

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71q21b-aab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Event System

Function	Application	Description	Event Source	Event Destination
	Motor control	Puts the PWM outputs in Safe	TC0	PWM0
		mode (overspeed detection through timer quadrature decoder) (see Notes 2, 6)	TC1	PWM1
	General-	Puts the PWM outputs in Safe	PIO PA9, PD8, PD9	PWM0
Occurity	purpose, motor control, power factor correction (PFC)	mode (general-purpose fault inputs) (see Note 2)	PIO PA21, PA26, PA28	PWM1
Security	General- purpose	Immediate GPBR clear (asynchronous) on tamper detection through WKUP0/1 IO pins (see Note 5)	PIO WKUP0/1	GPBR
Measurement	Power factor	Duty cycle output waveform	ACC	PWM0
trigger	correction (DC-DC, lighting, etc.)	correction Trigger source selection in	PIO PA10, PA22	PWM0
		PWM (see Notes 7, 8)	ACC	PWM1
			PIO PA30, PA18	PWM1
	General- purpose	Trigger source selection in	PIO AFE0_ADTRG	AFEC0
		AFEC (see Note 9)	TC0 TIOA0	AFEC0
			TC0 TIOA1	AFEC0
			TC0 TIOA2	AFEC0
			ACC	AFEC0
	Motor control	ADC-PWM synchronization (see Notes 12, 14) Trigger source selection in AFEC (see Note 9)	PWM0 Event Line 0 and 1	AFEC0
	General-	Trigger source selection in	PIO AFE1_ADTRG	AFEC1
	purpose	AFEC (see Note 9)	TC1 TIOA3	AFEC1
			TC1 TIOA4	AFEC1
			TC1 TIOA5	AFEC1
			ACC	AFEC1
	Motor control ADC-PWM synchronization (see Notes 12, 14) Trigger source selection in AFEC (see Note 9)		PWM1 Event Line 0 and 1	AFEC1

Power Management Controller (PMC)

31.20.1 PMC System Clock Enable Register

Name:PMC_SCEROffset:0x0000Property:Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
	PCK7	PCK6	PCK5	PCK4	PCK3	PCK2	PCK1	PCK0
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
			USBCLK					
Access								
Reset								

Bits 8, 9, 10, 11, 12, 13, 14, 15 – PCK Programmable Clock x Output Enable

Value	Description
0	No effect.
1	Enables the corresponding Programmable Clock output.

Bit 5 – USBCLK Enable USB FS Clock

Value	Description
0	No effect.
1	Enables USB FS clock.

Power Management Controller (PMC)

31.20.16 PMC Status Register

	Name: Offset: Reset: Property:	PMC_SR 0x0068 0x00030008 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			XT32KERR	FOS	CFDS	CFDEV	MOSCRCS	MOSCSELS
Access	L	•						
Reset			0	0	0	0	1	1
Bit	15	14	13	12	11	10	9	8
		PCKRDY6	PCKRDY5	PCKRDY4	PCKRDY3	PCKRDY2	PCKRDY1	PCKRDY0
Access	L	·	•					
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	OSCSELS	LOCKU			MCKRDY		LOCKA	MOSCXTS
Access	L				1]
Reset	0	0			1		0	0

Bit 21 – XT32KERR Slow Crystal Oscillator Error

Value	Description
0	The frequency of the 32.768 kHz crystal oscillator is correct (32.768 kHz ±1%) or the
	monitoring is disabled.
1	The frequency of the 32.768 kHz crystal oscillator is incorrect or has been incorrect for an
	elapsed period of time since the monitoring has been enabled.

Bit 20 - FOS Clock Failure Detector Fault Output Status

Value	Description
0	The fault output of the clock failure detector is inactive.
1	The fault output of the clock failure detector is active. This status is cleared by writing a '1' to
	FOCLR in PMC_FOCR.

Bit 19 – CFDS Clock Failure Detector Status

Value	Description
0	A clock failure of the Main crystal oscillator clock is not detected.
1	A clock failure of the Main crystal oscillator clock is detected.

