

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71q19b-aabt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.4.11 Write Protection Mode Register

Name:	MATRIX_WPMR
Offset:	0x01E4
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPK	EY[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WPEN
Access								
Reset								0

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x4D415	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
4		Always reads as 0.

Bit 0 – WPEN Write Protection Enable

Refer to the "Register Write Protection" section for the list of registers that can be write-protected.

Value	Description
0	Disables the write protection if WPKEY corresponds to 0x4D4154 ("MAT" in ASCII).
1	Enables the write protection if WPKEY corresponds to 0x4D4154 ("MAT" in ASCII).

23.5.4 Supply Controller Wakeup Mode Register

Name:	SUPC_WUMR
Offset:	0x0C
Reset:	0x00000000
Property:	Read/Write

This register is located in the VDDIO domain.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
[LPDBC[2:0]	
Access			I			R/W	R/W	R/W
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
			WKUPDBC[2:0]					
Access		R/W	R/W	R/W			•	
Reset		0	0	0				
Bit	7	6	5	4	3	2	1	0
	LPDBCCLR	LPDBCEN1	LPDBCEN0		RTCEN	RTTEN	SMEN	
Access	R/W	R/W	R/W		R/W	R/W	R/W	
Reset	0	0	0		0	0	0	

Bits 18:16 – LPDBC[2:0] Low-power Debouncer Period

Value	Name	Description
0	DISABLE	Disables the low-power debouncers.
1	2_RTCOUT	WKUP0/1 in active state for at least 2 RTCOUTx clock periods
2	3_RTCOUT	WKUP0/1 in active state for at least 3 RTCOUTx clock periods
3	4_RTCOUT	WKUP0/1 in active state for at least 4 RTCOUTx clock periods
4	5_RTCOUT	WKUP0/1 in active state for at least 5 RTCOUTx clock periods
5	6_RTCOUT	WKUP0/1 in active state for at least 6 RTCOUTx clock periods
6	7_RTCOUT	WKUP0/1 in active state for at least 7 RTCOUTx clock periods
7	8_RTCOUT	WKUP0/1 in active state for at least 8 RTCOUTx clock periods

Bits 14:12 – WKUPDBC[2:0] Wakeup Inputs Debouncer Period

Value	Name	Description
0	IMMEDIATE	Immediate, no debouncing, detected active at least on one Slow Clock edge.
1	3_SLCK	WKUPx shall be in its active state for at least 3 SLCK periods
2	32_SLCK	WKUPx shall be in its active state for at least 32 SLCK periods
3	512_SLCK	WKUPx shall be in its active state for at least 512 SLCK periods

The user can adjust the value of the Main RC oscillator frequency by modifying the trimming values done in production on 8 MHz and 12 MHz. This may be used to compensate frequency drifts due to temperature or voltage. The values stored in the Flash cannot be erased by a Flash erase command or by the ERASE signal. Values written by the user application in the Oscillator Calibration Register (PMC_OCR) are reset after each power-up or peripheral reset.

By default, SEL4/SEL8/SEL12 are cleared, so the Main RC oscillator is driven with the factoryprogrammed Flash calibration bits which are programmed during chip production.

In order to calibrate the oscillator lower frequency, SEL4 must be set to '1' and a valid frequency value must be configured in CAL4. Likewise, SEL8/12 must be set to '1' and a trim value must be configured in CAL8/12 in order to adjust the other frequencies of the oscillator.

It is possible to adjust the oscillator frequency while operating from this oscillator. For example, when running on lowest frequency, it is possible to change the CAL4 value if SEL4 is set in PMC_OCR.

At any time, the user can measure the main RC oscillator output frequency by means of the Main Frequency Counter (refer to "Main Frequency Counter"). Once the frequency measurement is done, the main RC oscillator calibration fields (CALMIN, CALx) can be adjusted accordingly to correct this oscillator output frequency.

Related Links

58. Electrical Characteristics for SAM V70/V71

59. Electrical Characteristics for SAM E70/S70

30.5.3 Main Crystal Oscillator

After reset, the Main crystal oscillator is disabled and is not selected as the source of MAINCK.

