

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71q19b-cb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10. Product Mapping

Figure 10-1. SAM S70 Product Mapping Figure 10-2. SAM E70/S70/V70/V71 Product Mapping

	Address memory space		Code				
0x00000000		0000 000 000 0	ITCM or Boot Memory				
	Code	0x00400000			memories		
0x20000000		0x00800000	Internal Flash		EBI Chip Sele	ct 0	
	Internal SDAM	0	ROM	0x6100000	EBI Chin Sele	ct 1	
	Internal Stoaw	0.0000000	Reserved	0x6200000	00		
0x40000000		- 0x1FFFFFF		0x6300000	EBI Chip Sele	ct 2	
	Peripherals	0x20000000	Internal SRAM		EBI Chip Sele	ct 3	
0x60000000		0x20400000	DTCM	0x700000	SDRAM Chip S	elect	
			SRAM	0x7FFFFF	FF		
	Memories	0x20C60000	Reserved				
0x80000000		0x3FFFFFFF					
	QSPI MEM	0×40000000	Peripherals	0x40060000	Peripherals	0x400E1800	Peripherals
0×A0000000		0×40004000	HSMCI 18	0x40064000	TWIHS2 41	+0x10	RSTC 1
0.1100000000			SSC	0,40004000	AFEC1		SYSC SUPC
	Reserved	0x40008000	SPI0	0x40068000	MIB	+0x30	SYSC RTT
0xA0100000		0x4000C000	21	0x4006c000	53	+0x50	SYSC WDTO
	USBHS RAM	+0x40	1C0_CH0 23	0×40070000	AES 56	+0x60	4
0		10.000	TC0_CH1 24		TRNG 57	+0~90	RTC 2
UXAU200000		+0x80	TC0_CH2	0x40074000	BRAM	+0290	SYSC GPBR
	Reserved	0x40010000	25 TC1_CH0	0x40078000	YDMAC	+0x100	SYSC WDT1
0xE0000000		+0x40	26	0x4007c000	58	0x400E1A00	63
	System	+0x80	TC1_CH1 27	0×40080000	QSPI 43	0x400E1C00	UART2 44
	,		TC1_CH2		SMC		UART3 45
0xffffffff		0x40014000	TC2_CH0	0x40084000	SDRAMC	Ux4UUEIEUU	UART4
		+0x40	47 TC2 CH1	0x40088000	62	0x400E2000	A6
offset	block	+0×80	48	0x4008c000	MATRIX	0x5FFFFFFF	Reserved
	peripheral ID	1 1 10×40018000	TC2_CH2 49	0	12SC0 69		
	(+ : wired-or)	1	TWIHS0	0x40090000	I2SC1		
		0x4001C000	TWIHS1	0x400E0400	10 UTMI		
		0x40020000	20	0x400E0600			
		0ж40024000	21 PWM0	0×400E0800	PMC 5		
		040028000	USART0 13		UART0 7		
		1	USART1	0x400E0940	CHIPID		
		0x4002C000	USART2	0×400E0A00	LIART1		
		0×40030000	15	0x400E0C00	8		
		0×40034000	MCANU 35	0x400E0E00	EFC 6		
		0~40038000	MCAN1 37		PIOA 10		
		1	USBHS	0x400E1000	PIOB		
		0x4003C000	AFEC0	0x400E1200	11 BIOC		
		0×40040000	29	0x400E1400	12		
		0×40044000	DACC 30	0×400E1600	PIOD 16		
		1	ACC 33	0410011000	PIOE		
		0×40048000	ICM	0x400E1800	17		
		0×4004C000	32	•			
		0×40050000	59				
		0~40054000	GMAC 39				
		3,4003400	TC3_CH0				
		+0×40	TC3 CH1				
		+0×8,0	51				
		0×40058000	TC3_CH2 52				
			SPI1 42				
		0x4005c000	PWM1				
			60				

Low-power tamper detection or debounce requires RTC output (RTCOUTx) to be configured to generate a duty cycle programmable pulse (i.e., OUT0 = 0x7 in RTC_MR) in order to create the sampling points of both debouncers. The sampling point is the falling edge of the RTCOUTx waveform.

The following figure shows an example of an application where two tamper switches are used. RTCOUTx powers the external pull-up used by the tamper sensor circuitry.