Bit 18 – CFDEV Clock Failure Detector Event

Power Management Controller (PMC)

31.20.25 PMC Peripheral Clock Status Register 1

	Name: Offset: Reset: Property:	PMC_PCSR1 0x0108 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
	PID24	PID23	PID22	PID21	PID20	PID19	PID18	PID17
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	PID16	PID15	PID14	PID13	PID12	PID11	PID10	PID9
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	PID8	PID7	PID6	PID5	PID4	PID3	PID2	PID1
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PID0							
Access								
Reset	0							

Bits 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 – PIDx Peripheral Clock x Status

Value	Description
0	The corresponding peripheral clock is disabled.
1	The corresponding peripheral clock is enabled.
	Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers".

The size of the data which can be read in PIO_PCRHR can be programmed using the DSIZE field in PIO_PCMR. If this data size is larger than 8 bits, then the Parallel Capture mode samples several sensor data to form a concatenated data of size defined by DSIZE. Then this data is stored in PIO_PCRHR and the flag DRDY is set to one in PIO_PCISR.

The Parallel Capture mode can be associated with a reception channel of the DMA Controller. This performs reception transfer from Parallel Capture mode to a memory buffer without any intervention from the CPU.

The Parallel Capture mode can take into account the sensor data enable signals or not. If the bit ALWYS is set to zero in PIO_PCMR, the Parallel Capture mode samples the sensor data at the rising edge of the sensor clock only if both data enable signals are active (at one). If the bit ALWYS is set to one, the Parallel Capture mode samples the sensor data at the rising edge of the sensor clock whichever the data enable signals are.

The Parallel Capture mode can sample the sensor data only one time out of two. This is particularly useful when the user wants only to sample the luminance Y of a CMOS digital image sensor which outputs a YUV422 data stream. If the HALFS bit is set to zero in PIO_PCMR, the Parallel Capture mode samples the sensor data in the conditions described above. If the HALFS bit is set to one in PIO_PCMR, the Parallel Capture mode samples the sensor data in the conditions described above, but only one time out of two. Depending on the FRSTS bit in PIO_PCMR, the sensor can either sample the even or odd sensor data. If sensor data are numbered in the order that they are received with an index from zero to n, if FRSTS equals zero then only data with an even index are sampled. If FRSTS equals one, then only data with an odd index are sampled. If data is ready in PIO_PCRHR and it is not read before a new data is stored in PIO_PCRHR, then an overrun error occurs. The previous data is lost and the OVRE flag in PIO_PCISR is set to one. This flag is automatically reset when PIO_PCISR is read (reset after read).

The flags DRDY and OVRE can be a source of the PIO interrupt.

Figure 32-10. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 0)

SDRAM Controller (SDRAMC)

Figure 34-3. Read Burst SDRAM Access

34.6.3 Border Management

When the memory row boundary has been reached, an automatic page break is inserted. In this case, the SDRAMC generates a precharge command, activates the new row and initiates a read or write command. To comply with SDRAM timing parameters, an additional clock cycle is inserted between the precharge and the active command (t_{RP}) and between the active and the read command (t_{RCD}). Refer to the following figure.

Figure 34-4. Read Burst with Boundary Row Access

34.6.4 SDRAM Controller Refresh Cycles

An autorefresh command is used to refresh the SDRAM device. Refresh addresses are generated internally by the SDRAM device and incremented after each autorefresh automatically. The SDRAMC

34.7.10 SDRAMC Configuration Register 1

	Name: Offset: Reset: Property:	SDRAMC_CF 0x28 0x00000002 Read/Write	R1					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
								UNAL
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
						TMRI	D[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	1	0

Bit 8 – UNAL Support Unaligned Access

This mode is enabled with masters which have an AXI interface.

Value	Name	Description
0	UNSUPPORTED	Unaligned access is not supported.
1	SUPPORTED	Unaligned access is supported.

Bits 3:0 – TMRD[3:0] Load Mode Register Command to Active or Refresh Command Reset value is 2 cycles.

This field defines the delay between a "Load Mode Register" command and an active or refresh command in number of cycles. Number of cycles is between 0 and 15.