As the source of MAINCK, the Main crystal oscillator provides a very precise frequency. The software enables or disables this oscillator in order to reduce power consumption via CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN, PMC_SR.MOSCXTS is automatically cleared, indicating the oscillator is off.

When enabling this oscillator, the user must initiate the startup time counter. The startup time depends on the characteristics of the external device connected to this oscillator.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the PIO lines multiplexed with XIN and XOUT are driven by the Main crystal oscillator. PMC_SR.MOSCXTS is cleared and the counter starts counting down on SLCK divided by 8 from the CKGR_MOR.MOSCXTST value. Since the CKGR_MOR.MOSCXTST value is coded with 8 bits, the startup time can be programmed up to 65536 SLCKperiods, corresponding to about 62 ms when running at 32.768 kHz.

When the startup time counter reaches '0', PMC_SR.MOSCXTS is set, indicating that the oscillator is stabilized. Setting the MOSCXTS bit in the Interrupt Mask Register (PMC_IMR) can trigger an interrupt to the processor.

30.5.4 Main Clock Source Selection

The source of MAINCK can be selected from the following:

- The Main RC oscillator
- The Main crystal oscillator
- An external clock signal provided on the XIN input (Bypass mode of the Main crystal oscillator)

The advantage of the Main RC oscillator is its fast startup time. By default, this oscillator is selected to start the system and it must be selected prior to entering Wait mode.

invalidated as soon as the transfer address fails to lie in the selected NCSx address space. For details on these waveforms, refer to 35. Static Memory Controller (SMC).

NAND Flash Signals

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits A22 and A21 of the EBI address bus. The command, address or data words on the data bus of the NAND Flash device are distinguished by using their address within the NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not selected, preventing the device from returning to standby mode.

33.5.4 Implementation Examples

The following hardware configurations are given for illustration only. The user should refer to the memory manufacturer web site to check current device availability.

33.5.4.1 16-bit SDRAM on NCS1

Figure 33-2. Hardware Configuration

Software Configuration

The following configuration has to be performed:

- Enable the SDRAM support by setting the bit SDRAMEN field in the CCFG_SMCNFCS Register in the Bus Matrix.
- Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 16 bits.

The SDRAM initialization sequence is described in 34.5.1 SDRAM Device Initialization.

Static Memory Controller (SMC)

Figure 35-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

35.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, provided that the Page mode is enabled (SMC_MODE.PMEN =1). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in the following table.

GMAC - Ethernet MAC

Offset	Name	Bit Pos.										
		7:0							QAE	QBE		
		15:8										
0x04BC	GMAC_CBSCR	23:16										
		31:24										
		7:0		IS[7:0]								
		15:8		IS[15:8]								
0x04C0	GMAC_CBSISQA	23:16		IS[23:16]								
		31:24				IS[3	1:24]					
		7:0				IS[7:0]					
		15:8				IS[1	5:8]					
0x04C4	GMAC_CBSISQB	23:16				IS[2:	3:16]					
		31:24				IS[3	1:24]					
0x04C8												
	Reserved											
0x04FF												
		7:0		DSTC	M[3:0]				QNB[2:0]			
0.0500		15:8		UDPI	M[3:0]			DSTC	M[7:4]			
0x0500	GMAC_ST1RPQ0	23:16				UDPN	1[11:4]					
		31:24			UDPE	DSTCE		UDPM	[15:12]			
		7:0	DSTCM[3:0]				QNB[2:0]					
0.0504		15:8		UDPI	M[3:0]	DSTCM[7:4]						
0x0504	GMAC_ST1RPQ1	23:16				UDPN	1[11:4]					
		31:24			UDPE	DSTCE		UDPM	[15:12]			
		7:0		DSTC	M[3:0]				QNB[2:0]			
0.0500		15:8	UDPM[3:0]				DSTC	M[7:4]				
0x0508	GMAC_ST1RPQ2	23:16		UDPM[11:4]								
		31:24			UDPE	DSTCE		UDPM	[15:12]			
		7:0		DSTC	M[3:0]				QNB[2:0]			
0.0500		15:8		UDPI	M[3:0]			DSTC	M[7:4]			
0x050C	GMAC_STIRPQ3	23:16				UDPN	1[11:4]					
		31:24			UDPE	DSTCE		UDPM	[15:12]			
0x0510												
	Reserved											
0x053F												
		7:0			VLANP[2:0]				QNB[2:0]			
0x0540	GMAC ST2RPOD	15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE		
0,0040		23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]		
		31:24		COMPCE			COMPC[4:0] COM			COMPBE		
		7:0			VLANP[2:0]				QNB[2:0]			
0x0544	GMAC ST2RPO1	15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE		
0,0011		23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]		
		31:24		COMPCE			COMPC[4:0]			COMPBE		
		7:0			VLANP[2:0]				QNB[2:0]			
0x0548	GMAC ST2RPO2	15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE		
0,00+0		23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]		
		31:24		COMPCE			COMPC[4:0]			COMPBE		