Figure 23-10. Low-power Debouncer (Push-to-Break Switch, Pull-down Resistors)

The debouncing period duration is configurable. The period is set for all debouncers (i.e., the duration cannot be adjusted for each debouncer). The number of successive identical samples to wake up the system can be configured from 2 up to 8 in SUPC_WUMR.LPDBC. The period of time between two samples can be configured by programming RTC_MR.TPERIOD. Power parameters can be adjusted by modifying the period of time in RTC_MR.THIGH.

The wakeup polarity of the inputs can be independently configured by writing SUPC_WUMR.WKUPT0 and/ or SUPC_WUMR.WKUPT1.

In order to determine which wakeup/tamper pin triggers the system wakeup, a status flag is associated for each low-power debouncer. These flags are read in SUPC_SR.

24. Watchdog Timer (WDT)

24.1 Description

The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug mode or Sleep mode (Idle mode).

24.2 Embedded Characteristics

- 12-bit Key-protected Programmable Counter
- Watchdog Clock is Independent from Processor Clock
- Provides Reset or Interrupt Signals to the System
- Counter May Be Stopped while the Processor is in Debug State or in Idle Mode

24.3 Block Diagram

Figure 24-1. Watchdog Timer Block Diagram

Power Management Controller (PMC)

N O R P	lame: Offset: Reset: Property:	PMC_SLPWK 0x013C 0x00000000 Read-only	(_SR1					
Bit	31	30	29	28	27	26	25	24
		PID62		PID60	PID59	PID58	PID57	PID56
Access				•	•			·
Reset								
Bit	23	22	21	20	19	18	17	16
			PID53	PID52	PID51	PID50	PID49	PID48
Access				•	•			•
Reset								
Bit	15	14	13	12	11	10	9	8
	PID47	PID46	PID45	PID44	PID43	PID42	PID41	PID40
Access					•			
Reset								
Bit	7	6	5	4	3	2	1	0
	PID39		PID37		PID35	PID34	PID33	PID32
Access					•			
Reset								

31.20.33 PMC SleepWalking Status Register 1

Bits 0:3,5,7:28,30 - PID Peripheral Clock x Disable

Value	Description
0	No effect.
1	Disables the corresponding peripheral clock.

Parallel Input/Output Controller (PIO)

32.6.1.25 PIO Peripheral ABCD Select Register 2

Name:	PIO_ABCDSR2
Offset:	0x0074
Reset:	0x00000000
Property:	Read/Write

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access		•	•			•	•	
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		•					•	,
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access								,
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access							L	
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Peripheral Select

If the same bit is set to '0' in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same bit is set to '1' in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral B function.

1: Assigns the I/O line to the Peripheral D function.

Parallel Input/Output Controller (PIO)

32.6.1.31 PIO Pad Pull-Down Enable Register

Name:	PIO_PPDER
Offset:	0x0094
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
	P31	P30	P29	P28	P27	P26	P25	P24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	P23	P22	P21	P20	P19	P18	P17	P16
Access		Į	Į	I				
Reset								
Bit	15	14	13	12	11	10	9	8
	P15	P14	P13	P12	P11	P10	P9	P8
Access		I	1					11
Reset								
Bit	7	6	5	4	3	2	1	0
	P7	P6	P5	P4	P3	P2	P1	P0
Access		1	1	I				<u> </u>
Reset								

Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – P PIO Pull-Down Enable

Value	Description
0	No effect.
1	Enables the pull-down resistor on the I/O line.

34.7.1 SDRAMC Mode Register

	Name: Offset: Reset: Property:	SDRAMC_MF 0x00 0x00000000 Read/Write	8					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access					•	•		
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							MODE[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - MODE[2:0] SDRAMC Command Mode

This field defines the command issued by the SDRAMC when the SDRAM device is accessed.

