is enabled (FSDIS = 0) and a frame transfer has been completed, the TXRDY flag is set again only after $t_{Frame_Maximum}$ delay, from the start of frame. So the master node cannot send a new header if the frame slot duration of the previous frame is inferior to $t_{Frame_Maximum}$.

If the Frame Slot mode is disabled (FSDIS = 1) and a frame transfer has been completed, the TXRDY flag is set again immediately.

The t_{Frame Maximum} is calculated as below:

If the Checksum is sent (CHKDIS = 0):

 $t_{Header_Nominal} = 34 \times t_{bit}$

t_{Response Nominal} = 10 × (NData + 1) × t_{bit}

 $t_{\text{Frame}_{\text{Maximum}}} = 1.4 \times (t_{\text{Header}_{\text{Nominal}}} + t_{\text{Response}_{\text{Nominal}}} + 1)^{(1)}$

t_{Frame Maximum} = 1.4 × (34 + 10 × (DLC + 1 + 1) + 1) × t_{bit}

 $t_{Frame Maximum} = (77 + 14 \times DLC) \times t_{bit}$

If the Checksum is not sent (CHKDIS = 1):

 $t_{Header Nominal} = 34 \times t_{bit}$

t_{Response_Nominal} = 10 × NData × t_{bit}

 $t_{\text{Frame}_{\text{Maximum}}} = 1.4 \times (t_{\text{Header}_{\text{Nominal}}} + t_{\text{Response}_{\text{Nominal}}} + 1)^{(1)}$

 $t_{Frame Maximum} = 1.4 \times (34 + 10 \times (DLC + 1) + 1) \times t_{bit}$

 $t_{Frame Maximum} = (63 + 14 \times DLC) \times t_{bit}$

Note: 1. The term "+1" leads to an integer result for t_{Frame_Maximum} (LIN Specification 1.3).

Universal Synchronous Asynchronous Receiver Transc...

Offset	Name	Bit Pos.								
		31:24								
		7:0		ICDIFF[3:0]						
0288		15:8								
0,00		23:16								
		31:24								
0x8C										
	Reserved									
0xE3										
		7:0								WPEN
0.454		15:8	WPKEY[7:0]							
UXL4		23:16	WPKEY[15:8]							
		31:24	WPKEY[23:16]							
		7:0								WPVS
0,459		15:8				WPVS	RC[7:0]			
UXEO	US_VIPSK	23:16				WPVSF	RC[15:8]			
		31:24								

Controller Area Network (MCAN)

Figure 49-2. Transmitter Delay Measurement

To avoid that a dominant glitch inside the received FDF bit ends the delay compensation measurement before the falling edge of the received res bit, resulting in a to early SSP position, the use of a transmitter delay compensation filter window can be enabled by programming MCAN_TDCR.TDCF.

This defines a minimum value for the SSP position. Dominant edges on CANRX, that would result in an earlier SSP position are ignored for transmitter delay measurement. The measurement is stopped when the SSP position is at least MCAN_TDCR.TDCF AND CANRX is low.

49.5.1.5 Restricted Operation Mode

In Restricted Operation mode, the node is able to receive data and remote frames and to give acknowledge to valid frames, but it does not send data frames, remote frames, active error frames, or overload frames. In case of an error condition or overload condition, it does not send dominant bits, instead it waits for the occurrence of bus idle condition to resynchronize itself to the CAN communication. The error counters are not incremented. The processor can set the MCAN into Restricted Operation mode by setting bit MCAN_CCCR.ASM. The bit can only be set by the processor when both MCAN_CCCR.CCE and MCAN_CCCR.INIT are set to '1'. The bit can be reset by the processor at any time.

Restricted Operation mode is automatically entered when the Tx Handler was not able to read data from the Message RAM in time. To leave Restricted Operation mode, the processor has to reset MCAN_CCCR.ASM.

The Restricted Operation mode can be used in applications that adapt themselves to different CAN bit rates. In this case the application tests different bit rates and leaves the Restricted Operation mode after it has received a valid frame.

Note: The Restricted Operation Mode must not be combined with the Loop Back mode (internal or external).