GMAC - Ethernet MAC

Offset	Name	Bit Pos.								
		7:0			VLANP[2:0]				QNB[2:0]	
0.0540		15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE
0x054C	GIMAC_ST2RPQ3	23:16		COMPB[4:0]				COMPAE	COMF	PA[4:3]
		31:24		COMPCE			COMPC[4:0]			COMPBE
		7:0			VLANP[2:0]				QNB[2:0]	
0x0550	CMAC ST2DDO4	15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE
0x0550	GIMAC_ST2RFQ4	23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]
		31:24		COMPCE			COMPC[4:0]			COMPBE
		7:0			VLANP[2:0]				QNB[2:0]	
	15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE	
0x0554	GIMAC_ST2RPQ5	23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]
		31:24		COMPCE			COMPC[4:0]			COMPBE
		7:0			VLANP[2:0]				QNB[2:0]	
0,00550		15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE
0x0558	GMAC_ST2RPQ6	23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]
		31:24		COMPCE			COMPC[4:0]			COMPBE
		7:0			VLANP[2:0]				QNB[2:0]	
0,00550		15:8		COMPA[2:0]		ETHE		I2ETH[2:0]		VLANE
0x055C	GMAC_ST2RPQ7	23:16			COMPB[4:0]			COMPAE	COMF	PA[4:3]
		31:24		COMPCE			COMPC[4:0]			COMPBE
0x0560										
	Reserved									
0x05FF										
		7:0	TCOMP	TFC	RLEX			RXUBR	RCOMP	
0x0600	GMAC JERPO1	15:8					HRESP	ROVR		
0,0000		23:16								
		31:24								
		7:0	TCOMP	TFC	RLEX			RXUBR	RCOMP	
0x0604	GMAC JERPO2	15:8					HRESP	ROVR		
		23:16								
		31:24								
		7:0	TCOMP	TFC	RLEX			RXUBR	RCOMP	
0x0608	GMAC JERPO3	15:8					HRESP	ROVR		
		23:16								
		31:24								
		7:0	TCOMP	TFC	RLEX			RXUBR	RCOMP	
0x060C	GMAC JERPO4	15:8					HRESP	ROVR		
		23:16								
		31:24								
		7:0	TCOMP	TFC	RLEX			RXUBR	RCOMP	
0x0610	GMAC IERPO5	15:8					HRESP	ROVR		
		23:16								
		31:24								
0x0614										
	Reserved									
0x061F										

Bits 23:19 – COMPB[4:0] Index of Screening Type 2 Compare Word 0/Word 1 register x COMPB is a pointer to the compare registers GMAC_ST2CW0x and GMAC_ST2CW1x. When COMPBE=1, the compare is true if the data at the frame offset ANDed with the value MASKVAL is equal to the value of COMPVAL ANDed with the value of MASKVAL.

Bit 18 – COMPAE Compare A Enable

Value	Description
0	Compare A is disabled.
1	Comparison via the register designated by index COMPA is enabled.