Value	Name	Description
0	NORMAL	Normal mode. Any access to the SDRAM is decoded normally. To activate this mode, the command must be followed by a write to the SDRAM.
1	NOP	The SDRAMC issues a NOP command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
2	ALLBANKS_PRECHARGE	The SDRAMC issues an "All Banks Precharge" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
3	LOAD_MODEREG	The SDRAMC issues a "Load Mode Register" command when the SDRAM device is accessed regardless of the cycle. To activate this mode, the command must be followed by a write to the SDRAM.
4	AUTO_REFRESH	The SDRAMC issues an "Autorefresh" Command when the SDRAM device is accessed regardless of the cycle. Previously,

Static Memory Controller (SMC)

35.16.1.8 SMC Write Protection Mode Register

Name:	SMC_WPMR
Offset:	0xE4
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPKE	EY[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WPEN
Access								
Reset								0

Bits 31:8 - WPKEY[23:0] Write Protection Key

ValueNameDescription0x534D4PASSWDWriting any other value in this field aborts the write operation of the WPEN bit.3Always reads as 0.

Bit 0 - WPEN Write Protect Enable

See "Register Write Protection" for the list of registers that can be write-protected.

Value	Description
0	Disables the write protection if WPKEY corresponds to 0x534D43 ("SMC" in ASCII).
1	Enables the write protection if WPKEY corresponds to 0x534D43 ("SMC" in ASCII).

DMA Controller (XDMAC)

Name: Offset: Reset: Property:		XDMAC_CIM 0x58 + n*0x40 [n=023] 0x0000000 Read-only								
Bit	31	30	29	28	27	26	25	24		
Access										
Reset										
Bit	23	22	21	20	19	18	17	16		
Access										
Reset										
Bit	15	14	13	12	11	10	9	8		
•										
Access										
Reset										
Bit	7	6	5	4	3	2	1	0		
		ROIM	WBEIM	RBEIM	FIM	DIM	LIM	BIM		
Access		R	R	R	R	R	R	R		
Reset		0	0	0	0	0	0	0		

36.9.20 XDMAC Channel x Interrupt Mask Register [x = 0..23]

Bit 6 - ROIM Request Overflow Error Interrupt Mask Bit

Value	Description
0	Request overflow interrupt is masked.
1	Request overflow interrupt is activated.

Bit 5 – WBEIM Write Bus Error Interrupt Mask Bit

Value	Description
0	Bus error interrupt is masked.
1	Bus error interrupt is activated.

Bit 4 - RBEIM Read Bus Error Interrupt Mask Bit

Value	Description
0	Bus error interrupt is masked.
1	Bus error interrupt is activated.

Bit 3 – FIM End of Flush Interrupt Mask Bit

Value	Description
0	End of flush interrupt is masked.
1	End of flush interrupt is activated.

GMAC - Ethernet MAC

Offset	Name	Bit Pos.										
		7:0		RXO[7:0]								
0.0450		15:8				RXO	[15:8]					
0x0150	GMAC_ORLO	23:16		RXO[23:16]								
		31:24	RX0[31:24]									
		7:0	RXO[7:0]									
0.0454		15:8	RXO[15:8]									
0x0154	GMAC_ORHI	23:16										
		31:24										
		7:0				FRX	[7:0]	1				
0x0159	CMAC ED	15:8				FRX[[15:8]					
00100	GIVIAC_FR	23:16				FRX[2	23:16]					
		31:24				FRX[31:24]					
		7:0				BFR	X[7:0]					
0:0150		15:8				BFRX	([15:8]					
0x015C	GWIAC_DUFR	23:16				BFRX	[23:16]					
		31:24				BFRX	[31:24]					
		7:0				MFR	X[7:0]					
0×0160	GMAC_MFR	15:8		MFRX[15:8]								
00100		23:16	MFRX[23:16]									
		31:24		MFRX[31:24]								
		7:0	PFRX[7:0]									
0x0164		15:8	PFRX[15:8]									
0X0164	GIMAC_PFR	23:16										
		31:24										
		7:0		NFRX[7:0]								
0x0169		15:8				NFRX	([15:8]					
0.0100	GINAC_DI 104	23:16				NFRX	[23:16]					
		31:24				NFRX	[31:24]					
		7:0	NFRX[7:0]									
0x016C	GMAC TRER127	15:8		NFRX[15:8]								
0,0100		23:16				NFRX	[23:16]					
		31:24				NFRX	[31:24]					
		7:0		NFRX[7:0]								
0x0170	GMAC TBER255	15:8		NFRX[15:8]								
		23:16				NFRX	[23:16]					
		31:24				NFRX	[31:24]					
		7:0				NFR	X[7:0]					
0x0174	GMAC TBFR511	15:8				NFRX	([15:8]					
		23:16				NFRX	[23:16]					
		31:24				NFRX	[31:24]					
		7:0				NFR	X[7:0]					
0x0178	GMAC TBFR1023	15:8				NFRX	([15:8]					
		23:16				NFRX	[23:16]					
		31:24				NFRX	[31:24]					
0x017C	GMAC TBFR1518	7:0				NFR	X[7:0]					
0.0170		15:8				NFRX	([15:8]					