37. Image Sensor Interface (ISI)

37.1 Description

The Image Sensor Interface (ISI) connects a CMOS-type image sensor to the processor and provides image capture in various formats. The ISI performs data conversion, if necessary, before the storage in memory through DMA.

The ISI supports color CMOS image sensor and grayscale image sensors with a reduced set of functionalities.

In Grayscale mode, the data stream is stored in memory without any processing and so is not compatible with the LCD controller.

Internal FIFOs on the preview and codec paths are used to store the incoming data. The RGB output on the preview path is compatible with the LCD controller. This module outputs the data in RGB format (LCD compatible) and has scaling capabilities to make it compliant to the LCD display resolution (see the table RGB Format in Default Mode, RGB_CFG = 00, No Swap).

Several input formats such as preprocessed RGB or YCbCr are supported through the data bus interface.

The ISI supports two synchronization modes:

- Hardware with ISI_VSYNC and ISI_HSYNC signals
- International Telecommunication Union Recommendation ITU-R BT.656-4 Start-of-Active-Video (SAV) and End-of-Active-Video (EAV) synchronization sequence

Using EAV/SAV for synchronization reduces the pin count (ISI_VSYNC, ISI_HSYNC not used). The polarity of the synchronization pulse is programmable to comply with the sensor signals.

Signal	Direction	Description
ISI_VSYNC	In	Vertical Synchronization
ISI_HSYNC	In	Horizontal Synchronization
ISI_DATA[110]	In	Sensor Pixel Data
ISI_MCK	Out	Master Clock provided to the Image Sensor. Refer to "Clocks".
ISI_PCK	In	Pixel Clock provided by the Image Sensor

Table 37-1. I/O Description

Image Sensor Interface (ISI)

Value	Description
0	$D7 \rightarrow R7.$
1	$D0 \rightarrow R7.$

Bit 13 – GRAYSCALE Grayscale Mode Format Enable

Value	Description
0	Grayscale mode is disabled.
1	Input image is assumed to be grayscale-coded.

Bit 12 - RGB_MODE RGB Input Mode

Value	Description
0	RGB 8:8:8 24 bits.
1	RGB 5:6:5 16 bits.

Bit 11 – GS_MODE Grayscale Pixel Format Mode

Value	Description
0	2 pixels per word.
1	1 pixel per word.

Bits 10:0 - IM_VSIZE[10:0] Vertical Size of the Image Sensor [0..2047]

IM_VSIZE = Vertical size - 1

38.8.41 GMAC Broadcast Frames Transmitted Register

Name:	GMAC_BCFT
Offset:	0x10C
Reset:	0x00000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
[BFTX	[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
D	00	00		00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
				BFTX	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				BFTX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BFT	K [7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – BFTX[31:0] Broadcast Frames Transmitted without Error This register counts the number of broadcast frames successfully transmitted without error, i.e., no underrun and not too many retries. Excludes pause frames.

	Name: Offset: Reset: Property:	GMAC_PFT 0x114 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				PFTX	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PFT	([7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

38.8.43 GMAC Pause Frames Transmitted Register

Bits 15:0 – PFTX[15:0] Pause Frames Transmitted Register

This register counts the number of pause frames transmitted. Only pause frames triggered by the register interface or through the external pause pins are counted as pause frames. Pause frames received through the FIFO interface are counted in the frames transmitted counter.

USB High-Speed Interface (USBHS)