Bits 17:13 – COMPA[4:0] Index of Screening Type 2 Compare Word 0/Word 1 register x COMPA is a pointer to the compare registers GMAC_ST2CW0x and GMAC_ST2CW1x. When COMPAE=1, the compare is true if the data at the frame offset ANDed with the value MASKVAL is equal to the value of COMPVAL ANDed with the value of MASKVAL.

Bit 12 – ETHE EtherType Enable

Value	Description
0	EtherType match is disabled
1	EtherType match with bits [15:0] of the register designated by the value in I2ETH is enabled

Bits 11:9 – I2ETH[2:0] Index of Screening Type 2 EtherType register x

When EtherType is enabled (ETHE=1), the EtherType field (last EtherType in the header if the frame is VLAN-tagged) is compared with bits [15:0] in the register designated by the value of this bit field.

Bit 8 – VLANE VLAN Enable

Value	Description
0	VLAN match disabled
1	VLAN match is enabled

Bits 6:4 – VLANP[2:0] VLAN Priority

When VLAN match is enabled (VLANE=1), the VLAN Priority field of the received frame is matched against the value of this bit field.

Bits 2:0 - QNB[2:0] Queue Number

If a match is successful, then the queue value programmed in QNB is allocated to the frame.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01C4	USBHS_DEVEPTIM R1 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE RXOUTE	TXINE	
0x01C8	R2	15:8		FIFOCON	KILLBK	NBUSYBKE				
	112	23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01C8	USBHS_DEVEPTIM R2 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		RRORTRAN DATAXE MDATA SE MDATAXE MDATA RSTDT EPDISHE	MDATAE	
		23:16						RSTDT		EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RSTDT EPD RXSTPE RXOUTE T RXSTPE NYETDIS EPD RSTDT NYETDIS EPD RR LINDEDEE DYCUTE	TXINE	
0x01CC	R3	15:8		FIFOCON	KILLBK	NBUSYBKE				
		23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01CC	USBHS_DEVEPTIM R3 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	RSTDT NYETDIS EPDISHE UNDERFE RXOUTE TXINE RRORTRAN SE DATAXE MDATA RSTDT EPDISHE	MDATAE
		23:16						RSTDT		EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01D0		15:8		FIFOCON	KILLBK	NBUSYBKE				
	R4	23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	NDERFE RXOUTE	TXINE
0x01D0	USBHS_DEVEPTIM R4 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01D4		15:8		FIFOCON	KILLBK	NBUSYBKE				
	GN	23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		31:24								
		7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0590		15:8				NBUSYBKS				
	RU (INTPIPES)	23:16								
		31:24								
		7:0	SHORTPACK ETIS	CRCERRIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0590	R0 (ISOPIPES)	15:8				NBUSYBKS				
		23:16								
		31:24								
	USBHS HSTPIPIE	7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0594	R1 (INTPIPES)	15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETIS	CRCERRIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0594		15:8				NBUSYBKS				
	R1 (ISOPIPES)	23:16								
		31:24								
		7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0598		15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETIS	CRCERRIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x0598	R2 (ISOPIPES)	15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x059C	R3 (INTPIPES)	15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETIS	CRCERRIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x059C		15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETIS	RXSTALLDIS	OVERFIS	NAKEDIS	PERRIS	UNDERFIS	TXOUTIS	RXINIS
0x05A0	R4 (INTPIPES)	15:8				NBUSYBKS				
		23:16								
		31:24								

USB High-Speed Interface (USBHS)

Value	Description
0	Cleared when USBHS_HSTPIPICR.TXOUTIC = 1.
1	Set when the current OUT bank is free and can be filled. This triggers an interrupt if
	USBHS_HSTPIPIMR.TXOUTE = 1.

Bit 0 – RXINI Received IN Data Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.RXINIC = 1.
1	Set when a new USB message is stored in the current bank of the pipe. This triggers an
	interrupt if USBHS_HSTPIPIMR.RXINE = 1.