- Bit 22 PDRQFR PDelay Request Frame Received
- Bit 21 SFT PTP Sync Frame Transmitted
- **Bit 20 DRQFT** PTP Delay Request Frame Transmitted
- Bit 19 SFR PTP Sync Frame Received
- Bit 18 DRQFR PTP Delay Request Frame Received
- Bit 15 EXINT External Interrupt
- **Bit 14 PFTR** Pause Frame Transmitted
- Bit 13 PTZ Pause Time Zero
- Bit 12 PFNZ Pause Frame with Non-zero Pause Quantum Received
- Bit 11 HRESP HRESP Not OK
- Bit 10 ROVR Receive Overrun
- Bit 7 TCOMP Transmit Complete
- Bit 6 TFC Transmit Frame Corruption Due to AHB Error
- Bit 5 RLEX Retry Limit Exceeded or Late Collision
- Bit 4 TUR Transmit Underrun
- Bit 3 TXUBR TX Used Bit Read
- Bit 2 RXUBR RX Used Bit Read
- Bit 1 RCOMP Receive Complete
- Bit 0 MFS Management Frame Sent

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.							
		7:0	SHORTPACK	RXSTALLDIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0.0570	USBHS_HSTPIPIC	15.0	EIIC						
0x0570	R4 (INTPIPES)	23.16							
		31.24							
		51.24	SHORTPACK						
		7:0	ETIC	CRCERRIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0x0570		15:8							
	100111 20)	23:16							
		31:24							
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC	TXSTPIC	TXOUTIC	RXINIC
0x0574	USBHS_HSTPIPIC	15:8							
	R5	23:16							
		31:24							
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0x0574		15:8							
	R5 (INTPIPES)	23:16							
		31:24							
		7:0	SHORTPACK ETIC	CRCERRIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0x0574		15:8							
	R5 (ISOPIPES)	23:16							
		31:24							
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC	TXSTPIC	TXOUTIC	RXINIC
0x0578	R6	15:8							
		23:16							
		31:24							
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0x0578		15:8							
	RO (INTERES)	23:16							
		31:24							
		7:0	SHORTPACK ETIC	CRCERRIC	OVERFIC	NAKEDIC	UNDERFIC	TXOUTIC	RXINIC
0x0578		15:8							
		23:16							
		31:24							
		7:0	SHORTPACK ETIC	RXSTALLDIC	OVERFIC	NAKEDIC	TXSTPIC	TXOUTIC	RXINIC
0x057C		15:8							
		23:16							
		31:24							

USB High-Speed Interface (USBHS)

Value	Description
0	Frees the endpoint memory.
1	Allocates the endpoint memory. The user should check the USBHS_DEVEPTISRx.CFGOK
	bit to know whether the allocation of this endpoint is correct.

Serial Peripheral Interface (SPI)

41.8.10 SPI Write Protection Mode Register

Name:	SPI_WPMR
Offset:	0xE4
Reset:	0x0
Property:	Read/Write

See section Register Write Protection for the list of registers that can be write-protected.

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	
				WPKI	EY[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						WPCREN	WPITEN	WPEN
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x53504	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
9		Always reads as 0.

Bit 2 – WPCREN Write Protection Control Register Enable

Value	Description
0	Disables the write protection on the Control register if WPKEY corresponds to 0x535049.
1	Enables the write protection on the Control register if WPKEY corresponds to 0x535049.

Bit 1 – WPITEN Write Protection Interrupt Enable

Value	Description
0	Disables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.
1	Enables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.