Offset	Name	Bit Pos.								
		7:0	SHORTPACK ETS	STALLEDIS	OVERFIS	NAKINIS	NAKOUTIS	RXSTPIS	RXOUTIS	TXINIS
0x01AC	USBHS_DEVEPTIF	15:8				NBUSYBKS				
	R7	23:16								
		31:24								
		7:0	SHORTPACK ETS	CRCERRIS	OVERFIS	HBISOFLUSH IS	HBISOINERRI S	UNDERFIS	RXOUTIS	TXINIS
0x01AC		15:8				NBUSYBKS				
	R7 (ISOENFT)	23:16								
		31:24								
		7:0	SHORTPACK ETS	STALLEDIS	OVERFIS	NAKINIS	NAKOUTIS	RXSTPIS	RXOUTIS	TXINIS
0x01B0		15:8				NBUSYBKS				
	NO	23:16								
		31:24								
		7:0	SHORTPACK ETS	CRCERRIS	OVERFIS	HBISOFLUSH IS	HBISOINERRI S	UNDERFIS	RXOUTIS	TXINIS
0x01B0		15:8				NBUSYBKS				
	R8 (ISUENPT)	23:16								
		31:24								
	USBHS_DEVEPTIF R9	7:0	SHORTPACK ETS	STALLEDIS	OVERFIS	NAKINIS	NAKOUTIS	RXSTPIS	RXOUTIS	TXINIS
0x01B4		15:8				NBUSYBKS				
		23:16								
		31:24								
		7:0	SHORTPACK ETS	CRCERRIS	OVERFIS	HBISOFLUSH IS	HBISOINERRI S	UNDERFIS	RXOUTIS	TXINIS
0x01B4		15:8				NBUSYBKS				
	R9 (ISOENFT)	23:16								
		31:24								
0x01B8 	Reserved									
UNUTER .		7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
0x01C0	USBHS_DEVEPTIM	15:8		FIFOCON	KILLBK	NBUSYBKE				
	R0	23:16					STALLRQ	RSTDT	NYETDIS	EPDISHDMA
		31:24								
		7:0	SHORTPACK ETE	CRCERRE	OVERFE	HBISOFLUSH E	HBISOINERR E	UNDERFE	RXOUTE	TXINE
0x01C0	USBHS_DEVEPTIM R0 (ISOENPT)	15:8		FIFOCON	KILLBK	NBUSYBKE		ERRORTRAN SE	DATAXE	MDATAE
		23:16						RSTDT		EPDISHDMA
		31:24								
0x01C4	USBHS_DEVEPTIM	7:0	SHORTPACK ETE	STALLEDE	OVERFE	NAKINE	NAKOUTE	RXSTPE	RXOUTE	TXINE
	RI	15:8		FIFOCON	KILLBK	NBUSYBKE				

USB High-Speed Interface (USBHS)

Value	Description
0	Cleared when USBHS_HSTPIPICR.SHORTPACKETIC = 1.
1	Set when a short packet is received by the host controller (packet length inferior to the
	PSIZE programmed field).

Bit 6 – RXSTALLDI Received STALLed Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.RXSTALLDIC = 1.
1	Set when a STALL handshake has been received on the current bank of the pipe. The pipe
	is automatically frozen. This triggers an interrupt if USBHS_HSTPIPIMR.RXSTALLE = 1.

Bit 5 – OVERFI Overflow Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.OVERFIC = 1.
1	Set when the current pipe has received more data than the maximum length of the current
	pipe. An interrupt is triggered if the USBHS_HSTPIPIMR.OVERFIE bit = 1.

Bit 4 - NAKEDI NAKed Interrupt

Value	Description
0	Cleared when USBHS_HSTPIPICR.NAKEDIC = 1.
1	Set when a NAK has been received on the current bank of the pipe. This triggers an interrupt
	if the USBHS_HSTPIPIMR.NAKEDE bit = 1.

Bit 3 – PERRI Pipe Error Interrupt

Value	Description
0	Cleared when the error source bit is cleared.
1	Set when an error occurs on the current bank of the pipe. This triggers an interrupt if the USBHS_HSTPIPIMR.PERRE bit is set. Refer to the USBHS_HSTPIPERRx register to determine the source of the error.

Bit 2 – UNDERFI Underflow Interrupt

This bit is set, for an isochronous and interrupt IN/OUT pipe, when an error flow occurs. This triggers an interrupt if UNDERFIE = 1.

This bit is set, for an isochronous or interrupt OUT pipe, when a transaction underflow occurs in the current pipe (the pipe cannot send the OUT data packet in time because the current bank is not ready). A zero-length-packet (ZLP) is sent instead.

This bit is set, for an isochronous or interrupt IN pipe, when a transaction flow error occurs in the current pipe, i.e, the current bank of the pipe is not free while a new IN USB packet is received. This packet is not stored in the bank. For an interrupt pipe, the overflowed packet is ACKed to comply with the USB standard.