- Bit 21 DCRCE Data CRC Error Interrupt Mask
- Bit 20 RTOE Response Time-out Error Interrupt Mask
- Bit 19 RENDE Response End Bit Error Interrupt Mask
- Bit 18 RCRCE Response CRC Error Interrupt Mask
- Bit 17 RDIRE Response Direction Error Interrupt Mask
- Bit 16 RINDE Response Index Error Interrupt Mask
- Bit 13 CSRCV Completion Signal Received Interrupt Mask
- Bit 12 SDIOWAIT SDIO Read Wait Operation Status Interrupt Mask
- Bit 8 SDIOIRQA SDIO Interrupt for Slot A Interrupt Mask
- Bit 5 NOTBUSY Data Not Busy Interrupt Mask
- **Bit 4 DTIP** Data Transfer in Progress Interrupt Mask
- Bit 3 BLKE Data Block Ended Interrupt Mask
- **Bit 2 TXRDY** Transmit Ready Interrupt Mask
- **Bit 1 RXRDY** Receiver Ready Interrupt Mask
- Bit 0 CMDRDY Command Ready Interrupt Mask

SAM E70/S70/V70/V71 Family Media Local Bus (MLB)

Bit 1 – LKSYSCMD Network Lock System Command Detected in the System Quadlet (cleared by writing a 0)

Set by hardware, cleared by software.

Bit 0 – RSTSYSCMD Reset System Command Detected in the System Quadlet (cleared by writing a 0) Set by hardware, cleared by software.

Controller Area Network (MCAN)

The Bus Monitoring mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits. The figure below shows the connection of signals CANTX and CANRX to the MCAN in Bus Monitoring mode.

Figure 49-3. Pin Control in Bus Monitoring Mode

Bus Monitoring Mode

49.5.1.7 Disabled Automatic Retransmission

According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the MCAN provides means for automatic retransmission of frames that have lost arbitration or that have been disturbed by errors during transmission. By default automatic retransmission is enabled. To support time-triggered communication as described in ISO 11898-1, chapter 9.2, the automatic retransmission may be disabled via MCAN_CCCR.DAR.

49.5.1.7.1 Frame Transmission in DAR Mode

In DAR mode, all transmissions are automatically cancelled after they start on the CAN bus. A Tx Buffer's Tx Request Pending bit TXBRP.TRPx is reset after successful transmission, when a transmission has not yet been started at the point of cancellation, has been aborted due to lost arbitration, or when an error occurred during frame transmission.

Successful transmission: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx set

Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx not set

 Successful transmission in spite of cancellation: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx set

Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx set

 Arbitration lost or frame transmission disturbed: Corresponding Tx Buffer Transmission Occurred bit MCAN_TXBTO.TOx not set

Corresponding Tx Buffer Cancellation Finished bit MCAN_TXBCF.CFx set

In case of a successful frame transmission, and if storage of Tx events is enabled, a Tx Event FIFO element is written with Event Type ET = "10" (transmission in spite of cancellation).

49.5.1.8 Power-down (Sleep Mode)

The MCAN can be set into Power-down mode via bit MCAN_CCCR.CSR.

When all pending transmission requests have completed, the MCAN waits until bus idle state is detected. Then the MCAN sets MCAN_CCCR.INIT to prevent any further CAN transfers. Now the MCAN acknowledges that it is ready for power down by setting to one the bit MCAN_CCCR.CSA. In this state, before the clocks are switched off, further register accesses can be made. A write access to

Controller Area Network (MCAN)

Figure 49-4. Pin Control in Loop Back Modes

External Loop Back Mode

Internal Loop Back Mode

49.5.2 Timestamp Generation

For timestamp generation the MCAN supplies a 16-bit wrap-around counter. A prescaler TSCC.TCP can be configured to clock the counter in multiples of CAN bit times (1...16). The counter is readable via MCAN_TSCV.TSC. A write access to the Timestamp Counter Value register (MCAN_TSCV) resets the counter to zero. When the timestamp counter wraps around, interrupt flag MCAN_IR.TSW is set.