Bit 0 – WPEN Write Protection Enable

Two-wire Interface (TWIHS)

- 2. Configure the Master mode (DADR, CKDIV, MREAD = 1, etc.) or Slave mode.
- 3. Enable the DMA.
- 4. (Master Only) Write TWIHS_CR.START to start the transfer.
- 5. Wait for the DMA status flag indicating that the buffer transfer is complete.
- 6. Disable the DMA.
- 7. Wait for the RXRDY flag in the TWIHS_SR.
- 8. Set TWIHS_CR.STOP.
- 9. Read the penultimate character in TWIHS_RHR.
- 10. Wait for the RXRDY flag in the TWIHS_SR.
- 11. Read the last character in TWIHS_RHR.
- 12. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWIHS_SR.

43.6.3.9 SMBus Mode

SMBus mode is enabled when a one is written to TWIHS_CR.SMBEN. SMBus mode operation is similar to I²C operation with the following exceptions:

- Only 7-bit addressing can be used.
- The SMBus standard describes a set of timeout values to ensure progress and throughput on the bus. These timeout values must be programmed into TWIHS_SMBTR.
- Transmissions can optionally include a CRC byte, called Packet Error Check (PEC).
- A set of addresses has been reserved for protocol handling, such as alert response address (ARA) and host header (HH) address. Address matching on these addresses can be enabled by configuring TWIHS_CR.

43.6.3.9.1 Packet Error Checking

Each SMBus transfer can optionally end with a CRC byte, called the PEC byte. Writing a one to TWIHS_CR.PECEN enables automatic PEC handling in the current transfer. Transfers with and without PEC can be intermixed in the same system, since some slaves may not support PEC. The PEC LFSR is always updated on every bit transmitted or received, so that PEC handling on combined transfers is correct.

In Master Transmitter mode, the master calculates a PEC value and transmits it to the slave after all data bytes have been transmitted. Upon reception of this PEC byte, the slave compares it to the PEC value it has computed itself. If the values match, the data was received correctly, and the slave returns an ACK to the master. If the PEC values differ, data was corrupted, and the slave returns a NACK value. Some slaves may not be able to check the received PEC in time to return a NACK if an error occurred. In this case, the slave should always return an ACK after the PEC byte, and another method must be used to verify that the transmission was received correctly.

In Master Receiver mode, the slave calculates a PEC value and transmits it to the master after all data bytes have been transmitted. Upon reception of this PEC byte, the master compares it to the PEC value it has computed itself. If the values match, the data was received correctly. If the PEC values differ, data was corrupted, and TWIHS_SR.PECERR is set. In Master Receiver mode, the PEC byte is always followed by a NACK transmitted by the master, since it is the last byte in the transfer.

In combined transfers, the PECRQ bit should only be set in the last of the combined transfers.

Consider the following transfer:

S, ADR+W, COMMAND_BYTE, ACK, SR, ADR+R, DATA_BYTE, ACK, PEC_BYTE, NACK, P

See Read/Write Flowcharts for detailed flowcharts.

© 2018 Microchip Technology Inc.

SAM E70/S70/V70/V71 Family Media Local Bus (MLB)

Bit 1 – LKSYSCMD Network Lock System Command Detected in the System Quadlet (cleared by writing a 0)

Set by hardware, cleared by software.

Bit 0 – RSTSYSCMD Reset System Command Detected in the System Quadlet (cleared by writing a 0) Set by hardware, cleared by software.

Controller Area Network (MCAN)

Using the MCAN interrupts requires the Interrupt Controller to be programmed first.

Interrupt sources can be routed either to MCAN_INT0 or to MCAN_INT1. By default, all interrupt sources are routed to interrupt line MCAN_INT0/1. By programming MCAN_ILE.EINT0 and MCAN_ILE.EINT1, the interrupt sources can be enabled or disabled separately.

49.4.4 Address Configuration

The LSBs [bits 15:2] for each section of the CAN Message RAM are configured in the respective buffer configuration registers as detailed in Message RAM.

The MSBs [bits 31:16] of the CAN Message RAM for CAN0 and CAN1 are configured in CCFG_CAN0 and CCFG_SYSIO registers.

49.4.5 Timestamping

Timestamping uses the value of CV in the TC Counter Value 0 register (TC_CV0) at address 0x4000C010. TC0 can use the programmable clocks PCK6 or PCK7 as input. Refer to the section "Timer Counter (TC)" for more details.

The selection between PCK6 and PCK7 is done in the Matrix Peripheral Clock Configuration Register (CCFG_PCCR), using the bit TC0CC. Refer to this register in the section "Bus Matrix (MATRIX)" for more details.