This bit is cleared when USBHS_HSTPIPICR.UNDERFIEC = 1.

Bit 1 – TXOUTI Transmitted OUT Data Interrupt

- 5. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCND set to BOOTREQ, TRDIR set to READ and TRCMD set to "start data transfer".
- 6. DMA controller copies the boot partition to the memory.
- 7. When DMA transfer is completed, host processor shall terminate the boot stream by writing the HSMCI_CMDR with SPCMD field set to BOOTEND.

40.12 HSMCI Transfer Done Timings

40.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

40.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in the following figure.

Figure 40-11. XFRDONE During a Read Access

40.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in the following figure.

Quad Serial Peripheral Interface (QSPI)

Bits 11:8 - NBBITS[3:0] Number Of Bits Per Transfer

Value	Name	Description
0	8_BIT	8 bits for transfer
8	16_BIT	16 bits for transfer

Bits 5:4 - CSMODE[1:0] Chip Select Mode

The CSMODE field determines how the chip select is deasserted

Note: This field is forced to LASTXFER when SMM is written to '1'.

Value	Name	Description
0	NOT_RELOADED	The chip select is deasserted if QSPI_TDR.TD has not been reloaded
		before the end of the current transfer.
1	LASTXFER	The chip select is deasserted when the bit LASTXFER is written to '1' and the character written in QSPI_TDR.TD has been transferred.
2	SYSTEMATICALLY	The chip select is deasserted systematically after each transfer.

Bit 2 – WDRBT Wait Data Read Before Transfer

0 (DISABLED): No effect. In SPI mode, a transfer can be initiated whatever the state of the QSPI_RDR is.

1 (ENABLED): In SPI mode, a transfer can start only if the QSPI_RDR is empty, i.e., does not contain any unread data. This mode prevents overrun error in reception.

Bit 1 – LLB Local Loopback Enable

0 (DISABLED): Local loopback path disabled.

1 (ENABLED): Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in SPI mode only. (MISO is internally connected on MOSI).

Bit 0 – SMM Serial Memory Mode

0 (SPI): The QSPI is in SPI mode.

1 (MEMORY): The QSPI is in Serial Memory mode.

48.7.12 HBI Channel Error 1 Register

Name:	MLB_HCER1
Offset:	0x094
Reset:	0x00000000
Property:	Read-only

HCERn status bits are set when hardware detects hardware errors on the given logical channel, including:

- Channel opened, but not enabled,
- Channel programmed with invalid channel type, or
- Out-of-range PML for asynchronous or control Tx channels

Bit	31	30	29	28	27	26	25	24
	CERR: Bitwise Channel Error Bit [63[31:24]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
			CER	R: Bitwise Chan	nel Error Bit [63[2	23:16]		
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	CERR: Bitwise Channel Error Bit [63[15:8]							
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CERR: Bitwise Channel Error Bit [63[7:0]							
Access								
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CERR: Bitwise Channel Error Bit [63[31:0] 32]

CERR[n] = 1 indicates that a fatal error occurred on channel n.

- Configuration of the fault protection (FMOD and FFIL in PWM_FMR, PWM_FPV and PWM_FPE)
- Enable of the interrupts (writing CHIDx and FCHIDx in PWM_IER1, and writing WRDY, UNRE, CMPMx and CMPUx in PWM_IER2)
- Enable of the PWM channels (writing CHIDx in the PWM_ENA register)

51.6.6.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the value in the PWM Channel Period Register (PWM_CPRDx) and the PWM Channel Duty Cycle Register (PWM_CDTYx) helps the user select the appropriate clock. The event number written in the Period Register gives the PWM accuracy. The Duty-Cycle quantum cannot be lower than 1/CPRDx value. The higher the value of PWM_CPRDx, the greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value from between 1 up to 14 in PWM_CDTYx. The resulting duty-cycle quantum cannot be lower than 1/15 of the PWM period.

51.6.6.3 Changing the Duty-Cycle, the Period and the Dead-Times

It is possible to modulate the output waveform duty-cycle, period and dead-times.