On start of frame reception / transmission the counter value is captured and stored into the timestamp section of an Rx Buffer / Rx FIFO (RXTS[15:0]) or Tx Event FIFO (TXTS[15:0]) element.

By programming bit MCAN_TSCC.TSS an external 16-bit timestamp can be used. See Timestamping for more details.

49.5.3 Timeout Counter

To signal timeout conditions for Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO, the MCAN supplies a 16bit Timeout Counter. It operates as down-counter and uses the same prescaler controlled by TSCC.TCP as the Timestamp Counter. The Timeout Counter is configured via the Timeout Counter Configuration register (MCAN_TOCC). The actual counter value can be read from MCAN_TOCV.TOC. The Timeout Counter can only be started while MCAN_CCCR.INIT = '0'. It is stopped when MCAN_CCCR.INIT = '1', e.g. when the MCAN enters Bus_Off state.

The operating mode is selected by MCAN_TOCC.TOS. When operating in Continuous mode, the counter starts when MCAN_CCCR.INIT is reset. A write to MCAN_TOCV presets the counter to the value configured by MCAN_TOCC.TOP and continues down-counting.

When the Timeout Counter is controlled by one of the FIFOs, an empty FIFO presets the counter to the value configured by MCAN_TOCC.TOP. Down-counting is started when the first FIFO element is stored. Writing to MCAN_TOCV has no effect.

When the counter reaches zero, interrupt flag MCAN_IR.TOO is set. In Continuous mode, the counter is immediately restarted at MCAN_TOCC.TOP.

Note: The clock signal for the Timeout Counter is derived from the CAN Core's sample point signal. Therefore the point in time where the Timeout Counter is decremented may vary due to the synchronization / re-synchronization mechanism of the CAN Core. If the bit rate switch feature in CAN FD is used, the timeout counter is clocked differently in arbitration and data field.

49.5.4 Rx Handling

The Rx Handler controls the acceptance filtering, the transfer of received messages to the Rx Buffers or to one of the two Rx FIFOs, as well as the Rx FIFO's Put and Get Indices.

50.7.4 TC Stepper Motor Mode Register

Name:	TC_SMMRx
Offset:	0x08 + x*0x40 [x=02]
Reset:	0x0000000
Property:	R/W

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access						-		
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							DOWN	GCEN
Access							R/W	R/W
Reset							0	0

Bit 1 - DOWN Down Count

Value	Description
0	Up counter.
1	Down counter.

Bit 0 – GCEN Gray Count Enable

Value	Description
0	TIOAx [x=02] and TIOBx [x=02] are driven by internal counter of channel x.
1	TIOAx [x=02] and TIOBx [x=02] are driven by a 2-bit Gray counter.

50.7.10 TC Interrupt Status Register

	Name: Offset: Reset: Property:	TC_SRx 0x20 + x*0x40 0x00000000 Read-only) [x=02]					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						MTIOB	MTIOA	CLKSTA
Access		·				R	R	R
Reset						0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	ETRGS	LDRBS	LDRAS	CPCS	CPBS	CPAS	LOVRS	COVFS
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 18 – MTIOB TIOBx Mirror

Value	Description
0	TIOBx is low. If TC_CMRx.WAVE = 0, TIOBx pin is low. If TC_CMRx.WAVE = 1, TIOBx is
	driven low.
1	TIOBx is high. If TC_CMRx.WAVE = 0, TIOBx pin is high. If TC_CMRx.WAVE = 1, TIOBx is
	driven high.

Bit 17 - MTIOA TIOAx Mirror

Value	Description
0	TIOAx is low. If TC_CMRx.WAVE = 0, TIOAx pin is low. If TC_CMRx.WAVE = 1, TIOAx is
	driven low.
1	TIOAx is high. If TC_CMRx.WAVE = 0, TIOAx pin is high. If TC_CMRx.WAVE = 1, TIOAx is
	driven high.

Bit 16 – CLKSTA Clock Enabling Status

Value	Description
0	Clock is disabled.
1	Clock is enabled.