These clocks can be programmed in the the registers PMC Programmable Clock Registers PMC_PCK6 and PMC_PCK7, respectively. Refer to these registers in the section "Power Management Controller (PMC)" for more details.

Related Links

50. Timer Counter (TC)

31. Power Management Controller (PMC)

49.5 Functional Description

49.5.1 Operating Modes

49.5.1.1 Software Initialization

Software initialization is started by setting bit MCAN_CCCR.INIT, either by software or by a hardware reset, when an uncorrected bit error was detected in the Message RAM, or by going Bus_Off. While MCAN_CCCR.INIT is set, message transfer from and to the CAN bus is stopped and the status of the CAN bus output CANTX is recessive (HIGH). The counters of the Error Management Logic EML are unchanged. Setting MCAN_CCCR.INIT does not change any configuration register. Resetting MCAN_CCCR.INIT finishes the software initialization. Afterwards the Bit Stream Processor BSP synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (= Bus_Idle) before it can take part in bus activities and start the message transfer.

Access to the MCAN configuration registers is only enabled when both bits MCAN_CCCR.INIT and MCAN_CCCR.CCE are set (protected write).

MCAN_CCCR.CCE can only be configured when MCAN_CCCR.INIT = '1'. MCAN_CCCR.CCE is automatically cleared when MCAN_CCCR.INIT = '0'.

The following registers are cleared when MCAN_CCCR.CCE = '1':

© 2018 Microchip Technology Inc.

51.6.5.1.1 Application Example

The external PWM Reset mode can be used in power factor correction applications.

In the example below, the external trigger input is the PWMEXTRG1 (therefore the PWM channel used for regulation is the channel 1). The PWM channel 1 period (CPRD in the PWM Channel Period Register of the channel 1) must be programmed so that the TRGIN1 event always triggers before the PWM channel 1 period elapses.

In the figure below, an external circuit (not shown) is required to sense the inductor current I_L . The internal PWM counter of the channel 1 is cleared when the inductor current falls below a specific threshold (I_{REF}). This starts a new PWM period and increases the inductor current.

Figure 51-28. External PWM Reset Mode: Power Factor Correction Application

51.6.5.2 External PWM Start Mode

External PWM Start mode is selected by programming TRGMODE = 2 in the PWM_ETRGx register.

In this mode, the internal PWM counter can only be reset once it has reached the CPRD value in the PWM Channel Period Register and when the correct level is detected on the corresponding external trigger input. Both conditions have to be met to start a new PWM period. The active detection level is defined by the bit TRGEDGE of the PWM_ETRGx register.

Note that this mode guarantees a constant t_{ON} time and a minimum t_{OFF} time.

Pulse Width Modulation Controller (PWM)

51.6.5.4 Leading-Edge Blanking (LEB)

PWM channels 1 and 2 support leading-edge blanking. Leading-edge blanking masks the external trigger input when a transient occurs on the corresponding PWM output. It masks potential spurious external events due to power transistor switching.

The blanking delay on each external trigger input is configured by programming the LEBDELAYx in the PWM Leading-Edge Blanking Register.

The LEB can be enabled on both the rising and the falling edges for the PWMH and PWML outputs through the bits PWMLFEN, PWMLREN, PWMHFEN, PWMHREN.

Any event on the PWMEXTRGx input which occurs during the blanking time is ignored.

51.7.10 PWM DMA Register

Name:	PWM_DMAR				
Offset:	0x24				
Reset:	-				
Property:	Write-only				

Only the first 16 bits (channel counter size) are significant.

Bit	31	30	29	28	27	26	25	24		
Γ										
Access						-				
Reset										
			0 (10	10	<i>.</i> _	10		
Bit	23	22	21	20	19	18	1/	16		
	DMADUTY[23:16]									
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
Γ				DMADU	TY[15:8]					
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
Γ				DMADU	JTY[7:0]					
Access	W	W	W	W	W	W	W	W		
Reset	0	0	0	0	0	0	0	_		

Bits 23:0 – DMADUTY[23:0] Duty-Cycle Holding Register for DMA Access

Each write access to PWM_DMAR sequentially updates PWM_CDTYUPDx.CDTYUPD with DMADUTY (only for channel configured as synchronous). See "Method 3: Automatic write of duty-cycle values and automatic trigger of the update".