49.5.1.6 Bus Monitoring Mode

The MCAN is set in Bus Monitoring mode by setting MCAN_CCCR.MON. In Bus Monitoring mode (see ISO11898-1, 10.12 Bus monitoring), the MCAN is able to receive valid data frames and valid remote frames, but cannot start a transmission. In this mode, it sends only recessive bits on the CAN bus. If the MCAN is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the MCAN monitors this dominant bit, although the CAN bus may remain in recessive state. In Bus Monitoring mode, the Tx Buffer Request Pending register (MCAN_TXBRP) is held in reset state.

Bit 3 – CLKI Clock Invert

Value	Description
0	Counter is incremented on rising edge of the clock.
1	Counter is incremented on falling edge of the clock.

Bits 2:0 – TCCLKS[2:0] Clock Selection

To operate at maximum peripheral clock frequency, refer to "TC Extended Mode Register".

Value	Name	Description
0	TIMER_CLOCK1	Clock selected: internal PCK6 or PCK7 (TC0 only) clock signal (from
		PMC)
1	TIMER_CLOCK2	Clock selected: internal MCK/8 clock signal (from PMC)
2	TIMER_CLOCK3	Clock selected: internal MCK/32 clock signal (from PMC)
3	TIMER_CLOCK4	Clock selected: internal MCK/128 clock signal (from PMC)
4	TIMER_CLOCK5	Clock selected: internal SLCK clock signal (from PMC)
5	XC0	Clock selected: XC0
6	XC1	Clock selected: XC1
7	XC2	Clock selected: XC2

	Name: Offset: Reset: Property:	TC_QIER 0xC8 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
D	7	0	-		0	0	4	0
Bit	/	6	5	4	3	2	1	U
					MPE	QERR	DIRCHG	IDX
Access					W	W	W	W
Reset					-	-	-	-

50.7.17 TC QDEC Interrupt Enable Register

Bit 3 – MPE Consecutive Missing Pulse Error

Value	Description
0	No effect.
1	Enables the interrupt when an occurrence of MAXCMP consecutive missing pulses is
	detected.

Bit 2 – QERR Quadrature Error

Value	Description
0	No effect.
1	Enables the interrupt when a quadrature error occurs on PHA, PHB.

Bit 1 – DIRCHG Direction Change

Value	Description
0	No effect.
1	Enables the interrupt when a change on rotation direction is detected.

Bit 0 – IDX Index

Pulse Width Modulation Controller (PWM)

Value	Name	Description
0	DISABLE_SW_PROT	Disables the software write protection of the register groups of which the bit WPRGx is at '1'.
1	ENABLE_SW_PROT	Enables the software write protection of the register groups of which the bit WPRGx is at '1'.
2	ENABLE_HW_PROT	Enables the hardware write protection of the register groups of which the bit WPRGx is at '1'. Only a hardware reset of the PWM controller can disable the hardware write protection. Moreover, to meet security requirements, the PIO lines associated with the PWM can not be configured through the PIO interface.

Pulse Width Modulation Controller (PWM)

51.7.39 PWM Comparison x Mode Update Register

Name:	PWM_CMPMUPDx
Offset:	0x013C + x*0x10 [x=07]
Reset:	_
Property:	W

This register acts as a double buffer for the CEN, CTR, CPR and CUPR values. This prevents an unexpected comparison x match.

Bit	31	30	29	28	27	26	25	24
Access		•	•					
Reset								
Bit	23	22	21	20	19	18	17	16
						CUPRL	IPD[3:0]	
Access			·		W	W	W	W
Reset					0	0	0	-
Bit	15	14	13	12	11	10	9	8
						CPRU	PD[3:0]	
Access			ł		W	W	W	W
Reset					0	0	0	-
Bit	7	6	5	4	3	2	1	0
[CTRUI	PD[3:0]					CENUPD
Access	W	W	W	W				W
Reset	0	0	0	_				_

Bits 19:16 - CUPRUPD[3:0] Comparison x Update Period Update

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to CUPR+1 periods of the channel 0 counter.