To prevent unexpected output waveform, the user must use the PWM Channel Duty Cycle Update Register (PWM_CDTYUPDx), the PWM Channel Period Update Register (PWM_CPRDUPDx) and the PWM Channel Dead Time Update Register (PWM_DTUPDx) to change waveform parameters while the channel is still enabled.

- If the channel is an asynchronous channel (SYNCx = 0 in PWM Sync Channels Mode Register (PWM_SCM)), these registers hold the new period, duty-cycle and dead-times values until the end of the current PWM period and update the values for the next period.
- If the channel is a synchronous channel and update method 0 is selected (SYNCx = 1 and UPDM = 0 in PWM_SCM register), these registers hold the new period, duty-cycle and dead-times values until the bit UPDULOCK is written at '1' (in PWM Sync Channels Update Control Register (PWM SCUC)) and the end of the current PWM period, then update the values for the next period.
- If the channel is a synchronous channel and update method 1 or 2 is selected (SYNCx = 1 and UPDM = 1 or 2 in PWM_SCM register):
 - registers PWM_CPRDUPDx and PWM_DTUPDx hold the new period and dead-times values until the bit UPDULOCK is written at '1' (in PWM_SCUC) and the end of the current PWM period, then update the values for the next period.
 - register PWM_CDTYUPDx holds the new duty-cycle value until the end of the update period of synchronous channels (when UPRCNT is equal to UPR in PWM Sync Channels Update Period Register (PWM_SCUP)) and the end of the current PWM period, then updates the value for the next period.

Note: If the update registers PWM_CDTYUPDx, PWM_CPRDUPDx and PWM_DTUPDx are written several times between two updates, only the last written value is taken into account.

Analog Comparator Controller (ACC)

54.7.8 ACC Write Protection Mode Register

Name:	ACC_WPMR
Offset:	0xE4
Reset:	0x00000000
Property:	Read/Write

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WPKE	EY[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	-
Bit	7	6	5	4	3	2	1	0
								WPEN
Access								R/W
Reset								0

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x41434	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
3		Always reads as 0.

Bit 0 – WPEN Write Protection Enable

Refer to Register Write Protection for the list of registers that can be write-protected.

Value	Description
0	Disables the write protection if WPKEY corresponds to 0x414343 ("ACC" in ASCII).
1	Enables the write protection if WPKEY corresponds to 0x414343 ("ACC" in ASCII).

Integrity Check Monitor (ICM)

Example	Comment
0x98BADCFE	SHA1 algorithm
0x3070DD17	SHA224 algorithm
0x3C6EF372	SHA256 algorithm

For ICM_UIHVAL3 field:

Example	Comment
0x10325476	SHA1 algorithm
0xF70E5939	SHA224 algorithm
0xA54FF53A	SHA256 algorithm

For ICM_UIHVAL4 field:

Example	Comment
0xC3D2E1F0	SHA1 algorithm
0xFFC00B31	SHA224 algorithm
0x510E527F	SHA256 algorithm

For ICM_UIHVAL5 field:

Example	Comment
0x68581511	SHA224 algorithm
0x9B05688C	SHA256 algorithm

For ICM_UIHVAL6 field:

Example	Comment
0x64F98FA7	SHA224 algorithm
0x1F83D9AB	SHA256 algorithm

For ICM_UIHVAL7 field:

Example	Comment
0xBEFA4FA4	SHA224 algorithm
0x5BE0CD19	SHA256 algorithm

Example of Initial Value for SHA-1 Algorithm

© 2018 Microchip Technology Inc.

True Random Number Generator (TRNG)

	Name: Offset: Reset: Property:	TRNG_IER 0x10 – Write-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
5.4		22	0.1	00	10	10	47	10
Bit	23	22	21	20	19	18	17	16
A								
Access								
Resei								
Bit	15	14	13	12	11	10	9	8
	-		-			-	-	-
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								DATRDY
Access								W
Reset								-

56.6.2 TRNG Interrupt Enable Register

Bit 0 – DATRDY Data Ready Interrupt Enable

Value	Description
0	No effect.
1	Enables the corresponding interrupt.