Advanced Encryption Standard (AES)

- N = 12 when KEYSIZE = 1
- N = 14 when KEYSIZE = 2

The processing time represents the number of clock cycles that the AES needs in order to perform one encryption/decryption.

Note: The best performance is achieved with PROCDLY equal to 0.

Bit 3 – DUALBUFF Dual Input Buffer

Value	Name	Description
0	INACTIVE	AES_IDATARx cannot be written during processing of previous block.
1	ACTIVE	AES_IDATARx can be written during processing of previous block when SMOD
		= 2. It speeds up the overall runtime of large files.

Bit 1 – GTAGEN GCM Automatic Tag Generation Enable

Value	Description
0	Automatic GCM Tag generation disabled.
1	Automatic GCM Tag generation enabled.

Bit 0 - CIPHER Processing Mode

Value	Description
0	Decrypts data.
1	Encrypts data.

Electrical Characteristics for SAM E70/S70

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit	
	Parameter	Min		Мах			
NO HOL	NO HOLD Settings (NWE_HOLD = 0)						
SMC ₂₁	NWE High to Data OUT, NBS0/A0 NBS1, A1, A2– A25, NCS change ⁽¹⁾	2.1	1.5	-	_	ns	

Note:

Hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "NCS_WR_HOLD length" or "NWE_HOLD length"

Symbol	VDDIO Supply	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit
	Parameter	Min	Max			
SMC ₂₂	Data Out Valid before NCS High	NCS_WR_PULSE × t _{CPMCK} - 2.8	NCS_WR_PULSE × t _{CPMCK} - 3.9			ns
SMC ₂₃	NCS Pulse Width	NCS_WR_PULSE × t _{CPMCK} - 0.9	NCS_WR_PULSE × t _{CPMCK} - 0.2		—	ns
SMC ₂₄	A0–A22 valid before NCS low	NCS_WR_SETUP × t _{CPMCK} - 4.0	NCS_WR_SETUP × t _{CPMCK} - 4.6			ns
SMC ₂₅	NWE low before NCS high	(NCS_WR_SETUP - NWE_SETUP + NCS pulse) × t_{CPMCK} - 4.6	(NCS_WR_SETUP - NWE_SETUP + NCS pulse) × t_{CPMCK} - 4.6	—	—	ns
SMC ₂₆	NCS High to Data Out, A0– A25, change	NCS_WR_HOLD × t _{CPMCK} - 4.4	NCS_WR_HOLD × t _{CPMCK} - 3.4			ns
SMC ₂₇	NCS High to NWE Inactive	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 2.8	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 2.4		—	ns

Table 59-63. SMC Write NCS Controlled (WRITE_MODE = 0)

Timings are given in the 3.3V domain, with VDDIO from 2.85V to 3.6V, maximum external capacitor = 50 pF.

Timings are given assuming a capacitance load on data, control and address pads.

In the tables that follow, t_{CPMCK} is MCK period.

Electrical Characteristics for SAM E70/S70

59.13.1.13.3 MII Mode

Table 59-71. GMAC MII Mode Timings

Symbol	Parameter	Min	Max	Unit
GMAC ₄	Setup for GCOL from GTXCK rising	10	-	ns
GMAC ₅	Hold for GCOL from GTXCK rising	10	-	
GMAC ₆	Setup for GCRS from GTXCK rising	10	-	
GMAC ₇	Hold for GCRS from GTXCK rising	10	-	
GMAC ₈	GTXER toggling from GTXCK rising	10	25	
GMAC ₉	GTXEN toggling from GTXCK rising	10	25	
GMAC ₁₀	GTX toggling from GTXCK rising	10	25	
GMAC ₁₁	Setup for GRX from GRXCK	10	-	
GMAC ₁₂	Hold for GRX from GRXCK	10	-	
GMAC ₁₃	Setup for GRXER from GRXCK	10	-	
GMAC ₁₄	Hold for GRXER from GRXCK	10	-	
GMAC ₁₅	Setup for GRXDV from GRXCK	10	-	
GMAC ₁₆	Hold for GRXDV from GRXCK	10	-	