Bits 11:8 - CPRUPD[3:0] Comparison x Period Update

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed periodically once every CPR+1 periods of the channel 0 counter.

Bits 7:4 - CTRUPD[3:0] Comparison x Trigger Update

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined by CTR.

Bit 0 – CENUPD Comparison x Enable Update

Value	Description
0	The comparison x is disabled and can not match.
1	The comparison x is enabled and can match.

Pulse Width Modulation Controller (PWM)

51.7.44 PWM Channel Period Update Register

Name:	PWM_CPRDUPDx
Offset:	0x0210 + x*0x20 [x=03]
Reset:	_
Property:	Write-only

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the CPRD value. This prevents an unexpected waveform when modifying the waveform period.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
			0 (10	10	-	10
Bit	23	22	21	20	19	18	17	16
				CPRDUF	PD[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CPRDU	PD[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CPRDU	IPD[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	_

Only the first 16 bits (channel counter size) are significant.

Bits 23:0 - CPRDUPD[23:0] Channel Period Update

If the waveform is left-aligned, then the output waveform period depends on the channel counter source clock and can be calculated:

- By using the PWM peripheral clock divided by a given prescaler value "X" (where X = 2^{PREA} is 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula is:

$(X \times CPRDUPD)$

 $f_{\text{peripheral clock}}$

- By using the PWM peripheral clock divided by a given prescaler value "X" (see above) and by either the DIVA or the DIVB divider. The formula becomes, respectively:

 $\frac{(X \times \text{CPRDUPD} \times \text{DIVA})}{f_{\text{peripheral clock}}} \text{ or } \frac{(X \times \text{CPRDUPD} \times \text{DIVB})}{f_{\text{peripheral clock}}}$

Analog Front-End Controller (AFEC)

52.7.23 AFEC Analog Control Register

Name:	AFEC_ACR
Offset:	0x94
Reset:	0x00000100
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access						•	•	
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
							IBCT	L[1:0]
Access							R/W	R/W
Reset							0	1
Bit	7	6	5	4	3	2	1	0
					PGA1EN	PGA0EN		
Access					R/W	R/W	•	
Reset					0	0		

Bits 9:8 – IBCTL[1:0] AFE Bias Current Control

Adapts performance versus power consumption. (Refer to AFE Characteristics in section "Electrical Characteristics".)

Bit 3 - PGA1EN PGA1 Enable

Value	Description
0	Programmable Gain Amplifier is disabled.
1	Programmable Gain Amplifier is enabled.

Bit 2 – PGA0EN PGA0 Enable

Value	Description
0	Programmable Gain Amplifier is disabled.
1	Programmable Gain Amplifier is enabled.

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	LS / FS Transceiver Current Consumption	FS transmission 5m cable (see Note 1)	-	_	30	mA
	LS / FS Transceiver Current Consumption	FS reception (see Note 1)	_	-	1	mA
IVDDUTMIC	Core	_	_	_	10	mA

Note:

1. Including 1 mA due to pullup/pulldown current consumption.

59.8 AFE Characteristics

Electrical data are in accordance with an operating temperature range from -40°C to +105°C unless otherwise specified.

VREFP is the positive reference of the AFE. The VREFN pin must be connected to ground.

DAC1 and DAC0 provide an analog output voltage (V_{DAC}) in the range [0 : VREFP] with an accuracy equal to 10 bits. The DAC output voltage is single-ended and is used as a reference node by the sampling stage S/H0 and S/H1 (Sample-and-Hold PGA), relative to the single-ended input signal being sampled on the selected channel.

As a consequence, programming the DAC output voltage offers a capability to compensate for a DC offset on the input signal being sampled. DC offset compensation is effective in single-ended operation and is not effective in fully differential operation.

During fully differential operation, the DAC10 output voltage can be programmed at VREFP/2, by using the 10-bit code 512. The DAC value does not affect the AFE output code.

VREFP/2 on DAC0 and DAC1 is not automatically set and must be programed as the code 512 into the channel corresponding DAC0 and DAC1.

The following figures illustrate the architecture of the AFE in Single-ended and in Differential modes.

Figure 59-11. Single-ended Mode AFE

